几种高凝稠油及高凝原油的乳化降凝降粘研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国普通原油资源贫乏,而稠油资源相对丰富,然而由于稠油(国际命名:Heavy oil)具有高粘度、低温流动性差等特点,给开采和输送带来了极大的困难。常用的加热采输法能耗高,经济效益差,目前应用有限。如何经济高效地开发稠油资源,对于缓解国内原油供需矛盾,确保我国能源战略安全具有十分重要的意义。本文针对高凝稠油和高凝原油凝点高、低温流动性差的特点,尝试采用乳化降凝降粘的方法进行流动性改进研究。通过添加合适的乳化剂和助剂,形成稳定性较好的O/W型乳液,利用油水界面膜对低温析出蜡晶的分割作用,阻止蜡晶形成三维空间网状结构,从而改善高凝稠油和高凝原油的低温流动性能。
     研究提出了适用于优化高凝稠油乳化剂配方的动态浊度法。通过使用常用的可见光分光光度计,研究下层稀释乳液的浊度随搅拌时间的变化。该法可直接表征乳液形成和破坏过程中分散相油相体积分数的变化和乳液的静态稳定性,经过多次取样能有效地减少试验误差。用其考察了NaOH质量浓度和不同乳化剂对高凝稠油H2乳液乳化效果的影响,并与常规相分离法的试验结果对比,两者十分吻合。
     针对凝点为47℃、50℃粘度为223.2mPa-s(Ds=105.1s-1)的华北油田高凝稠油H1,通过优化试验得到了适合的复配乳化剂配方:复配乳化剂质量浓度为0.5%(油酸钠和十二烷基磺酸钠的质量比为7:3),多聚磷酸钠、NaOH和聚丙烯酰胺的质量浓度分别为0.15%、0.05%和0.15%。当油水质量比为6:4,搅拌速度和搅拌时间分别为800rpm和20min时,使用去离子水,高凝稠油乳液的凝点降幅为18℃,50℃降粘率达86.8%。对该油田的另一种高凝稠油H2,通过优化试验也得到了合适的复配乳化剂配方。当油水质量比为7:3,搅拌速度分别为250rpm和600rpm时,使用自制的模拟油田矿化水,乳液的凝点降幅分别为20℃和25℃,降粘率分别为89.79%和97.46%(40℃)。若油水质量比为6:4,则乳化降凝降粘效果更好。
     此外对凝点为54℃的河南油田高凝原油,通过优化试验同样得到了合适的复配乳化剂配方。当油水质量比为59.5:40.5,搅拌速度分别为250rpm和800rpm时,使用去离子水,乳液的凝点降幅分别为8℃和17℃;50℃的降粘率分别为67.83%和88.79%,取得了较好的降凝降粘效果。
     针对高凝稠油和高凝原油自行合成了具有抗矿化度性能的酰胺型两性乳化剂。通过红外光谱表征了合成产物的分子结构,使用电位滴定法测定了合成乳化剂的含量。研究了合成乳化剂的种类和分子结构对高凝稠油H2乳液稳定性的影响。通过在乳化剂分子中引入酰胺基团,与聚丙烯酰胺间的相互作用显著增强,乳液的稳定性明显改善。通过试验得到合成乳化剂的优化配方为:复配乳化剂质量浓度为0.4%(油酸酰胺丙基二甲基氧化胺与LAO-35的质量比为7:3),NaOH和聚丙烯酰胺的质量浓度分别为0.035%和0.15%。当油水质量比为7:3,搅拌速度为250rpm,使用自制的模拟油田矿化水,通过形成稳定性较好的O/W型乳液,高凝稠油H2乳液的凝点降幅为20℃,与市售乳化剂优化配方的乳化降凝效果相当,40℃的降粘率为96.41%,高于市售乳化剂配方的降粘率,同时研究了相关机理。
     上述结果,对实现稠油和高凝原油的强化开采和管道输送具有实际应用价值,增加了对这类原油乳化降凝降粘机理的认识。
Our country is poor in the conventional crude oil, but is relatively rich in heavy oil, however it brings great difficulty on the exploitation and transportation because of its high viscosity and low fluidity at the low temperature. Now the common heating method applied on the exploitation and pipeline transportation of heavy oil is considered to be high energy consumption, uneconomic and inefficient. Therefore trying to exploit heavy oil source in an economic and efficient way is of great significance to release the contradiction between energy supply and demand, and ensure the security of energy strategy in our country. In this paper, based on the high pour point and low fluidity of waxy heavy oil and waxy crude oil at the low temperature, their fluidities were tried to be improved by emulsifying method. Thus the three dimensional net structure of wax crystals in the waxy heavy oil or waxy crude oil could be prevented by oil/water interfacial membrane due to forming stable waxy oil-in-water emulsion, which would highly improve the fluidity of waxy heavy oil.
     Dynamic turbidimetric method was proposed to optimize the emulsifier formulas for these oils. The turbidity of diluted sedimentary aqueous phase was measured as a function of stirring time with visible spectrophotometer. The variation of oil volume fraction during the emulsion formation and demulsification processes was characterized with the proposed dynamic turbidimetic method by changing stirring time, the static stability of emulsion was also obtained by changing the standing time during the sampling process, and the experimental error could be reduced by multiple sampling. The influence of mass fraction of NaOH and different emulsifiers on the emulsifying effect of waxy heavy oil emulsion was studied and the results agreed well with those obtained from the phase separation method.
     The suitable emulsifier formula for waxy heavy oil with the pour point of 47℃and the viscosity of 223.2mPa-s(50℃,Ds=105.1s-1) from Huabei oil field was obtained as follows:the mass concertration of emulsifier mixture(mass ratio of sodium oleate to SDS was 7:3) 0.5%, the mass concertration of sodium triphosphate, NaOH and PAM was respectively 0.15%, 0.05%, and 0.15%. When the mass ratio of oil to water was 6:4 and deionized water was used, by forming stable waxy heavy oil-in-water emulsion with stirring speed and stirring time of 800rpm and 20min, the corresponding pour point and viscosity reduction was respectively 18℃and 86.8%. For another waxy heavy oil H2 from the same oil field, the suitable emulsifier formula was also obtained. When the mass ratio of oil to water was 7:3 and the synthesized mineralized water was used in the experiment, by forming stable waxy heavy oil-in-water emulsions with stirring speed of 250rpm and 600rpm, the corresponding pour point reductions were 20℃and 25℃and the viscosity reductions were 89.79% and 97.46%, while the mass ratio of oil to water was changed from 7:3 to 6:4, the results were better.
     In addition, a suitable emulsifier formula for waxy crude oil with the pour point of 54℃from Henan oil field were obtained. When the mass ratio of oil to water was 59.5:40.5 and the deionized water was used in the experiment, by forming stable waxy crude oil-in-water emulsions with the stirring speed of 250rpm and 800rpm, the corresponding pour point reduction was respectively 8℃and 17℃and the viscosity reduction was respectively 67.83% and 88.79%.
     Series of salt resisting amphoteric emuslifiers containing amide group were self synthesized for these oils. The molecular structure was characterized by infrared spectrum and the content was analysed by potentiometric titration. The effects of types of emulsifiers and their molecular structure on the stability of waxy heavy oil-in-water emulsion were examined. Due to the increase of interaction strength with PAM, the emulsion stability was improved significantly by introducing amide group in the synthesized emulsifier. The suitable synthesized emulsifier formula for waxy heavy oil H2 from Huabei oil field was obtained as follows:the mass concertration of emulsifier mixture(mass ratio of oleic acid amidopropyl dimethyl amine oxide to LAO-35 was 7:3) 0.4%, the mass concertration of NaOH and PAM was respectively 0.035% and 0.15%. When the mass ratio of oil to water was 7:3 and the synthesized mineralized water was used in the experiment, by forming stable waxy heavy oil-in-water emulsion with the stirring speed of 250rpm, the corresponding pour point reduction was 20℃, which was equal to that obtained from saled emulsifier formula, and the corresponding viscosity reduction was 96.41%, which was better than that obtained from the saled emulsifier formula. The related mechanism was studied and discussed.
     The above mentioned results are of significance for the secondary or enhancing recovery and pipleline transportation of heavy oil and waxy crude oil, as well as contribute to recognize the mechanism of fluidity improving for these oils.
引文
[1]中商情报网,、vww.askci.com/news/201201/29/145659_48.Shtml2012-1-29百度快照
    [2]贾学军.高粘度稠油开采方法的现状与研究进展.石油天然气学报(江汉石油学院学报).2008,30(2):529-537
    [3]Ahmed N S, Nassar A M, Zaki N N, Gharieb H K. Formation of fluid heavy oil-in-water emulsions for pipeline transportation. Fuel.1999,78(5):593-600
    [4]李倩,锦超.提高稠油采收率技术研究现状及发展趋势.石油化工应用.2011,30(7):1-6
    [5]Briggeman W H. Method and system for reducing the viscosity of crude oil employing engine exhaust gas[P]. USA:US6644334B2,2003
    [6]Farouq Ali S M. Heavy oil-evermore mobile. Journal of Petroleum Science and Engineering.2003,37(1-2):5-9
    [7]马洪新,李刚,尚小东,尹艳梅.稠油开采技术研究现状.内蒙古石油化工.2009,(8):219-220
    [8]Dehkissia S, Larachi F, Rodrigue D, Chornet E. Characterization of Doba-Chad heavy crude oil in relation with the feasibility of pipeline transportation. Fuel.2004,83(16): 2157-2168
    [9]王阳恩,杨长铭,尚志远,董彦武.分段双曲线柱面声透镜在油井中聚焦的理论研究.石油机械.2003,31(1):17-20
    [10]王晓宇,宋天民.稠油降粘方法研究现状.河北化工工.2009,32(11):27-29
    [11]范晓娟,王霞,陈玉祥,范舟.稠油化学降粘方法研究进展.化工时刊.2007,21(3):46-49
    [12]Deshmukh S, Bharambe D P. Synthesis of polymeric pour point depressants for Nada crude oil (Gujarat, India) and its impact on oil rheology. Fuel Processing Technology. 2008,89(3):227-233
    [13]廖刚,尹忠,陈大钧.星形结构聚合物防蜡剂的初步研究.精细石油化工进展.2004,5(4):45-48
    [14]张凤英,李建波,诸林,杨光.稠油油溶性降粘剂研究进展.特种油气藏.2006,13(2):1-4
    [15]Martinez-Palou R, Mosqueira L, Zapata-Rendon B, Mar-Juarez E, Bernal-Huicochea, Clavel-Lopez C, Aburto J. Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of Petroleum Science and Engineering.2011,75(3-4):274-282
    [16]李华斌.三元复合驱新进展及矿场试验.北京:科学出版社.2007.15-16
    [17]史国蕊,毕海昌,占良.高凝油化学采油工艺技术研究与应用.特种油气藏.2001,8(3):63-65
    [18]孟庆学,王玉臣.高凝油及其开采技术.石油科技论坛.2006,(5):45-49
    [19]田乃林,杨兆平.高凝油/水相对渗透率的确定.河南石油.1997,11(6):15-18
    [20]Adewusi V A. Prediction of wax deposition potential of hydrocarbon systems from viscosity-pressure correlations. Fuel.1997,76(12):1079-1083
    [21]Chevallier M D, Provost V E, Bouroukba M and Petitjean D. Multicomponent paraffin waxes and petroleum solid deposits:structural and thermodynamic state. Fuel.1998, 77(12):1253-1260
    [22]Taraneh J B, Rahmatollah G, Hassan A. Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Processing Technology.2008, 89(10):973-977
    [23]Yi S and Zhang J. Relationship between waxy crude oil composition and change in the morphology and structure of wax crystals induced by pour-point-depressant beneficiation. Energy Fuels.2011,25(4):1686-1696
    [24]Al-Zahrani S M, Al-Fariss T F. A general model for the viscosity of waxy oils. Chemical Engineering and Processing:Process Intensification.1998,37(5):433-437
    [25]Li H, Zhang J. A generalized model for predicting non-newtonian viscosity of waxy crudes as a function of temperature and precipitated wax. Fuel.2003,82 (11):1387-1397
    [26]Oh K, Deo M D. Yield behavior of gelled waxy oil in water-in-oil emulsion at temperatures below ice formation. Fuel.2011,90(6):2113-2117
    [27]Chang C, Boger D V, Nguyen Q D. The yielding of waxy crude oils. Ind. Eng. Chem. Res.1998,37(4):1551-1559
    [28]Ghannama M T, Esmail N. Yield stress behavior for crude oil-polymer emulsions. Journal of Petroleum Science and Engineering.2005,47(3-4):105-115
    [29]Ranningsen H P and Bjamdal B. Wax precipitation from north sea crude oils:1. crystallization and dissolution temperatures, and newtonian and non-newtonian flow properties. Energy Fuels.1991,5(6):895-908
    [30]El-Gamal I M. Combined effects of shear and flow improvers:the optimum solution for handling waxy crudes below pour point. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1998,135(1-3):283-291
    [31]Farina A, Fasano A. Flow characteristics of wmy crude oils in laboratory experimental loops. Mathematical and Computer Modelling.1997,25(5):75-86.
    [32]Kane M, Djabourov M, Volle J L. Rheology and structure of waxy crude oils in quiescent and under shearing conditions. Fuel.2004,83(11-12):1591-1605
    [33]Towler B F, Rebbapragada S. Mitigation of paraffin wax deposition in cretaceous crude oils of Wyoming. Journal of Petroleum Science and Engineering.2004,45(1-2):11-19
    [34]Chanda D, Sarmah A, Borthakur A, Rao K V, Subrahmanyam B and Das H C. Combined effect of asphaltenes and flow improvers on the rheological behaviour of Indian waxy crude oil. Fuel.1998,77(11):1163-1167
    [35]Luo P, Gu Y. Effects of asphaltene content on the heavy oil viscosity at different temperatures. Fuel.2007,86(7-8):1069-1078
    [36]Speight J G. Natural bitumen(tar sands) and heavy oil. Coal, oil shale, natural bitumen, heavy oil and peat. Oxford, UK:Eolss publisher Co. Ltd,2005
    [37]秦冰.稠油乳化降粘剂结构与性能关系的研究.中国石油化工科学研究院:有机化工,2001
    [38]唐奕,黄坤,吴国霈.稠油常温输送现状分析.内蒙古石油化工.2008,(10):78-79
    [39]张义堂,张朝晖.国外稠油低成本开采新技术.石油工程学会2001年度技术文集.2002.368-374
    [40]Bazyleva A B, Anwarul Hasan M D, Fulem M, Becerra M and Shaw J M. Bitumen and heavy oil rheological properties:reconciliation with viscosity measurements. J. Chem. Eng. Data.2010,55(3):1389-1397
    [41]Hinkle A, Shin E, Liberatore M W, Herring A M, Batzle M. Correlating the chemical and physical properties of a set of heavy oils from around the world. Fuel.2008,87(13-14): 3065-3070
    [42]Bjorndalen N, Islam M R. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well. Journal of Petroleum Science and Engineering. 2004,43(3-4):139-150
    [43]Storm D A, Barresi R J, and Sheu E Y. Rheological study of ratawi vacuum residue in the 298-673 K temperature range. Energy Fuels.1995,9(1):168-176
    [44]Wong G K, Yen T F. An electron spin resonance probe method for the understanding of petroleum asphaltene macrostructure. Journal of Petroleum Science and Engineering. 2000,28(1):55-64
    [45]Evdokimov I N, Eliseev N Y, Eliseev D Y. Rheological evidence of structural phase transitions in asphaltene-containing petroleum fluids. Journal of Petroleum Science and Engineering.2001,30(3-4):199-211
    [46]Ensley E K. A kinetic investigation of association in asphalt. Journal of Colloid and Interface Science.1975,53(3):452-460
    [47]楚子星.化学与物理复合降粘及解堵机理研究.东营:中国石油大学(华东),2007
    [48]李世洪,申玉健.LV-1稠油降粘剂的研制与应用.华北石油设计.2000,2(3):25-27
    [49]敬加强,朱毅飞,朱毅飞.原油组成对其粘度影响的灰色关联分析.油气田地面工程.2000,19(6):12-13
    [50]Bosch P, Schrijvers F. Process to produce pipeline-transportable crude oil from feed stocks containing heavy hydrocarbons[P]. USA:US7491314B2,2009
    [51]Yaghi B M, Al-Bemani A. Heavy crude oil viscosity reduction for pipeline transportation. Energy Sources.2002,24(2):93-102
    [52]AI-Besharah J M, Salman O A and Akashah S A. Viscosity of crude oil blends. Ind. Eng. Chem. Res.1987,26(12):2445-2449
    [53]Saniere A, Henaut I and Argillier J F. Pipeline transportation of heavy oils, a strategic, economic and technological challenge. Oil & Gas Science and Technology.2004,59(5): 455-466
    [54]Hasan S W, Ghannamb M T, Esmail N. Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel.2010,89(5):1095-1100
    [55]Butler R M, Mokrys I J. Recovery of heavy oils using vapourized hydrocarbon solvents: further development of the vapex process. Journal of Canadian Petroleum Technology. 1993,32(6):56-62
    [56]Al-Bahlani A, Babadagli T. Field scale applicability and efficiency analysis of steam-over-solvent injection in fractured reservoirs (SOS-FR) method for heavy oil recovery. Journal of Petroleum Science and Engineering.2011,78(2):338-346
    [57]Babadagli T, Al-Bemani A. Investigations on matrix recovery during steam injection into heavy-oil containing carbonate rocks. Journal of Petroleum Science and Engineering. 2007,58(1-2):259-274
    [58]于连东.世界稠油资源的分布及其开采技术的现状与展望.特种油气藏.2001,8(2):98-103.
    [59]李永太,刘易非,唐长久.提高石油采收率原理和方法.北京:石油工业出版社,2008.198
    [60]钱志平.国内外采油装备现状综述.海洋石油.1999,(2):21-25
    [61]雷霄,雷昊,张乔良.稠油注蒸汽开采储层伤害数学模型.承德石油高等专科学校学报.2006,8(3):20-23
    [62]Guan W, Xi C, Chen Y, Zhang X, Muhetar, Liang J, Huang J, Wu J. Fire-flooding technologies in post-steam-injected heavy oil reservoirs. Petroleum Exploration and Development.2011,38(4):452-463
    [63]王泊,李胜彪,蒲春生,李恒进,张乃禄.稠油增效注蒸汽开采技术在河南油田的应用.西安石油大学学报:自然科学版.2008,23(4):35-39
    [64]Diaz O C, Modaresghazani J, Satyro M A, Yarranton H W. Modeling the phase behavior of heavy oil and solvent mixtures. Fluid Phase Equilibria.2011,304(1-2):74-85
    [65]Rangel-German E R, Schembre J C, Sandbergb A R. Electrical-heating-assisted recovery for heavy oil. Journal of Petroleum Science and Engineering.2004,45(3-4):213-231
    [66]Crowson F L. Method and apparatus for secondary recovery of oil[P]. USA:3605888, 1971
    [67]Kern L R. Method of producing bitumen from a subterranean tar sand formation[P]. USA: 3848671,1974
    [68]Hagedorn A R. Oil recovery by combination steam stimulation and electrical heating[P]. USA:3946809,1976
    [69]Pritchett W C. Method and apparatus for producing fluid by varying current flow through subterranean source formation[P]. USA:3948319,1976
    [70]Gizem G O, Islam M R. Alteration of asphaltic crude rheology with electromagnetic and ultrasonic irradiation. Journal of Petroleum Science and Engineering.2000,26(1-4): 263-272
    [71]Islam M R, Amit C. A new recovery technique for heavy-oil reservoirs with bottomwater. SPE Reservoir Engineering.1992,7(2):180-186
    [72]徐涛.稠油单井无电缆电磁加热系统数学模型研究.东营:中国石油大学(华东),2009
    [73]陈民锋,郎兆新,姜汉桥.热力-表面活性剂复合驱油研究.西安石油大学学报(自然科学版).2005,20(2):46-51
    [74]孙慧,张付生.稠油化学降粘研究进展.精细与专用化学品.2005,13(23):16-20
    [75]Chen W H, Zhang X D, Zhao Z C, Yin C Y. UNIQUAC model for wax solution with pour point depressant. Fluid Phase Equilibria.2009,280(1-2):9-15
    [76]宋林花,姜翠玉,韩哲茵.降凝剂对柴油中蜡晶结晶形态的影响.化工时刊.2005,19(5):22-24
    [77]Chen W, Zhao Z, Yin C. The interaction of waxes with pour point depressants. Fuel. 2010,89(5):1127-1132
    [78]马一玫.大庆原油降凝剂合成及作用机理研究.大庆:大庆石油学院,2006
    [79]El-Gamal I M, Atta A M and Al-Sabbagh A M. Polymeric structures as cold flow improvers for waxy residual fuel oil. Fuel.1997,76(14-15):1471-1478
    [80]王丽娟,田军.聚合物型原油降凝剂的作用机理及应用.精细石油化工.1997,(5):5-9
    [81]Hafiz A A, Khidr T T. Hexa-triethanolamine oleate esters as pour point depressant for waxy crude oils. Journal of Petroleum Science and Engineering.2007,56(4):296-302
    [82]Al-Sabagh A M, El-Din M R, Morsi R E, Elsabee M Z. Styrene-maleic anhydride copolymer esters as flow improvers of waxy crude oil. Journal of Petroleum Science and Engineering.2009,65(3-4):139-146
    [83]宋昭峥,葛际江,张贵才,张国忠.高蜡原油降凝剂发展概况.石油大学学报(自然科学版).2001,25(6):117-122
    [84]杨云松,戚国荣,彭红云,高建厂.聚丙烯酸二十二酯的合成及其降凝降乳作用.石油学报.2001,17(5):60-64
    [85]郑彤,孙寿家,陈志强.苯乙烯-马来酸酐共聚物对大庆原油降凝作用的研究.哈尔滨工业大学学报.2000,32(3):29-32
    [86]霍建中,郝金库,赵小军.大港原油高效降凝剂的研制.精细石油化工.2002,5:8-10
    [87]赵秉臣,闫峰,李栋林,于萍.复配型高粘原油降粘降凝剂.精细石油化工.1999,6:30-32
    [88]Soni H P, Bharambe D P, Nagar A&Kiranbala. Synthesis of chemical additives and their effect on Akholjuni crude oil. Indian journal of Chemical Technology.2005,12:55-61
    [89]Khidr T T. Synthesis and evaluation of copolymers as pour-point depressants. Petroleum Science and Technology.2007,25(5):671-681
    [90]Plegue T H, Frank S G, Zakin J L, Fruman D H. Studies of water-continuous emulsions of heavy crude oils prepared by alkali treatment. SPE Production Engineering.1989, 4(2):181-183
    [91]崔波,戴树高.高粘度稠油开采方法的现状与研究进展.石油化工技术经济.2000,16(6):5-10
    [92]Zaki N, Butz T, Kessel D. Rheology, particle size distribution, and asphaltene deposition of viscous asphaltic crude oil-in-water emulsions for pipeline transportation. Petroleum Science and Technology.2001,19(3-4):425-435
    [93]黄敏,李芳田,史足华.稠油降粘剂DJH-1.油田化学.2000,17(2):137-139
    [94]贾学军.高粘度稠油开采方法的现状与研究进展.石油天然气学报.2008,30(2):529-531
    [95]Plegue T H, Frank S G, Fruman D.H, Zakin J L. Concentrated viscous crude oil-in-water emulsions for pipeline transport. Chemical Engineering Communications.1989,82(1): 111-122
    [96]劳永新.漫谈乳化和破乳.石油知识.1996,(1):17-17
    [97]Abdel-Azim A, Zaki N N, May sour N E S. Polyoxyalkylenated amines for breaking water-in-oil emulsions:effect of structural variations on the demulsification effciency. Polymers for Advanced Technologies.1998,9(2):159-166
    [98]孟江,郑猛.高凝稠油乳化降凝降粘试验与研究.油气储运.2006,25(9):48-52
    [99]尉小明,刘喜林,王卫东,徐凤廷.稠油降粘方法概述.精细石油化工.2002,(5):45-48
    [100]易绍金,邓勇.产表面活性剂菌在稠油乳化降粘中的实验研究.石油与天然气化工.2008,37(1):59-61
    [101]Zobell E, Jolla L. Bacteriological process for treatment of fluid-bearing earth formations[P]. USA:US2413278,1946
    [102]王宝清,陈智宇.微生物采油效果试验研究.油气采收率技术.1996,3(4):26-29
    [103]谭维业,喻文,方新湘,李子叔.KBS系列微生物采油技术研究与应用.油气采收率技术.1999,6(4):6-12
    [104]常俊合,张同周,许书堂,黄元湖.白音查干凹陷稠油特征及其成因.西安石油学院学报.1998,13(4):21-24
    [105]Brown F, Maure A, Warren A. Microbial-induced controllable cracking of normal and branched alkanes in oils[P]. USA:US6905870B2
    [106]赵春燕,凌士平,刘明涛.本源微生物在弱碱化三元复合驱油井中清蜡解堵的室内研究.大庆石油地质与开发.2006,25(B08):104-106
    [107]Lazara I, Voicua A, Nicolescub C, Mucenicab D, Dobrotaa S, Petrisora I G, Stefanescua, Sandulescua L. The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition. Journal of Petroleum Science and Engineering.1999,22(1-3): 161-169
    [108]赵丽娟.微生物采油技术在低渗透油田的应用.石油钻探技术.2005,33(3):61-63
    [109]Thanasukarn P, Pongsawatmanit R, McClements D J. Influence of emulsifier type on freeze-thaw stability of hydrogenated palm oil-in-water emulsions. Food Hydrocolloids. 2004,18(6):1033-1043
    [110]Thompson D G, Taylor A S, Graham D E. Emulsification and demulsification related to crude oil production. Colloid sand Surfaces.1985,15:175-189
    [111]刘昊阳.表面活性剂在水油溶液中的形态和作用.武汉:武汉大学,2001
    [112]Hoar T P, Schulman J H. Transparent water-in-oil dispersions:the oleopathic hydro-micelle. Nature.1943,152:102-103
    [113]胡利利.微乳液的研究进展及应用.日用化学品科学.2007,30(1):18-21
    [114]赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003.619-620
    [115]Gullapalli R P, Sheth B B. Influence of an optimized non-ionic emulsifier blend on properties of oil-in-water emulsions. European Journal of Pharmaceutics and Biopharmaceutics.1999,48(3):233-238
    [116]Fukuda M. The importance of lipophobicity in surfactants:Methods for measuring lipophobicity and its effect on the properties of two types of nonionic surfactant. Journal of Colloid and Interface Science.2005,289(2):512-520
    [117]Ren Y, Liu H, Yao X, Liu M, Hu Z, Fan B. The accurate QSPR models for the prediction of nonionic surfactant cloud point. Journal of Colloid and Interface Science. 2006,302(2):669-672
    [118]Saito Y, Sato T, and Anazawa I. Effects of molecular weight distribution of nonionic surfactants on stability of O/W emulsions. Surfactants& Detergents.1990,67(3): 145-148
    [119]Al-Roomi Y, George R, Elgibalyb A, Elkamel A. Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils. Journal of Petroleum Science and Engineering.2004,42(2-4):235-243
    [120]Simon R, Poynter W G. Down-hole emulsification for improving viscous crude production. Journal of Petroleum Technology.1968,20(12):1349-1353
    [121]方云.两性表面活性剂.北京:中国轻工业出版社,2001.1-2
    [122]Maza A, Lopez O, Coderch L, Parra J L. Solubilization of phosphatidylcholine liposomes by the amphoteric surfactant dodecyl betaine. Chemistry and Physics of Lipids.1998,94(1):71-79
    [123]Li N, Zhang G, Ge J, Zhang L, Liu X and Wang J. Ultra-low interfacial tension between heavy oil and betaine-type amphoteric surfactants. Journal of Dispersion Science and Technology.2012,33(2):258-264
    [124]Esumi K, Ogiri S. Micellization of fluorocarbon surfactants in mixtures of water and polar solvents. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1995,94(1):107-110
    [125]Kondo Y, Yokochi E, Mizumura S, Yoshino N. Syntheses of novel fluorocarbon surfactants with oxyethylene groups. Journal of Fluorine Chemistry.1998,91(2): 147-151
    [126]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003.328-329
    [127]Gautam A, Kambo N, Upadhyay S K, Singh R P. Anionic gemini surfactant viz. sodium salt of bis(1-dodecenylsuccinamic acid); synthesis, surface properties and micellar effect on oxidation of reducing sugars by hexacyanoferrate(III). Colloids and Surfaces A: Physicochemical and Engineering Aspects.2008,312(2-3):195-202
    [128]Ye H, Zhang F, Han L, Luo P, Yang J, Chen H. The effect of temperature on the interfacial tension between crude oil and gemini surfactant solution. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008,322 (1-3):138-141
    [129]Chen L, Shang Y, Liu H, Hu Y. Middle-phase microemulsion induced by brine in region of low cationic gemini surfactant content. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2007,305(1-3):29-35
    [130]胡利利Gemini表面结性剥的性能及应用.日用化学品科学.2007,30(3):18-21
    [131]彭朴.采油用表面活性剂.北京:化学工业出版社,2003.24-109
    [132]于涛,丁伟,曲光淼.油田化学剂.北京:石油工业出版社,2008.153-188
    [133]Gillies R G, Sun R and Shook C A. Laboratory investigation of inversion of heavy oil emulsions. The Canadian Journal of Chemical Engineering.2000,78(4):757-763
    [134]Langevin D, Poteau S, Henaut I and Argillier J F. Crude oil emulsion properties and their application to heavy oil transportation. Oil & Gas Science and Technology-Rev. IFP.2004,59(5):511-521
    [135]Cambiella A, Benito J M, Pazos C, Cocaa J, Ratoi M and Spikes H A. The effect of emulsifier concentration on the lubricating properties of oil-in-water emulsions. Tribology Letters.2006,22(1):53-65
    [136]Pichot R, Spyropoulos F, Norton I T. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles:The effect of surfactant type and concentration. Journal of Colloid and Interface Science.2010,352(1):128-135
    [137]Orafidiya L O, Oladimeji F A. Determination of the required HLB values of some essential oils. International Journal of Pharmaceutics.2002,237(1-2):241-249
    [138]张文长.乳化蜡的制备与应用.石化技术.1999,6(4):253-256
    [139]Ahmed N S, Nassar A M, Zaki N N and Gharieb H K H. Stability and rheology of heavy crude oil-in-water emulsion stabilized by an anionic-nonionic surfactant mixture. Petroleum Science and Technology.1999,17(5-6):553-576
    [140]Zaki N N, Ahmed N S and Nassar A M. Sodium lignin sulfonate to stabilize heavy oil-in-water emulsions for pipeline transportation. Petroleum Science and Technology. 2000,18(9-10):1175-1193
    [141]王宝峰,张裕丁,孙德军.乳化石蜡的研制及应用.山东化工.2004,33(2):14-17
    [142]戴跃玲.孙永琳.石蜡乳状液粘度问题探讨.石油化工高等学校学报.1997,10(3):48-50
    [143]Sun R, Shook C A. Inversion of heavy crude oil-in-brine emulsions. Journal of Petroleum Science and Engineering.1996,14(3-4):169-182
    [144]刘艳新,赵传山,韩玲.影响石蜡乳化的因素.造纸化学品.2004,16(4):30-32
    [145]Gonc R, Santosa A, Bannwartb A C, Briceno M I, Lohd W. Physico-chemical properties of heavy crude oil-in-water emulsions stabilized by mixtures of ionic and non-ionic ethoxylated nonylphenol surfactants and medium chain alcohols. Chemical Engineering Research and Design.2011,89(7):957-967
    [146]Martinez I, Riscardo M A, Franco J M. Effect of salt content on the rheological properties of salad dressing-type emulsions stabilized by emulsifier blends. Journal of Food Engineering.2007,80(4):1272-1281
    [147]Ahmed N S, Nassar A M, Zaki N N, Gharieb H K. Formation of fluid heavy oil-in-water emulsions for pipeline transportation. Fuel.1999,78(5):593-600
    [148]肖开提·艾合买提,吾满江·艾力,阿丽亚·吾买儿.阴离子型表面活性剂组成的微乳热力学性质.新疆大学学报(自然科学版).2000,17(4):40-45
    [149]滕弘霓,周秀婷.非离子型表面活性剂微乳液性质的研究.青岛科技大学学报.2003,24(3):196-199
    [150]Lin T J. Effect of initial surfactant locations on the viscosity of emulsions. Journal of the Society of Cosmetic Chemists.1968,19(10):683-697
    [151]Shigemoto N, Al-Maamari R S, Jibril B Y, Hirayama A and Sueyoshi M. Effect of water content and surfactant type on viscosity and stability of emulsified heavy Mukhaizna crude oil. Energy&Fuels.2007,21(2):1014-1018
    [152]Chen G, Tao D. An experimental study of stability of oil-water emulsion. Fuel Processing Technology.2005,86(5):499-508
    [153]Ostberg G, Bergenstahl B, Hulden M. Influence of emulsifier on the formation of alkyd emulsions. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1995, 94(2-3):161-171
    [154]林民,汪燮卿,王贤清.石蜡微小乳化液的制备研究(Ⅱ).石油与天然气化 工.1998,27(2):96-99
    [155]Leal-Calderon F, Thivilliers F, Schmitt V. Structured emulsions. Current Opinion in Colloid & Interface Science.2007,12(4-5):206-212
    [156]Fournanty S, Guer Y L, Omari K E, Dejean J P. Laminar flow emulsification process to control the viscosity reduction of heavy crude oils. Journal of Dispersion Science and Technology.2008,29(10):1355-1366
    [157]Song M, Jho S, Kim J, Kim J. Rapid evaluation of water-in-oil (w/o) emulsion stability by turbidity ratio measurements. Colloid Interface Sci.2000,230(1):213-215
    [158]Lehner D, Kellner G, Schnablegger H, Glatter O. Static light scattering on dense colloidal systems:new instrumentation and experimental results. Colloid Interface Sci. 1998,201(1):34-47
    [159]Shi L, Miller C, Caldwell K D, Valint P. Effects of mucin addition on the stability of oil-water emulsions. Colloids and Surfaces B:Biointerfaces.1999,15(3-4):303-312
    [160]Shahin M, Hady S A, Hammad M, Mortada N. Development of stable O/W emulsions of three different oils. International journal of pharmaceutical studies and research.2011, 2(2):45-51
    [161]Deluhery J, Rajagopalan N. A turbidimetric method for the rapid evaluation of MWF emulsion stability. Colloids Surf., A.2005,256(2-3):145-149
    [162]Baloch M K, Hameed G. Emulsification of oil in water as affected by different parameters. Colloid Interface Sci.2005,285(2):804-813
    [163]于洪喜,林立,刘敏.稠油乳状液稳定性实验研究.油气田地面工程.2007,26(10):6-17
    [164]吴本芳,沈本贤,杨允明,王评,曾宪章.辽河超稠油乳化降粘研究.油田化学.2003,20(4):377-399
    [165]Al-Shafey H I, Hashem A 1, Hameed R S A, Dawood E A. Studies on the influence of long chain acrylic esters co-polymers grafted with vinyl acetate as flow improver additives of crude oils. Advances in Applied Science Research.2011,2(5):476-489
    [166]Fingas M, Fieldhouse B. Studies of the formation process of water-in-oil emulsions. Marine Pollution Bulletin.2003,47(9-12):369-396
    [167]俞稼镛,宋万超,李之平.化学复合驱基础及进展.北京:中国石化出版社,2002.58-59
    [168]Liu Q, Dong M, Yue X, Hou J. Synergy of alkali and surfactant in emulsification of heavy oil in brine. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2006,273(1-3):219-228
    [169]郭东红,张飞宇,邱宾.三次采油表面活性剂的研究与应用进展(一).精细与专用化学品.2008,31(11):13-15
    [170]韩霞,王建华,管善峰,王田丽.驱油用石油磺酸盐的研究及其应用.日用化学品科学.2008,31(11):38-41
    [171]赵长久,么世椿,鹿守亮,杨振字,伍晓林.泡沫复合驱研究.油田化学.2004,21(4):357-360
    [172]刘杰,李干佐,吕锋锋,水玲玲,郑利强.肖建洪.孤东原油组分与其ASP配方体系之间界面张力的研究.山东大学学报:理学版.2004,39(1):101-106
    [173]李汉勇,宫敬,高鹏举,张宇.刘鸿杰.含蜡原油溶蜡点和析蜡点测定方法的比较.油气储运.2010,29(10):752-754
    [174]Bas D, Boyac I H. Modeling and optimization I:Usability of response surface methodology. Journal of Food Engineering.2007,78(3):836-845
    [175]曹贵平,朱中南,戴迎春.化工试验设计与数据处理.上海:华东理工大学出版社,2009.153-169
    [176]康万利,董喜贵.表面活性剂在油田中应用.北京:化学工业出版社,2005.225-227
    [177]Fredrick E, Walstra P, Dewettinck K. Factors governing partial coalescence in oil-in-water emulsions. Advances in Colloid and Interface Science.2010,153(1-2): 30-42
    [178]李鸿英,张劲军,高鹏.蜡晶形态、结构与含蜡原油流变性的关系.油气储运.2004,23(9):19-23
    [179]方云,夏咏梅.脂肪酰胺丙基甲基氧化胺的合成及性能.日用化学工艺.1996,(1):4-6.
    [180]赵根妹,董晓雯.椰油酰胺丙基甜菜碱的合成工艺.上海工业大学学报.1994,15(2):180-183
    [181]胡惠龄,许虎君,朱中卫.N-月桂酰基-N-羟乙基乙二胺乙酸盐的合成与性能研究.日用化学工业.2007,37(6):367-369
    [182]鲁森M J,戈德史密斯H A.表面活性剂系统分析法.乌鲁木齐:新疆人民出版社,1982.62-65
    [183]焦学瞬,张春霞,张宏忠.表面活性剂分析.北京:化学工业出版社,2009.95-97
    [184]窦玉平.电位滴定法测定玉米脂肪酸值.粮油仓储科技通讯.2004,(3):47-49
    [185]张金廷.脂肪酸及其深加工手册.北京:化学工业出版社,2002.74-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700