甘蓝型油菜玉米黄素环氧酶基因(BnZEP)的克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类胡萝卜素在植物体内具有非常重要的功能,一些有色的类胡萝卜素是许多植物花和果实的色素的主要来源,有的类胡萝卜素是脱落酸合成的前体物质,有些参与叶黄素循环,在植物消耗过剩光能、抗光氧化方面发挥作用。玉米黄素环氧酶基因(ZEP)是在叶黄素循环过程中起作用的基因,不仅参与类胡萝卜素的生物合成,也参与脱落酸的生物合成,是两个合成途径过程中的共同关键酶基因。
     本研究以甘蓝型白花油菜品系HW243和黄花油菜中油821为实验材料,利用分子生物学相关技术,克隆出来BnZEP的cDNA序列和DNA序列,并对它们做了生物信息学方面的分析,其主要结果如下:
     (1)根据NCBI数据库ZEP基因保守序列设计简并引物,利用PCR扩增获得了甘蓝型油菜白花材料BnZEP保守序列,其长度为582 bp,把此片段的核苷酸序列与拟南芥、盐芥、大白菜进行比对,其同源性分别达到89%、89%和96%,表明所扩增的片段为甘蓝型油菜BnZEP基因的保守序列,此片段与同属的白菜高度相近。
     (2)采用cDNA末端快速扩增(RACE)技术获得了BnZEP的cDNA全长序列,其长度为2228 bp (Genbank登录号GU361616),包括一个完整的2010 bp开放阅读框(ORF),以及57 bp的5'UTR和161 bp的3'UTR区。ORF编码669个氨基酸残基。推导的氨基酸序列与拟南芥、大白菜、盐芥、龙胆和玉米等植物的氨基酸序列一致性分别达到89%、97%、92%、68%和65%。
     (3)利用各种生物信息软件对ZEP蛋白的相关信息做了分析。ZEP蛋白分子量为73841.01 D,理论等电点IP=6.5292,20种基本的氨基酸全部包括,由于疏水性氨基酸比例远大于极性氨基酸,因此推测BnZEP编码的蛋白是一种疏水性多肽。在ZEP蛋白整体结构中,无规则卷曲、α-螺旋和延伸链是ZEP蛋白最大量的结构元件,而β-转角则散布于整个蛋白质中。
     (4)根据cDNA全长序列设计了扩增全长DNA的引物,利用PCR扩增出了BnZEP的DNA完整序列。序列全长3268 bp (Genbank登录号GU561839),该基因包含16个外显子和15个内含子,与公布的拟南芥ZEP基因的外显子和内含子数量一致。
     (5)利用半定量PCR检测到甘蓝型白花油菜和黄花油菜花瓣内的BnZEP表达量明显不同,白花的cDNA量明显高于黄花,推测BnZEP可能与白花性状存在一定的关联性,但有待进一步鉴定。
Carotenoids have important functions in plants. Some carotenoids provide the main source of the pigment in colored flowers and fruits, some carotenoids are precursors of abscisic acid synthesis, and some participate in xanthophyll cycle, drain the excess light energy, play a role of anti-photo-oxidation in plants. ZEP gene play a predominant role in xanthophyll cycle, not only participate in carotenoid biosynthesis, but also participate in abscisic acid biosynthesis pathway. It is the key enzyme gene of the two pathways.
     We have experimented by using pure white flower HW243 and yellow flower Zhongyou 821 as materials, and cloned the cDNA sequence and DNA sequence of BnZEP based on molecular biology technologies. Also, we analyzed the relevant biological information of BnZEP and speculated ZEP protein. The main results were summarized as follows:
     (1) We designed degenerate primers according to the conserved sequence of the ZEP gene published in NCBI database, and isolated the 582 bp products (conserved sequence) of the white flower Brassica napus using PCR amplification. Comparied with ZEP genes of other plants, the nucleotide sequence of this fragment shares, respectively,89%,89% and 96% identity with that of Arabidopsis thaliana, Thellungiella halophila, and Chinese cabbage. The results showed that the amplified fragment is a part of the BnZEP. This fragment showed a high degree of homology with the Chinese cabbage.
     (2) Using rapid amplification of cDNA ends (RACE) technology, we got the full-length cDNA of BnZEP. The cDNA has the sequence length of 2228 bp (Genbank accession number GU361616). It contains an 2010 bp open reading frame (ORF) encoding 669 amino acid residues, a 57 bp 5'untranslated region and a 161 bp 3'untranslated region. Comparied with ZEP proteins, the deduced amino acid sequence of this protein shares 89%,97%,92%,68% and 65% identity with that of Arabidopsis thaliana, Chinese cabbage,Thellungiella halophila, lutea and corn respectively.
     (3) In addition, we analyzed the relevant information of ZEP protein by some bioinformatics softwares. The molecular weight of ZEP protein was 73841.01 D, and the theoretical isoelectic point was 6.5292. The protein included twenty kinds of basic amino acids. As the proportion of hydrophobic amino acids was much greater than polar amino acids, we suggested that ZEP protein was a hydrophobic polypetide. From the integral structure of ZEP protein, we found that random coils,α-helixes and extended chains were the maximum amount of ZEP protein structural elements, while theβ-turns were scattered throughout the whole protein.
     (4) According to the full length cDNA, we designed the specific primers and amplified the complete sequence of DNA using PCR.. The DNA has the sequence length of 3268 bp (Genbank accession number GU561839), contain 16 exons and 15 introns. The number of exons and introns are same with that of published Arabidopsis thaliana.
     (5) Using semi-quantitative PCR, we found that the BnZEP expression products wereas significantly different between white flower and yellow flower. The BnZEP expression products in white flower were more than that of in yellow flower. After analysis, we speculated that the BnZEP may has some relativity with the white flower character.
引文
[1]朱长甫,陈星等.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用.植物生理与分子生物学报,2004,30(6):609-618.
    [2]Goodwin TW, Britton G Distribution and analysis of carotenoids.In:Goodwin TW (Ed.), Plant Pigments. Academic Press, London,1988, pp.61-132.
    [3]Bartleyg E, Scolnik PA. Plant carotenoids:Pigments for photoprotection, visual attraction and human health [J]. Plant Cell,1995, (7):1027-1038.
    [4]Niyogi KK. Photoprotection revisited:genetic and molecular approaches[J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50:391-417.
    [5]Frank HA, Young A, Britton G, and Cogdell R.J. (1999). The Photochemistry of Carotenoids. (Dordrecht, The Netherlands:Kluwer Academic Publishers).
    [6]Rock CD, Zeevaart JAD. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci,1991,88:7496-7499.
    [7]Mayne ST. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. 1996,10:690-701.
    [8]惠伯棣.类胡萝卜素化学及生物化学[M].中国轻工业出版社.2004.
    [9]Lange BM, Rujan T, Martin W and Croteau R. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci,2000,97:13172-13177.
    [10]Hirschberg J. Carotenoid biosynthesis in flowering plants.Current Opinion in Plant Biology,2001,4:210-218.
    [11]Cunningham FX, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants Annu Rev Plant Physiol Plant Mol Biol,1998,49:557-83.
    [12]Cunningham FX, Gantt E. One ring or two?DetermiIlation of ring number in carotenoids by lycopene ε-cyclases [J]. Proc Nati Acad sci.2001,98:2905-2910.
    [13]Britton G. Carotenoid biosynthesis-an overview. In Carotenoids:Chemistry and Biology, ed. NI Krinsky, M, Mathews-Roth, RF Taylor,1990, pp.167-84.
    [14]Cunningham FX Jr, Gantt E. Genes and enzymes of carotenoid biosynthetic pathway in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:557-583.
    [15]The Arabidopsis Genome Initiative:Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815.
    [16]Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol,2000,122:1045-1056.
    [17]Giuliano G, Bartley GE and Scolnik PA. Regulatoin of carotenoid biosynthesis during tomato development. Plant Cell,1993,5:379-387.
    [18]Schledz M, Babili SA, Beyer P, et al. Phytoene synthase from Narcissus pseudonarcissus:functional expression, galactolipid requirement, topological distribution in chromoplast and induction during flowering. Plant J. 1996,10:781-192.
    [19]Fray R, Wallace A, FraSer P, et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tamatoes causes dwarfism by redirecting metabolites from the gibberellin Pachway[J]. Plant J,1995,8(5):693-701.
    [20]Bang H, Kim S, Leakovar DI, et al. Duplication of phytoene synthase gene in the carotenoid biosynthetic pathway of watermelon[J]. HortSeience.2006,41(4):1007.
    [21]Fraser PD, Schuch W, Bramley PM. Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts—partial purification and biochemical properties. Planta,2000,211:361-369.
    [22]Bang H. Environmental and genetic strategies to improve carotenoids and quality in watermelon[M]. Texas A & M University,2005.
    [23]Pecker I, Gabbay R, Cunningham FX Jr, Hirschberg J. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol,1996,30:807-819.
    [24]Neng-guo Tao, Juan Xu, Yun-jiang Cheng and Xiu-xin Deng. Lycopene-e-cyclase pre-mRNA is alternatively spliced in Cara Cara navel orange(Citrus sinensis Osbeck). Biotechnology Letters,2005,27:779-782.
    [25]Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to P-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA.2000, 97:11102-11107.
    [26]Sun ZR, Gantt E, Cunningham FX Jr. Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. Biol Chem,1996, 271:24349-24352.
    [27]Tian L, Dellapenna D. Characterization of a second carotenoid beta-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol, Bio,2001, 47(3):379-388.
    [28]Bungard RA, Ruban AV, Scholes JD, et al. Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Nat Acad Sci USA,1999,96: 1135-1139.
    [29]Moehs CP, Tian L, Osteryoung KW, Dellaperma D. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol, 2001,45(3):281-293.
    [30]Fraser PD, Truesdale MR, Bird CR, et al. Carotenoid biosynthesis during tomato fruit development:Evidence for tissue-specific gene expression[J]. Plant Physiol, 2002,105(1):405-413.
    [31]Zhu CF, Yamamura S, Koiwa H, et al. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea [J]. Plant Mol Biol,2002,48(3):277-285.
    [32]Shewmaker CK, SHeehy JA, Daley M, et al. Seed specific Overexpression of Phytoene synthase:increase in carotenoids and other metabolic effects. Plant J.1999,20(4):401-402.
    [33]Ravanello MP, Dangyang K, Julie A, et al. Coordinate expression multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng,2003,5:255-263.
    [34]Burkhardt PK. Beyer P, Wunn J et al. Transgenic rice(Oryza sativa)endosperm expressing daffodil(Narcissus pseudonarcissus)phytoene synthasw accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J,1997,11(5): 1071-1078.
    [35]Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (β-carotene)biosynthetic pathway into(crotenoid-free)rice endosperm.Sciecce,2000, 287:303-305.
    [36]Rosati C, Aquilani R, Dharmapuri S, et al.Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J,2000,24:413-420.
    [37]Paine JA, et at. Improving the nutritional value of Golden Rice through increased pro-vitamin A content.Nature Biotechnology,2005,23,482-487.
    [38]Bramley P, Teulieres C, et al. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5.Plant J,1992,2:343-349.
    [39]Romer S, Fraser PD, Kiano JW. Elevation of the provitamin A content of transgenic tomato plant. Nature Biotechnology,2000,18:666-669.
    [40]Misawa N, Yamano S, Linden H, et al. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon.Plant J,1993,4:833-840.
    [41]Romer S, Lubeck J, Kauder F, et al.Genetic engineering of a Zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Meta Eng,2002,4(3):263-272.
    [42]梁燕,王鸣,陈杭等.茄红素β一环化酶反义RNA基因对烟草的遗传转化.西北农林科技大学学报,2003,31:73-76.
    [43]Bartley GE, Scolnik PA. Molecular biology of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol,1994,45:287-301.
    [44]赵倩,赖凡等.谷子类胡萝卜素生物合成途径中番茄红素β-环化酶基因的克隆.中国农业大学学报,2004,9(1):1-6.
    [45]徐昌杰,陈昆松,张上隆等.甜橙卜胡萝卜素经化酶cDNA克隆及其瞬间反义表达.农业生物技术学报,2003,11:593-597.
    [46]Kim IJ, Ko KC, Kim CS, et al. Isolation and characterization of cDNAs encoding β-carotene hydroxylase in Citrus. Plant Sci,2001,161:1005-1010.
    [47]Fray RG, Wallace A, Fraser PD, et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirectirlg metabolites from the gibberellin pathway[J]. Plant J,1995,8:693-701.
    [48]Dharmapuri S, Rosati, Pallara P, AquilaIli R, et aL. Metabolic engineering of xanthophyll content in tomato fruits [J]. FEBS Lett,2002,519:30-34.
    [49]Galpaz N, Ronen G, et al. A Chromoplast-Specific Carotenoid Biosynthesis Pathway Is Revealed by Cloning of the Tomato white-flower Locus. Plant Cell, 2006,18,1947-1960.
    [50]Ducreux LJ, Morris W, Hedley PE, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta—carotene and lutein. Exp. Bot,2005,56(409):81-89.
    [51]Suzuki S, Nishihara M, et al. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep, 2007,26:951-959
    [52]Schneiderbauer A, Sandermann H Jr, Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds[J]. Anal Biochem.1991,197:91-95.
    [53]Lewinsohn E, Steele CL, Croteau R. Simple isolation of functional RNA from woody stems ofgytunosperms[J]. Plant Mol Biol Reptr.1994,12:20-25.
    [54]Graham GC. A method for extraction oftotal RNA from Pinus radiata and other conifers[J]. Plant Mol Biol Reptr,1993,11:32-37.
    [55]冯唐锴.南丰蜜橘β-胡萝卜素羟化酶基因的克隆和分析.2007.
    [56]季静,山村三郎,西源昌宏等.通过转基因提高β-胡萝卜素生物合成量.中国生物化学与分子生物学报,2004,20(8):440-444.
    [57]陆颖,高晨曦,韩斌.水稻mRNA多聚腺苷化信号位点的序列分析.科学通报,2006,51(7):819-826.
    [58]Maruyama K, Sugano S. Oligo-Capping:a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides [J]. Gene,1994, 138:171-174.
    [59]Wichkens M. How the message got its tail addition of poly(A) in the nucleus. Trends Biochem Sci,1990,15:277-281.
    [60]许本波,谢伶俐,严寒等.RACE方法在甘蓝型油菜基因克隆中的应用.河南农业科学.2007,9:45-48.
    [61]Schaefer BC. Revolutions in rapid amplification of cDNA ends:New st rategies for polymerase chain reaction cloning of full21ength cDNA ends [J] Anal Biochem,1995,227:255-273.
    [62]Hee YP, Hye YS, et al. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress [J]. Biochemical and Biophysical Research Communications, 2008,375:80-85.
    [63]王仁雷,刘友良,华春.植物叶黄素循环的组成,功能和条件.亚热带植物科学,2000,29(4):59-66.
    [64]Muller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiol,2001,125:1558-1566.
    [65]Bugos RC, Hieber D, Yamamoto HY. Xanthophyll cycle enzymes are members of the lipcolin finity, the first identified from plants. Biol Chem,1998,273(25):15321-15324.
    [66]Chamovita D, Pecker I, HirschbergJ. The molecular basis of resistance to the herbicide norflurazon. Plant mol biol,1991,16:967-974.
    [67]Audran C, Borel C, Frey A. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol,1998,118:1021-1028.
    [68]Thompson AJ, Jackson AC, Parker RA. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol,2000,42: 833-845.
    [69]余青青,田露申,牛应泽,郭世星.人工合成甘蓝型油菜抗根肿病遗传研究初报.西南农业学报,2008,21(5):1313-1315.
    [70]Yamamizo C, Kiahimoto S, Ohmiya A. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. Experimental Botany,2010,61(3):709-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700