7种室内盆栽观叶植物生态功能的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前人们在选择利用室内观叶盆栽植物时,常过于注重其装饰性,而忽略其生态功能的发挥。在在室内环境中,观叶盆栽植物生态功能的研究国内外相对都比较少。本研究选取了长沙市场上常见的7种观叶植物:吊兰(Chlorophytum comosum)、黄金葛(Scindapsus aurens var. Wilcoxii)、短叶虎尾兰(Sansevieria trifasciata)、发财树(Pachira macrocarpa)、小叶榕(Ficus microcarpa var. pusillifolia)、燕子掌(Crassula argentea)、小天使(Philodendron cv Xanadu)。对其固碳释氧、蒸腾吸热、吸收有害气体、杀菌滞尘等生态功能进行了比较研究,结果如下:
     1.固碳释氧作用:明亮区中,7种供试植物的日固碳量7.48~2.50 g·m-2·d-1,日释氧量5.84~1.11g.m-2·d-1,发财树的日固碳释氧量最大,日固碳量为7.48g·m-2·d-1,日释氧量为5.84 g·m-2.d-1。半阴区中,7种供试植物的日固碳量4.15·2.09g·m-2·d-1,日释氧量为3.40-0.75g·m-2·d-1,发财树的日固碳释氧量最大,日固碳量为4.15g·m-2·d-1,日释氧量为3.40g·m-2·d-1。阴暗区:7种供试植物的日固碳量为1.81-0.60 g·m-2·d-1,日释氧量0.43-0.24g·m-2·d-1,黄金葛具有最大日固碳量1.81 g·m-2·d-1。室内摆花,应该尽量放置靠近窗口,使其发挥最大的释氧固碳功能。
     2.释水吸热:虎尾兰单位面积内的蒸腾释水量1053.1 g·m-2·d-1,吸热2510kj·m-2·d-1,可以使周围降温0.2℃,显著高于其他植物。
     3.抑菌作用:7种供试植物均有抑菌作用。但整体效果不理想,距盆栽植物越远,抑菌率呈明显下降趋势。紧靠供试植物位置时,发财树抑菌作用最大,抑菌率40%。
     4.滞尘作用:7种供试植物单位叶面积滞尘量差异显著,滞尘量大小依次是小天使4.8986 g/m2>燕子掌2.4004 g/m2>绿萝1.8636 g/m2>发财树1.7234 g/m2>吊兰1.6231 g/m2>小叶榕1.3516 g/m2>虎尾兰0.0789 g/m2。随着时间的推移,植物的滞尘量有个缓慢的上升,叶片三维计盒维数是量化植物叶片粗糙度是一种可行的途径。一般而言分形维数越大,叶面越粗糙,单位滞尘量越大。分形维数大小依次虎尾兰2.7758>小天使2.6973>燕子掌2.6789>绿萝2.6665>发财树2.6238>吊兰2.5739>小叶榕2.5157。
     5.吸收有害气体:7种供试植物对甲醛、苯均有吸收能力,对苯有着较好的吸收能力的植物,对甲醛也有较好的吸收能力,而且吸收能力要高于甲醛,黄金葛吸收能力最大,不仅初次吸收能力强,可持续吸收,九天后甲醛净化率达67.7%,苯净化率72%,发财树最差,九天后甲醛净化率26.3%,苯净化率34.5%。
     6.层次分析法构建生态功能综合评价模型,评价结果是黄金葛排名第一0.8678,其他依次为小天使0.6227、虎尾兰0.6136、吊兰0.4956、小叶榕0.3461、燕子掌0.2033。
The ecological function of indoor ornamentals in the city sometimes is ignored in the selection of species. People are inclined to choose those more colorful and beautiful plant in the process of beautification and must pay great attention its ecology function for the human to be healthier,7 species of indoor or namentals were selected as experiment material. They are Chlorophytum comosum, Scindapsus aurens var. Wilcoxii, Sansevieria trifasciata, Pachira macrocarp, Ficus microcarpa var. pusillifolia, Crassula argentea, Philodendron cv Xanadu. The main factors related to the ecological function of plant in this study are O2-emitting, CO2-fixing, adjustment of humidity and heat-absorbing, disinfection and dust-removing. And the results are showed as follows:
     1.In the fact of nitrogen fixation and oxygen release of 7 species plants:on the place to approaching the window the amount of plants oxygen release is5.84-1.11 g·m-2·d-1,the amount of plants nitrogen fixation is 7.48~2.50g·m-2·d-1 among 7 species plants, the most is Pachira macrocarpa. On the place to away from window 2 meters, the amount of plants oxygen release is 3.14-0.75g·m-2·d-1, the amount of plants nitrogen fixation is 4:15-2.09g·m-2·d-1. Among 7 species plants, the most is Pachira macrocarpa too. In the corner, the amount of plants oxygen release is 0.43-0.24 g·m-2·d-1, the amount of plants nitrogen fixation is 1.81-0.60g·m-2·d-1. Among 7 species plants, Scindapsus aurens var. Wilcoxii is the most.
     2.In the aspect of water release and absorbed calorie among these plants, Sansevieria trifasciata showed much effect than others and the absorbed calorie value is 2510kj·m-2·d-1,which may cause to decrease 0.2℃.
     3.7 species plants have the bacteriostasis function. Though the whole effect is not ideal, the most is Pachira macrocarpa. The bacteriostasis rate reaches 40%. Aparting from the pot plant to be farther, the bacteriostasis rate have the obvious declining trend
     4.The order of the ability of dust-removing among these flowers is Philodendron cv Xanadu>Crassula argentea>Scindapsus aurens var. Wilcoxii> Pachira macrocarpa>Chlorophytum comosum>Ficus microcarpa var.pusillifolia> Sansevieria trifasciata. The fractal dimension is one feasible way to calculate leaf blade roughness. The ability of capture dust was higher when the fractal dimension were bigger and the leaf surface was rougher, but fractal dimension of Sansevieria trifasciata was increased because of bright streak on the leaf.
     5.7 kinds of plants have the absorbancy to the formaldehyde and the benzene. The plant has the good absorbancy to the benzene and also has the good absorbancy to the formaldehyde, Absorbancy to benzene must be higher than the formaldehyde. The most is Scindapsus aurens var.Wilcoxii and Nine days later the formaldehyde purifying rate reaches 67.7%, the benzene purifying rate reaches 72%. Pachira macrocarpa is the worst little, the formaldehyde purifying rate reaches 26.3%, the benzene purifying rate reaches 34.5%.
     6.Ecology function quality synthetic evaluation model is constructed with the analytic hierarchy process. Scindapsus aurens var. Wilcoxii (0.8678) is the first. The order of the ability of ecology function is Philodendron cv Xanadu (0.6227)> Sansevieria trifasciata (0.6136)> Chlorophytum comosum (0.4956)> Ficus microcarpa var.pusillifolia(0.3461).
引文
[1]杨志华.开放性的室内生态系统与绿色的室内环境[J].室内设计与,2001,(4):76-78
    [2]P.ole Fanger. IAQ in the 21st Century. Opening lecture Indoor Air[J]. Edinburgh, 1999:109-108
    [3]Wolverton,B.C.and J.D.Wolverton,Interior Plants:Their Influence on Airborne Microbes Inside Energy-Efficient Buildings[J].Journal of the Mississippi Academy of Sciences,1996,41(2):99-105.
    [4]Asaumi H, Nishina H, Nakamura H, et al. Effect of ornamental foliage plants on visual fatigue eaused by visual display terminal operation [J]. Journal of Shita, 1995(7):138-143
    [5]Kondo M. Toriyama T. Experimental research on the effectiveness of using green in reducing of visual fatigue caused by VDT operation [J].Journal of the Japanese Institute
    [6]Wood Ronald. Pot-plants really do clean indoor air [J].The Nursery Paper,2001(2): 1-4
    [7]高永华,许广重,张银虎.环成吉思汗陵绿地系统固碳释氧效益分析与评价[J].内蒙古林业科技,2005,(1):31-32
    [8]李辉,赵卫智,古润泽.居住区不同类型绿地释氧固碳及降温增湿作用[J].环境科学1999,20(6):41-44
    [9]5种园林绿化草本花卉生态功能的初步研究[D].邹丽芳,东北师范大学,2006.
    [10]岳莉然.在室内环境条件下的多肉植物的固碳和蒸腾特性[D].东北林业大学,2004
    [11]郭阿君.10种室内观叶植物固碳释氧、蒸腾、抑菌特性的研究[D].东北林业大学,2004
    [12]王丽勉,秦俊,胡永红.室内16种植物的固碳放氧研究[J].浙江农业科学,2007,6:647-649
    [13]Raza S.H, Shylaja G. Different abilities of certain succulent plants in removing CO2 from the indoor environment of a hospital [J]. Environment International, 1995,21(4):465-469
    [14]周立晨,施文,薛文杰,等.上海园林绿地植被结构与温湿度关系浅析[J].生态学杂志,2005,24(9):1102-1105
    [15]张明丽,秦俊,胡永红.上海市植物群落降温增湿效果的研究[J].北京林业大学学报,2000,,30(2):39-44
    [16]杜克勤,刘步军,吴昊.不同绿化树种温湿度效益的研究[J].农业环境保护,1997,16(6):266—268
    [17]陆贵巧,谢宝元,谷建才,等.大连市常见绿化树种蒸腾降温的效应分析[J].河北农业大学学报,2006,2(2):65-67
    [18]天津市环保所.天津市气挟菌类的研究[J].林业科学,1981,17(4):221-223
    [19]刘福才.绿色植物减菌试验研究[J].园林科技通讯,1987,(2):39-42
    [20]管开云,Fershalova, Tsybulya等.挥发物抗微生物活性的研究[J].云南植物研究,2005,27(4):437-444
    [21]Oyabu, Takashi, Sawada, et al. Using mass spectral source signatures to apportion exhaust particles from gasoline and diesel powered vehicles in a freeway study using UF-ATOFMS Chemical;Mar2003,89 (1/2):131-136
    [22]谢慧玲,李树人,袁秀云,等.植物挥发性有机物对室内微生物杀灭作用的研究[J].河南农业大学学报,1999,33(2):127-133
    [23]Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurement[J]. Tree Physiol.1987,3:309-320
    [24]郭阿君.10种室内观叶植物固碳释氧、蒸腾、抑菌特性的研究[D].东北林业大学,2004
    [25]管开云,Fershalova, Tsybulya,等.云南秋海棠挥发物抗微生物活性的研究[J].云南植物研究,2006,30(5):627-629
    [26]Tove Fjeld, Bo Veiersted, Leiv Sandvik, et al. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Indoor and Built Environment,1998,7:204-209
    [27]傅徽楠,周锡成,秦俊,等.绿化对室内环境及人的反应力的作用与影响[J].中国园林,2001,2:60-62
    [28]秦俊,傅徽南,杨林.室内绿化对建筑综合症的缓解作用[J].福建林学院学报,2002,22(4):308-311
    [29]洪蓉.日本芳香生理心理学研究进展[J].世界林业研究,2001,14(3):61-66
    [30]Wolverton B, Me Donald R, Watkins E. Folage plants for removing indoor air pollution from energy-efficient homes [J]. Economic Botany,1984,38(2):224-228
    [31]Woliverton B C, JohnsonJ A, Bounds K. Interior land-scape plants for indoor air pollution abatement [J]. NASA/ALCA Final Report. Plants for Clean.Air Council, Davidson-ville,1989
    [32]Wolverton B C, Dondlad R C, Mesick H H. Foliage plants for the indoor removal of the primary combustion gasescarbon monoxide and nitrogen oxides [J].Journal of the Mis-sissippi Academy of Sciences,1985,30:1-8
    [33]Wood R A. Study of absorption of VOCs by commonly used Indoor plants [J]. Proceedings:Indoor Air 99,1999,2:690-694
    [34]Wood Ronald. Pot-plants really do clean indoor air [J].The Nursery Paper,2001(2): 1-4
    [35]Martina G, Ulrike Bauer-Doranth. Christian L. Detoxification of Formaldehyde by the Spider plant (Chlorophytum comosum) and by Soybean (Glycine max) Cell-Suspension Cultures [J]. Plant Physiol,1994,104:131-139
    [36]Takashio, Ayako S. Characteristics of potted plants for removing offensive odors [J]. Elsevier, Sensors and Actuctors B,2003,89:131-136
    [37]刘福才.绿色植物减菌试验研究[J].园林科技通讯,1987,2:39-42
    [38]梁典.星座图在室内植物与居室环境关系研究中的应用[J].贵州工学院学报,1996,25(5):101-106
    [39]白雁斌,刘兴荣.吊兰净化室内甲醛污染的研究[J].海峡预防医学杂志,2003,9(3):26-27
    [40]黄爱葵.几种盆栽观赏植物对室内空气净化能力的研究[D].南京农业大学,2005
    [41]李庆君.观赏植物吸收居室甲醛能力的比较[D].东北林业大学,2006
    [42]安领弟.首次常用植物净化室内环境污染结果发布[N].中华建筑报,2005
    [43]赵玉峰.浅议绿色植物对室内空气污染物的净化作用[EB/OL]. http: //www.china-iei.com/Zjt-dList/index.html,2005
    [44]黄爱葵.几种盆栽观赏植物对室内空气净化能力的研究[D].南京农业大学,2005
    [45]卞咏梅,黄致远,赵树新.植物叶面气孔扩散阻抗与净化空气能力的关系[J].植物资源与环境,1996,5(2):34-39
    [46]Oyabu T. Purification effect of interior plants for indoor air polluting chemicals and environmental preservation [A].4th Intl. Conf. on Eng. Design and Automation,2000.876-881
    [47]吴林森,戴养富.绿色植物在居室空气污染控制中的作用[J].山东林业科技,2004,153(4):63-64
    [48]刘艳菊,丁辉.植物叶片相对吸硫量的研究及在绿化中的应用[J].城市环境与城市生态,2003,16(2):10-12
    [49]鲁敏,李英杰,鲁金鹏.绿化树种对大气污染物的吸收净化能力的研究[J].城市环境与城市生态,2002,15(2):7-9
    [50]陈玮,何兴元等.东北地区城市针叶树冬季滞尘效应研究[J].应用生态学报,2003,14(12):2113-2116
    [51]刘光立,陈其兵.四种垂直绿化植物杀菌滞尘效应的研究[J].四川林业科技,2004(9):53-55
    [52]吴中能,于一苏,边艳霞.合肥主要绿化树种滞尘效应研究初报[J].安徽农业科学,2001,29(6):780-783
    [53]康博文,刘建军,王得祥,等.陕西20种绿化树种滞尘能力的研究[J].陕西林业科技,2003,4:54-56
    [54]柴一新,祝宁,韩焕金.城市绿化树种的滞尘效应:以哈尔滨市为例[J].应用生态学报,2000,13(9):1121-1126
    [55]陈芳,周志翔.城市工业区园林绿地滞尘效应的研究——以武汉钢铁公司厂区绿地为例[J].生态学杂志,2006,25(1):34-38
    [56]粟志峰,刘艳,彭倩芳,等.不同绿地类型在城市中的滞尘作用研究[J].干旱环境监测,2002(9):162-163
    [57]张新献,古润泽,陈自新,等.北京城区居住区绿地的滞尘效益[J].北京林业大学学报,1997,19(4):12-17
    [58]张华,李锋瑞,张铜会,等.科尔沁沙地人工杨树林生态服务效能评价[J].应用生态学报,2003(10):1591-1596
    [59]梁立军,李昂,王贻谷.居住区园林绿化生态效益初探——以杭州丹桂公寓为例[J].西北林学院学报,2004,19(3):146-148
    [60]贾智明,许广重,石静杰.环成吉思汗景区绿地系统净化环境效益研究[J].内蒙古科技与经济,2005(2):2-4
    [61][美]纳尔逊·哈默编著.杨海燕译.室内园林(第一版)[M].北京:中国轻工业出版社,2001
    [62]范秀容,李广武,沈萍.微生物学实验.北京:高等教育出版社,1992:261-262
    [63]Sehmel G A.Paticle and gas dry deposition a review [J].Atmospheric Enviroment,1980,14:983-1011.
    [64]胡迪琴,朱大明,黎映雯,等.广州地区部分民居、写字楼室内环境质量监测分析.广东教育学院学报,2004,24(2):71-74
    [65]Souch C A,Souch C.The effect of trees on summertime below canopy urban climates:a case study Bloomington,Indiana[J].Arbor,1993,19(5):303-312.
    [66]杨士弘.城市绿化树木的降温增湿效应研究[J].地理研究,1994,13(4):74-79
    [67]Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurement [J]. Tree Physiol.1987,3:309-320
    [68]Button J. Unified imaging approach for measuring aggregate angularity and texture [J]. Journal of computer:Aided Civil and Infrastructure Engineering.2000, 15(4):273-280
    [69]Masad E, Shashidar N, Harman T. Internal structure characterization of asphalt concrete using image analysis [J]. Journal of computing in Civil Engineering.1999, 13(2):88-95
    [70]Savles R S,Thomas T B. Surface topography as a non-stionary random process[J]. Nature(London).1978.271:431-434
    [71]王建军,徐西鹏.花岗石抛光表面的粗糙度、分形维数及其关系研究[J].计量学报,2008,28(2):124-128
    [72]彭瑞东,谢和平,鞠杨.二维数字图像分形维数的计算方法[J].中国矿业大学学报,2004,33(1):19-24
    [73]Lareher W. Physiological approaches to the measurement of photosynthesis in relation to dry matter production by trees [J]. Photosynthetica,1969(3):150-166
    [74]冯志刚,周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报,2001,22(6):92-95
    [75]Gagnepain J, Roques-Garmes C. Fractal approach to two-dimensional and three dimensional surface roughness [J]. Wear.1986,109:119-126
    [76]Brown C A, Savary G. Describing groung surface texture using contact profilometry and fractal analysis [J]. Wear,1991,147:211-226
    [77]Mandelbrot B B. The fractal geometry of nature[M].上海:上海远东出版社,1998
    [78]辛厚文.分形理论及其应用[M].中国科学技术大学出版社,1993:310-312
    [79]Ganti S, Bhushmr B. Generalized fractal analysis and its applications to engineering surfaces [J]. Wear,1995,180:17-34
    [80]冯志刚,周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报(自然科学版),2001,22(6):93-95
    [81]Doberman A. Indirect Leaf Area Index Measurement As a Tool for Characterizing Rice Growth at the Field Scale[J]. Commun. Soil Sci. Plant Anal,1995,26(9/10): 1507-1523.
    [82]蒋文伟,向其柏.层次分析法在干旱区园林树木评选中的应用[J].南京林业大学学报,2000,24(6):63-67
    [83]鲁敏,张月华.沈阳城市绿化植物综合评价分级选择[J].中国园林,2003,19(7):66-69
    [84][苏]B.B斯列佩赫.气象条件对乔灌木植物杀菌力的影响[J]. Journal of Jiangsu Forestry Science and technology,1992, (2):47-49
    [85]康博文,刘建军,王得祥,等.20种主要绿化树种滞尘能力的研究[J].陕西林业科技,2003,4:54-56.
    [86]Virginia I. Lohr, Caroline H. Pearson-Mims, Particulate matter accumulation on horizontal surfaces in interiors:Influence of foliage plants [J]. Atmospheric Environment,1996,30(14):2565-2568
    [87]王蕾,高尚玉,刘连友,等.北京市11种园林植物滞留人气颗粒物能力研究[J].应用生态学报,2006,17(4):597-601
    [88]王蕾,哈斯,刘连友,等.北京市春季天气状况对针叶树叶而颗粒物附着密度的影响[J].生态学杂志.2006,25(8):998-1002
    [89]蒙彬.株洲市几种常用绿化植物滞尘能力初探,湖南林业科技,2007,34(4):33-34
    [90]程证新.岳阳市绿化树种滞尘效应的研究.中国城市林业,2003,2(2):37-40
    [91]胡明甫.AHP层次分析法及MATLAB的应用研究[J].钢铁技术,2004,2:43-46
    [92]Avissar R. Poteniial effects of vegetation on the urban thermal environment [J].Atlmosph.Environ.1996,30:437-448
    [93]Virginia I. Lohr, Caroline H. Pearson-Mims, Particulate matter accumulation on horizontal surfaces in interiors:Influence of foliage plants [J]. Atmospheric Environment,1996,30(14):2565-2568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700