霍山石斛类原球茎悬浮培养细胞生长和多糖合成的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍山石斛是我国珍贵的药用植物,产于安徽霍山及其邻近地区,石斛多糖具有抗肿瘤、增强人体免疫等功效。由于霍山石斛在自然环境下生长缓慢,加上人工过度采集,其自然资源已濒临灭绝。目前对霍山石斛的研究主要集中在组织培养方面,但试管苗的脱瓶移栽问题尚未解决。霍山石斛类原球茎是霍山石斛的体细胞胚胎,具有和植株同样的物质代谢和发育潜能。利用霍山石斛类原球茎悬浮培养生产活性多糖是解决霍山石斛资源短缺问题的有效途径之一。本文对霍山石斛类原球茎悬浮培养过程进行了系统的动力学分析,并构建了动力学模型;考察了植酸和多胺对霍山石斛类原球茎细胞生长和多糖合成的影响;采用二步培养法对霍山石斛类原球茎合成多糖进行了研究;在10 L气升式反应器中进行了初步扩大培养。
     不同培养条件下,霍山石斛类原球茎悬浮培养细胞生长曲线呈现较为典型的S型,低浓度时,蔗糖是细胞生长的限制性因素,提高蔗糖浓度可以明显促进细胞生长,蔗糖浓度在30g/L时,类原球茎生物量达到最大;但蔗糖浓度超过30 g/L后对细胞生长具有抑制作用。硝酸盐浓度为30 mmol/L时,有利于细胞生长,高浓度时对细胞生长有抑制作用。磷酸盐是细胞生长的限制性因素,提高磷酸盐浓度可以促进细胞生长,缩短培养周期,当磷酸盐浓度为2.5mmol/L时,生物量达最大,为28.7g DW/L。
     不同培养过程中多糖总产量变化规律相似。在一定范围内,增加起始蔗糖浓度有利于多糖积累,但在过高蔗糖浓度下,多糖产量反而下降。硝酸盐浓度为30mmol/L时,有利于多糖积累。初始磷酸盐浓度对多糖的积累影响显著,当磷酸盐浓度为0.312 mmol/L时,多糖积累量最大为2.46g/L。多糖合成不仅与类原球茎细胞的生长密切相关,而且与细胞内还原糖浓度有关。
     霍山石斛类原球茎对培养基中蔗糖的利用采用先水解后吸收的方式,可以用带底物抑制的酶反应动力学方程来描述该过程。类原球茎对葡萄糖和果糖的吸收没有明显差别,细胞内还原糖的积累与培养基的组成有密切关系,各种培养条件下类原球茎对蔗糖的得率系数也因此不同。类原球茎对磷酸盐的吸收比较快,细胞内磷酸盐的积累水平与培养基初始磷酸盐浓度有关,细胞内磷酸盐的积累水平对类原球茎细胞的生长和多糖积累有重要影响。
     构建了霍山石斛类原球茎悬浮培养过程的桔构化动力学模型。模型中生物相被分为四个部分:细胞内还原糖、中间代谢产物,代谢产物多糖、细胞的呼吸损失。非生物相指细胞外部培养基,包括蔗糖和还原糖两部分。模型的模拟结果与实验测定值基本相符,能用于霍山石斛类原球茎的悬浮培养过程预测。
     在培养基中添加2.5g/L的植酸可以抑制过氧化物酶和多酚氧化酶的活性,提高细胞活力,促进细胞生长和多糖的合成,最终生物量为29.4g DW/L,多糖产量为2.06g/L。添加0.6mmol/L的腐胺和精氨能提高内源多胺的含量,促进霍山石斛类原球茎细胞的生长和多糖的合成,最终生物量为32.6g DW/L,多糖产量为2.20g/L。
     磷是霍山石斛类原球茎细胞生长和多糖积累的有效调控因素。可以在适合类原球茎增殖的蔗糖浓度下,调节磷酸盐浓度,使碳源流向多糖合成。利用二步法培养,第一步培养磷酸盐浓度为2.5 mmol/L,第二步培养磷酸盐浓度为0.312 mmol/L,结果多糖产量和多糖含量分别为5.22g/L和11.9%,明显高出其它方法。建立的二步法培养模型基本反映了在二步培养中霍山石斛类原球茎增殖和多糖积累的变化规律。
     进行了霍山石斛类原球茎悬浮培养的初步放大试验,通气量在0.5 L/min较适宜。发酵罐中获得的最大生物量是摇瓶的86.5%,多糖产量是摇瓶的145%。在反应器中,类原球茎细胞生长和多糖积累的动力学特性和摇瓶中相似,但发酵罐培养中各种基质消耗同摇瓶相比出现滞后现象,且利用率偏低。通过流加补料培养,生物量提高到44.7g DW/L,多糖产量提高到8.15g/L。
Dendrobium huoshanense, a precious wild medicinal plant in China, distributes in Huoshan County, Anhui Province. Polysaccharides isolated from Dendrobium can inhibit the growth of tumor cells and possess immunological activity. Because of a deficiency in the wild source of Dendrobium huoshanense and excessive collection, it has been on the verge of extinction. Tissue culture techniques have been used for the in vitro mass multiplication of Dendrobium huoshanense, but the culture system has not been shown to be more efficient. Protocorm-like bodies (PLBs)are actually somatic embryos that can be induced from the explants of Dendrobium and produce some active substances. A new approach has been considered as a feasible alternative for the production of active polysaccharides using protocorm-like body cultures of Dendrobium huoshanense. A structural kinetic model was developed to describe the cultivation process. Furthermore, the impact of phytic acid and polyamines on cell growth and polysaccharide synthesis, the regulation of cell growth and polysaccharide synthesis by two-stage cultivation and primary scale-up of PLB suspension culture in 10 L air-lift bioreactor were investigated.
     The kinetics of cell growth, polysaccharide synthesis and consumption of nutrients were analyzed in suspension cultures of PLBs. The suspension culture process of PLBs could be divided into three phase: lag phase, rapidly growth phase, and stationary phase under different conditions. Sucrose was a growth limiting nutrient on low concentration condition. Increase in sucrose concentration stimulated cell growth and increased final PLB harvest. Sucrose at 30 g/L gave the highest biomass of PLBs. Substrate inhibition was observed when the concentration was above 30 g/L. Nitrate at 30 mmol/L was beneficial for cell growth. Phosphate was a limiting factor for cell growth. Increase in phosphate concentration increased cell growth rate and shortened the culture period. A total of 2.5 mmol/L medium phosphate gave the highest biomass(28.7g DW/L).
     The trends of polysaccharide production variation were the same under different conditions. Increase in sucrose concentration could improve polysaccharide production to some extent, while higher sucrose concentration inhibited polysaccharide production. Nitrate at 30 mmol/L was beneficial to accumulation of polysaccharide. Initial phosphate concentration was the most effective on polysaccharide accumulation. The maximum polysaccharide production(2.46g/L) could be obtained at 0.312 mmol/L phosphate concentration. The accumulation of polysaccharides not only correlates with cell growth but also with intracellular reducing sugar level.
     PLBs rapidly hydrolyzed extracellular sucrose before absorbing it. The hydrolyzing process could be described using substrate saturation kinetic equation. Glucose and fructose were absorbed at the same time. Intracellular accumulation of reducing sugar was closely related to medium composition. Biomass yield coefficients of sucrose under different culture conditions were different. Intracellular phosphate accumulation level related to the initial phosphate concentration in the medium. Intracellular phosphate level affected the cell growth and accumulation of polysaccharides.
     A structural model was developed. The whole culture system was separated into biotic phase and abiotic phase. The former was divided into 4 compartments: reducing sugar, middle metabolites, product, and respiration loss. The later included sucrose and reducing sugar. Calculated result coincided well with experimental data. The model could be used for description of cultivation process.
     The medium supplemented with phytic acid 2.5g/L was beneficial for cell growth and polysaccharide synthesis. The cell dry weight and production of polysaccharides were 29.4g DW/L and 2.06g/L, respectively. The phytic acid could inhibit the activities of peroxidase and polyphenol. Putrescine and spermine at 0.6mmol/L improved intracellular polyamine contents and stimulated cell growth and polysaccharide production. The production of biomass and polysaccharides was 32.6g DW/L and 2.20g/L, respectively.
     Phosphate is an effective factor in the regulation of cell growth and the accumulation of polysaccharides. Two-stage cultivation can be used to produce polysaccharides. In the first step, the PLBs were grown in a medium with 2.5 mmol/l phosphate and in the second step, they were grown in a medium with 0.312 mmol/1 phosphate. By two-stage cultivation, polysaccharide production and content reached 5.22 g/l and 11.9 %, respectively, which were higher than that of other methods. The model could describe the two-stage cultivation process.
     Primary scale-up of PLB suspension cultures in 10 L air-lift bioreactor was investigated. Aeration rate at 0.5 L/min was beneficial for cell growth and polysaccharide synthesis. The maximum biomass and total polysaccharide production in bioreactor were 86.5 % and 145 %, respectively, compared to that in flask culture. The kinetics of cell growth and accumulation of polysaccharides in the bioreactor were the same as in flask culture. Consumption of nutrients was much more slowly and had lower utilization efficiency than that in flask culture. The biomass (44.7 g DW/L) and polysaccharide production (8.15 g/L) were obtained by feeding culture.
引文
1 陈晓梅,郭顺星.石斛属植物化学成分和药理作用的研究进展.天然产物研究与开发,2001,13(1):70-74
    2 Powler MW. Pant cell culture. Vol Ⅱ, edited by Russel GE, 1984:41-67
    3 孙敬三,桂耀林主编.植物细胞工程试验技术.科学出版社,北京.1995,49-72
    4 钟建江,沈林南,王斯靖.植物细胞培养工程的最新进展.工业微生物,1995,25(1):25-29
    5 侯嵩生.植物细胞培养与有用化学物质生产的研究动态.武汉植物学研究,1986,4(4):411-419
    6 贾景明,吴春福,吴立军.植物细胞培养工程在中药资源保护和中药现代化中的作用.现代科学技术-中医药现代化,2003,5(5):62-67
    7 常钰,刘涤,胡之壁.植物细胞和器官大规模培养研究的进展.生物技术通讯,2001,(1):31-36
    8 Okamoto T, Yazaki K, Tabata M. Biosynthesis of shikonin derivatives from 1-phenylalanine via deoxyshikonin in lithospermum cell cultures and cell-free -extracts. Phytochemistry, 1995, 38: 83-88
    
    9 Touno K, Tamaoka J, Ohashi Y, Shimomura K. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon. Plant Physiology et Biochemistry, 2005, 43: 101-105
    
    10 Sommer S, Severin K, Heide L, Camara B. Intracellular localization of geranylpyrophosphate synthase from cell cultures of lithospermum erythrorhizon. Phytochemistry, 1995, 38: 623-627
    
    11 Wu JY, Zhong JJ. Production of ginseng and its bioactive components in plant cell culture: Current technological and applied aspects. Journal of Biotechnology, 1999, 68: 89-99
    
    12 Li LD, Wu JY, Ho KP, Qi SY. Ultrasound-induced physiological effects and secondary metabolite (saponin) production in Panax ginseng cell cultures. Ultrasound in Medicine and Biology, 2001, 27:1147-1152
    
    13 Han J, Zhong JJ. High density cell culture of Panax notoginseng for production of ginseng saponin and polysaccharide in an airlift bioreactor. Biotechnology Letters, 2002, 24: 1927-1930
    
    14 Han J, Zhong JJ. Effects of oxygen partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enzyme and Microbial Technology, 2003, 32: 498-503
    
    15 Akalezi CO, Liu S, Li QS, Yu JT et al. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry, 1999, 34: 639-642
    
    16 Xu MJ, Dong JF. Nitric oxide stimulates indole alkaloid production in Catharanthus roseus cell suspension cultures through a protein kinase-dependent signal pathway. Enzyme and Microbial Technology, 2005, 37: 49-53
    
    17 Filippini R, Caniato r, Piovan A, Cappelletti EM. Production of anthocyanins by Catharanthus roseus. Fitoterapia, 2003, 74: 62-67
    
    18 Zheng ZG, Wu M. Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Science, 2004, 166: 507-514
    
    19 Wong PL, Royce AJ, Lee P, Carolyn WT. Improved ajmalicine production and recovery from Catharanthus roseus suspensions with increased product removal rates. Biochemical Engineering Journal, 2004,21: 253-258
    
    20 Thengane SR, Kulkarni DK, Shrikhande VA et al. Influence of medium composition on callus indution and camptothecin accumulation in Nothapodytes foetida. Plant Cell Tissue Organ.Culture, 2003, 72:247-251
    21 Pan XW, Xu HH, Liu X et al. Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnology Letters, 2004, 26:1745-1748
    22 Wu JY, Wang CG, Mei XG. Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum. Journal of Biotechnology, 2001, 85:67-73
    23 Khosroushahi AY, Valizadeh M, Ghasempour A et al. Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biology International, 2006, 30:262-269
    24 Navia-Osorio A, Garden H, Cusido RM et al. Taxol and baccatin Ⅲ production in suspension cultures of Taxus baccata and Taxus wallichiana in an airlift bioreactor. Journal of Plant Physiology, 2002, 159:97-102
    25 Parc G, Canaguier A, Landre P et al. Production of taxoids with biological activity by plants and callus culture from selected Taxus genotypes. Phytochemistry, 2002, 59:725-730
    26 Tanaka H, Large-scale cultivation of plant cells at high density: Areview. Process Biochemistry, 1987, 8:106-113
    27 Dornenburg H, Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology, 1995, 17:674-684
    28 Jeong CS, Chakrabarty D, Haha EJ. Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochemical Engineering Journal, 2006, 27:252-263
    29 胡凯,谈锋.药用植物细胞的大规模培养技术.植物生理学通讯,2004,40(2):251-259
    30 Fukui H, Has an AFMF, Kyo M. Formation and secretion of a unique quinone by hairy root cultures of Lithospermum erythrorhizon. Phytochemistry, 1999, 51: 511-515
    31 Yu KW, Murthy HN, Hahn EJ, Paek JY. Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochemical Engineering Journal, 2005, 23:53-56
    32 Kevers C, Jacques PH, Thonart PH et al. Invitro root culture of Panax ginseng and Panax quinquefolium. Plant Growth Regul, 1999, 27:173-178
    33 Aoke T, Matsumoto H, AsakoT et al. Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropabelladonna transformed with Agrobacterium rhizogenes 15834. Plant Cell Rep, 1997, 16:282-285
    34 王莉,于荣敏,张辉等.何首乌毛状根培养及其活性成分的产生.生物工程学报,2002,18(1):69-73
    35 Mukundan U, Carvalho EB, Curtis WR. Growth and pigment production by hairy root cultures of Beta vulgaris L. in a bubble column reactor. Biotechnology Letters, 1998, 20: 469-474
    36 Hghes EH, Hong SB, Gibson SI et al. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Engineering, 2004, 6:268-276
    37 Rijhwani SK, Shanks JV. Effect of Subculture Cycle on Growth and Indole Alkaloid Production by Catharanthus roseus Hairy Root Cultures. Enzyme and Microbial Technology, 1998, 22:606-611
    38 应佩青,许剑峰,苏志国.丹参冠瘿组织培养特性及培养动力学研究.应用与环境生物学报,1999,5(5):478-482
    39 陶璐璐,袁静明,徐景堂.丹参愈伤组织的固定化以及它的生产特性.生物工程学报,1990,6(3):218-223
    40 Brodelius P. The potential role of immobilization in plant cell biotechnology. Trends in Biotechnology, 1985, 3: 280-285
    41 Lindsey K, Yeoman MM. The synthesis potential of immobilization cells of capsicum frutescens mill cv. Annuum. Planta, 1984, 162:495-501
    42 吕华,赵群华,曹日强等.固定化培养和产物释放促进剂对硬紫草细胞代谢的影响.植物生理学报,1995,21(2):111-116
    43 赵景联.植物细胞固定化技术及其在药物生产上的应用.中国药学杂志,1993,28(5):269-272
    44 Gilleta F, Roisin C, Fliniaux MA et al. Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enzyme and Microbial Technology, 2000, 26:229-234
    45 张浩,陈炜,晁若冰 等.黄莲细胞二步法悬浮培养生产黄莲生物碱类成分探索.华西医科大学学报,1997,28(1):37-39
    46 李弘剑,张毅,郭勇 等.黄花蒿培养细胞中青蒿素合成代谢的体外调节.中国生物化学与分子生物学报,1999,15(3):479-483
    47 Pan XW, Xu HH, Liu X et al. Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnoiogy Letters, 2004, 26:1745-1748
    48 梅兴国,黄炜,王传贵等.红豆杉细胞两相培养生产紫杉醇的研究.生物技术,2000,10(1):10-12
    49 Buitelaar RM, Langenhoff AAM, Heidstra R et al. Growth and thiphene production by hairy root cultures of Tagetes patula in various two-liquid phase bioreactor. Enzyme and Microbial Technology, 1991, 13:487-494
    50 曹孟德,李家儒,秦东春 等.吸附剂及培养基组成对香荚兰细胞悬浮培养产生香兰素的影响.植物研究,2002,28(1):65-67
    51 Wu ZL, Yuan Y J, Ma ZH et al. Kinetics of two-liquid-phase Taxus cuspidata cell culture for production of Taxol. Biochemical Engineering Journal, 2000, 5:137-142
    52 Dicosmo F, Miawa M. Eliciting secondary metabolism in plant cell cultures. Trends in Biotechnology, 1985, 3:318-322
    53 Hamilton AJ, Lyeetc WC, Griersin D. An antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature, 1990, 346:284-287
    54 Guardiola J, Ibirra JL, Canovas M. A model that links growth and secondary metabolite production in plant cell suupension cultures. Bioteehnology and Bioengineering, 1995, 46: 291-297
    55 Venkatesh S, Luis P, Susan M et al. Taxol production in bioreactors: Kinetics of biomass accumulation, nutrient uptake and taxol production by cell suspension or Taxus baccaata. Biotechnology and Bioengineering, 1995, 47:666-676
    56 Drapeau D, Blanch HW, Wilke CR. Growth kinetics of Dioscorea deltoidea and Catharanthus roseus in batch culture. Biotechnology and Bioebgineering, 1986, 28:1555-1563
    57 兰文智,余江龙,金文闻等.红豆杉悬浮细胞放大培养的细胞生长和紫杉醇合成动力学.生命科学研究,2002,6(1):55-59
    58 汤志群,梅兴国,余斐.中国红豆杉悬浮细胞培养的发酵动力学模型.广州化工,2001,29(1):16-18
    59 张以恒,钟建江,余俊棠.三七悬浮细胞高密度培养生产人参皂甙和多糖.华东理工大学,1997,23(3)310-314
    60 侯文学,郑穗平,郭勇.悬浮培养玫瑰茄细胞的生长行为及动力学方程的建立.武汉植物学研究,2001,19(4):317-322
    61 Frazier GC, White WK, Dougall DK. A combined growth-product formation model for wiled carrot in suspension culture. Paper presented at A.I.Ch.E. Annual Meeting, New York, 1987, November 15-19
    62 Frazier GC, White WK, Dougall DK. A simple leaky cell growth model for cell aggregates. Biotechnology and Bioengineering, 1989, 33: 313-320
    63 Bailey CM, Nicholson HA, A new structured model for plant cell culture. Biotechnology and Bioengineering, 1989, 34:1331-1336
    64 Glicklis R, Mills D, Sit-ton D et al. Polysaccharide production by plant cells in suspension: experiments and mathematical modeling. Biotechnology and Bioengineering, 1998, 57: 732-740
    65 Hooker BS, Lee JM. Appliction of a new model to tobacco cell cultures. Biotechnology and Bioengineering, 1992, 39:765-774
    66 薛莲,孟琴,吕德伟.紫草细胞悬浮培养的结构化动力学模型.化工学报,2000,51(2):248-252
    67 Li C, Yuan YJ, Wu JC et al. A structured kinetic model for suspension cultures of Chinensis var.mairei induced by an oligosaccharide from Fusarium oxysporum. Biotechnology Letters, 2003, 25:1335-1343
    68 Gulik WMV, Hoppen HJGT, Heijnen JJ. A structure model describing carbon and phosphate limited growth of Cathranthus roseus plant cell suspensions in batch and chemostat culture. Biotechnology and Bioengineering, 1993, 41:771-780
    69 Curtis WR, Hasegawa PM, Emery AH. Modeling linear and variable growth in phosphate limited suspension cultures of opium poppy. Biotechnology and Bioengineering, 1991, 38: 371-379
    70 Bramble JH, Graves DJ, Brodelius P. Calcium and phossphate effects on growth and alkaloid production in coffee arabica: Experimental results and mathematical model. Biotechnology and Bioengineering, 1991, 37:859-868
    71 许建峰,谢建,李宁等.高山红景天致密愈伤组织颗粒悬浮培养结构化动力学模型.大连理工大学学报,1999,39(1):43-48
    72 李满飞,徐国钧,平田义正等.中药石斛类多糖的含量测定.中草药,1990,21(10):10-12
    73 王世林,郑光植,何静波等.黑节草多糖的研究.云南植物研究,1988,10(4):389-392
    74 赵永灵,王世林,李晓玉.兜唇石斛多糖的研究.云南植物研究,1994,16(4):392-396
    75 陈云龙,何国庆,华允芬等.细茎石斛多糖的提取分离纯化和性能分析.中国药学杂志,2003,38(7):494-497
    76 陈璋辉,陈云龙,吴涛等.细茎石斛多糖DMP4_(α-1)的结构特性及免疫活性研究.中国药学杂志,2005.40(23):1871-1874
    77 杨虹,王顺春,王峥涛 等.铁皮石斛多糖的研究.中国药学杂志,2004,39(4)254-256
    78 Hua YF, Zhang M, Fu CX et al. Structural characterization of a 2-O-acetylglucomannan from Dendrobium officinale stem. Carbohydrate Research, 2004, 339:2219-2224
    79 Majumder PL, Suparna P. Rotundatin, a new 9,10-dihydrophenantherne derivative from Dendrobium rotundatum. Phytochemistry, 1992, 31:3225-3228
    80 马国祥,徐国钧,徐璐珊 等.鼓槌石斛化学成分研究.药学学报,1994,29(4):763-765
    81 Chen CC, Wu LG, Ko FN et al. Antiplatelet aggregation principles of Dendrobium loddigesii. J Nat Prod, 1994, 57:1271-1274
    82 Lee YH, Park JD, Beek NI et al. In vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile. Planta Medica, 1995, 61: 178-180
    83 Ma GX, Wang ZT, Xu LS et al. A new fluorenone derivative from Dendrobium chrysoloxurn. J China Pharm Sci, 1998, 7:59-61
    84 Honda C, Yamali M. Phenanthrenes from Dendrobium plicatile. Phytochemistry, 2000, 53:987-990
    85 Talapatra B, Mukhopadhyyay P, Chaudhury P et al. Denbinobin, a new phenanthraquinone from Dendrobium nobile. Indian Journal of Chemistry, 1982, 21B: 386-387
    86 Veerraju P, Rao NSP, Rao L J, Rao KVJ, Rao PRM. Amoenumin, a 9,10-dihydro-5h-phenanthro-(4,5-B,C,D)-pyran from Dendrobium-amoenum. Phytochemistry, 1989, 28: 950-951.
    87 Majumder PL, Sen RC. Moscatilin, a bibenzyl derivative from the orchid Dendrobium moscatum. Phtochemistry, 1987, 26:2121-2124
    88 Majumder PL, Chtterjee S. Crepidatin, a bibenzyl derivative from the orchid Dendrobium crpidatum. Phytochemistry, 1989, 28:1986-1989
    89 李满飞,平田义正,徐国钧等.粉花石斛化学成分研究.药学学报,1991,26(4):307-310
    90 Majumder PL, Pal S. Cumulation and tristin, two bibenzyl derivatives from the orchids Dendrobium cumulation and Bulbophyllum triste. Phytochemistry, 1993, 32:1561-1565
    91 Yomaki M, Honda C. The stibenoids from Dendrobium plicatile. Phytochemistry, 1996, 43: 207-208
    92 Morita H, Fujiwara M, Yoshida N et al. New picrotoxinin-type and dendrobine-type sesquiterpenoids from Dendrobium snown flake red star. Tetrahed ron, 2000,56:5801-5805
    93 张光龙,毕志明,王峥涛 等.石斛属植物化学成分研究进展.中草药,2003,34(6):5-8
    94 Liu QF, Zhao WM. A new dendrobine-type alkaloid from Dendrobium nobile. Chinese Chemical Letters, 2003, 14: 278-279.
    95 Wang HK, Wang XK, Zhao TF, Che CT. Dendrobine and 3-hydroxy-2-oxodendrobine from Dendrobium-nobile. Jourual of Natural Products, 1985, 48:796-801.
    96 Talapatra B, Mukhopadhyay P, Chaudhury P, Talapatra SK. Denbinobin, a new phenanthraquinone from Dendrobium-nobile lindl (Orchidaceae). Indian Journal of Chemistry Section B-organic Chemistry Including Medicinal Chemistry, 1982, 21:386-387.
    97 丁亚平,杨道麟,吴庆生等.安徽霍山三种石斛总生物碱的测定及其分布规律研究.安徽农业大学学报,1994,21(4):503-506.
    98 Majumder PL, Chakraborti J. Chemical-constituents of the orchid Dendrobium-farmer Ⅱ-further evidence for the revised structure of dengibsin. Journal of The Indian Chemical Society, 1989, 66: 834-837.
    99 Zhang GN, Zhong LY, Bligh SWA et al. Bi-bicyclic and bi-tricyclic compounds from Dendrobium thyrsiflorum. Phytochemistry, 2006, 66:1113-1120.
    100 Ye Q, Qin G, Zhao W. Immunomodulatory sesquiterpene glycosides from Dendrobium nobile. Phytochemistry, 2002, 61: 885-890.
    101 吴庆生,丁亚平,杨道麟 等.安徽霍山三种石斛中游离氨基酸分析.安徽农业科学,1995,23(3):268-271.
    102 施红,黄玲.石斛抗衰老作用的实验研究.中华老年医学杂志,1994,13(2):104
    103 黄民权,蔡体育,刘庆伦.铁皮石斛多糖对小白鼠细胞数和淋巴细胞移动抑制因子的影响.天然产物研究与开发,1996,8(3):39-41
    104 罗慧玲,蔡体育,陈巧伦 等.石斛多糖增强脐带血和肿瘤病人外周血LAK细胞体外杀伤作用的研究.癌症,2000,19(12):1124-1126
    105 宋宁,陆瑛,邱明华 等.球花石斛多糖免疫调节作用的研究.天然产物研究与开发,2006.18:445-448
    106 Zhao CS, Liu QF, Halaweish F, et al. Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from Dendrobium moniliforme. Journal of Natural Products, 2003, 66:1140-1143.
    107 Ye Q, Qin G, Zhao W. Immunomodulatory sesquiterpene glycosides from Dendrobium nobile. Phytochemistry, 2002, 61: 885-890.
    108 Zhao WM, Ye QH, Tan XJ, et al. Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity. Journal of Natural Products, 2001, 64:1196-1200.
    109 杨涛,梁康.四种中草药对大鼠半乳糖性白内障相关酶活性的影响.生物化学杂志,1991,7(6):731
    110 杨涛,梁康,侯伟敏.四种中草药对白内障形成中晶状体脂类过氧化水平及脂类含量变化的影响.生物化学杂志,1992,8(2):164
    111 张洁,李祥,鲁润龙,等.铜皮石斛水提液诱导HL-60细胞凋亡的研究.癌症,2001,20(9):956-960
    112 马国祥,徐国钧,徐珞珊,等.鼓槌石斛及其化学成分的抗肿瘤活性作用.中国药科大学学报,1994,25(3):188-189
    113 王天山,陆跃鸣,马国祥 等.鼓槌石斛中化学成分对K526肿瘤细胞株生长抑制作用的体外实验.天然产物研究与开发,1997,9(2):1-3
    114 罗傲雪,宋关斌,范益军 等.迭鞘石斛抗肿瘤作用动物实验研究.四川大学学报(自然科学版),2005,42(6):1281-1283
    115 Miyazawa M, Shimamura H, Nakamura S, et al. Moscatilin from Dendrobium nobile, a naturally occurring bibenzyl compound with potential antimutagenic activity. Journal Of Agricultural And Food Chemistry, 1999, 47:2163-2167
    116 Miyazawa M, Shimamura H, Nakamura S, et al. Antimutagenic activity of gigantol from Dendrobium nobile. Journal of Agricultural And Food Chemistry, 1997, 45:2849-2853
    117 Lin TH, Chang SJ, Chen CC, Wang JP, Tsao LT. Two phenanthraquinones from Dendrobium monilifrome. Journal of Natural Products, 2001, 64:1084-1086
    118 施红,黄玲,张小宛 等.石斛复方制剂的抗氧化功能和降低血糖作用.福建中医学院学报,1997,7(3):26-27
    119 熊丽萍,万屏南,衷友泉.几种石斛多糖的提取分离及其抗氧化性能研究.江西中医学院学报,2006,18(4):55-56
    120 方泰惠.石斛对大鼠肠系膜的动脉血管的作用.南京中医学院学报,1991,7(2):100-101
    121 Fan CQ, Wang W, Wang YP et al. Chemical constituents from Dendrobium densiflorum. Phytochemistry, 2001, 57:1255-1258
    122 Chen CC, Wu LG, Ko FN et al. Antiplatelet aggregation principles of Dendrobium loddiges Ⅱ. Journal of Natural Products, 1994, 57:1271-1274
    123 罗傲雪,淳泽,葛绍荣 等.迭鞘石斛多糖的降血糖作用研究.应用于环境生物学报,2006,12(3):334-337
    124 陈少夫,李岩,周桌 等.石斛对胃酸及血清胃泌素、血浆生长抑制浓度的影响.中医药研究,1994,(5):51-52
    125 徐国钧,杭秉茜,李满飞.11种石斛对滕鼠离体肠管和小鼠胃肠道蠕动的影响.中草药,1988,19(1):21-23
    126 Jonojit R, Nirmalya B. Induction of callus and plant regeneration from shoot-tip explants of Dendrobium fiirmbriatum Lindl.var.oculatum Hk.f. Scientia Horticulturae, 2003, 97:333-340
    127 Malabadi RB, Mulgund GS, Kallappa N. Micropropagation of Dendrobium nobile from shoot tip sections. Journal of Plant Pysiology, 2005, 162:473-478
    128 Sheelavanthmath SS, Murthy HN, Hema PB et al. High frequency of protocorm-like bodies (PLBs) induction and plant regneration from protocorm and leaf sections of Aerides crispum. Scientia Horticulturae, 2005, 106:395-401
    129 Nayak NR, Rath SP, Patnaik S. In vitro propagation of three epiphytic orchids, Cymbidium (L.) Sw., Dendrobium aphyllum (Roxb.) Fisch, and Dendrobium moschatum (Buch-Ham) Sw. through thidiazuron-induced high freuquency shoot proliferation. Scientia Horticulturae, 1997, 71(3-4): 243-250
    130 Yasugi S, Shinto H. Formation of multiple shoots and regenerated plantlets by culture of pseudobulb segment in nobile type Dendrobium. Shokubutau Soshike Baiyo, 1994, 11: 153-156.
    131 Chen JT, Chang WC. Efficient plant regenration through somatic embryogenesis from callus cultures of Oncidium. Plant Science, 2000, 160:87-93
    132 Nayak NR, Sahoo S, Rath SP. Establishment of thin cross section (TCS) culture method for rappid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile lindl. (Orchidaceae). Scientia Horticulturae, 2002, 94:107-116
    133 Ravomdra BM, Gamgadjar SM, Nataraja K. Micropropagation of Dendrobium nobile from shoot tip sections. Journal of Plant Physiology, 2005, 162: 473-478.
    134 Saiprasad GVS, Raghureer P, Khetarpal S, Chandra R. Effect of various polyamines on production of protorm-like bodies in orchid Dendrobium 'Sonia'. Scientia Horticulturae, 2004, 100: 161-168.
    135 Martin KP, Madassery J. Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants and pmtocorm-like bodies. Dcientia Horticulturae, 2006, 108: 95-99.
    136 Kuehnle AR, Sugii N. Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep., 1992, 11:484-488.
    137 Chia TF, Chan YS, Chua NH. The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant Journal, 1994, 6:441-446.
    138 周月坤,王伏雄.兜唇石斛幼叶再生植株的研究.植物学集刊,1989,12(4):123-126
    139 杨联河,王倩嵘,石拓 等.曲茎石斛组织培养研究.中国中药杂志,1998,23(11):658-659
    140 周钟信,宁厚圃,周建宇.石斛(Dendrobium nobile)离体再生及其器官发生的解剖学观察.天津农学院学报,1997,4(1):11-16.
    141 李小军,刘石泉,潘维陵 等.香蕉提取物对霍山石斛试管苗壮苗的影响.江苏大学学报,2004,25(6):469-472.
    142 温云飞,鲁润龙,谢子立.霍山石斛快速繁殖和花芽诱导.植物生理学通讯,1999,35(4):296-297.
    143 王光远,刘培,许智宏.石斛离体培养中ABA对诱导花芽形成的影响.植物学报,1995,37(5):374-378
    144 宋经元,郭顺星,肖培根.铁皮石斛原球茎液体悬浮培养的研究.中草药,2004,35(9):1042-1046
    145 查学强,罗建平,石玮,姜绍通.金属离子对霍山石斛类原球茎增值及植株再生的影响.园艺学报,2006,33(1):179-181
    146 谭云,叶庆生,刘伟.霍山石斛的组织培养研究.植物学通报,2005,22(1):58-62
    147 王亦菲,陆瑞菊,孙月 等.霍山石斛细胞再生物的诱导和培养.上海农业学报,2004,20(4):2-8
    148 罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养.中国中药杂志,2003,28(7):611-613
    1.李冬杰,魏景芳,刘淑清,等.药用植物细胞悬浮培育研究进展.河北林业科技,2003,4:22-23.
    2. Dicosmo F, Misawa M. Plant cell and tissue culture: alternatives for metabolite production. Biotechnology Advances, 1995, 13:425-453
    3.温云飞,鲁润龙,谢子立.霍山石斛的快速繁殖和花芽诱导.植物生理学通讯,1999,35(4):296-297-
    4.谭云,叶庆生,刘伟.霍山石斛(Dendrobium huoshanense)的组织培养.植物学通报,2005,22(1):58-62
    5.王亦菲,陆瑞菊,孙月芳等.霍山石斛细胞再生物的诱导和培养.上海农业学报,2004,20(4):8-10
    6.胡如善,孙廷,杨玉珍.霍山石斛的离体培养研究.江苏农业大学学报,2005,4:72-76
    7.王康正,范磊,高文远等.药用石斛栽培的研究概况.中国中药杂志,1998,23(6):340-343
    8. Colli S., Kerbauy GB. Direct root tip conversion of Catasetum into protocorm-like bodies: Effects of auxin and cytokinin. Plant Cell Tissue Org. Cult. 1993, 33:39-44
    9. Chang C., Chang WC. Plant regeneration from callus culture of Cybidium ensifolium var. misericors. Plant Cell Rep., 1998, 17: 251-255.
    10. Ishii Y., Takamura T., Goi M. Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep., 1998, 17: 446-450.
    11. Yasugi S, Shinto H. Formation of multiple shoots and regenerated plantlets by culture of pseudobulb segment in nobile type Dendrobium. Shokubutau Soshike Baiyo, 1994, 11:153-156.
    12. Nayak NR, Sahoo S, Rath SP.. Establishment of thin cross section (TCS) culture method for rappid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile lindl. (Orchidaceae). Scientia Horticulturae, 2002, 94(1-2): 107.
    13. Martin KP, Madassery J. Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants and protocorm-like bodies. Dcientia Horticulturae, 2006, 108: 95-99.
    14.罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养.中国中药杂志,2003,28(7):611-613
    15.查学强,罗建平,姜绍通.悬浮培养霍山石斛原球茎合成活性多糖研究.食品科学,2005,26(4):41-44.
    16. Zhong JJ, Wang DJ. Improvement of cell growth and production of ginseng sapoin and polysaccharide in suspension cultures of Panax notoginseng: Cu~+ effect. J.Biotechno, 1996, 46: 69-72.
    17.张志良.植物生理学实验指导.北京,高等教育出版社,1993:160-162.
    18.梅从笑,方元超.葡萄糖氧化酶在食品及饮料中的应用.江苏食品与发酵,2002(1):22-25.
    19. Hecht U, Mohr H. Factors controlling nitrate and ammonium accumulation in mustard seedlings. Physiol Plant, 1990, 78:379-387
    20. Bramble J.L, Graaves D.J and Brodelins D. Calcium and phosphate effects on growth and alkaloid production in coffee Arabica: Experimental results and mathematical model. Biotechnology and Bioengineering, 1991, 37:859-868
    21. Sakurai M, Mori T, Seki M, Furusaki S. Changes of anthocyanin composition by conditioned medium and cell inoculum size using strawberry suspension culture. Biotechnology Letters, 1996, 18:1149-1154
    22. Zhang YH, Zhong JJ. Hyperproduction of ginseng saponin and polysaccharide by high density cltivation ofPanax notoginseng cells. Enzyme and Microbial Technology, 1997, 21:59-63
    23. Wang HQ, Zhong JJ, Yu JT. Enhanced production of taxol in suspension cultures of Taxus chinensis by controlling inoculum size. Biotechnology Letters, 1997, 19:353-355
    24. Kanokwaree K, Doran PM, Effect of inoculum size on growth of Atropa belladonna hairy root in shake flasks. J.Fermentation Bioengineering, 1997, 84:378-381
    25. Masahiro KO, Hitaka Y, Taya M, Tone S. High-density culture of red hairy roots by considering medium flow condition in a bioreactor. Chemical Engineering Science, 1999, 54: 3179-3186
    26. Mavituna F, Buyukalaca S, Somatic embryogenesis of pepper in bioreactors: a study of bioreactor type and oxygen uptake rates. Appl Microbiology Biotechnology, 1996, 46: 327-333
    27. Akalezi CO, Liu S, Li QS, Yu JT, Zhong JJ. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry, 1999, 34: 639-642
    
    28. Zhong JJ, Chen F, Hu WW. High densty cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin. Process Biochemistry , 1999,35:491-496
    
    29. Contin A, Heijden RVD, Hoopen HJGT, Verpoorte R. The inoculum size triggers tryptamine or secologanin biosynthesis in a Catharanthus roseus cell culture. Plant Science, 1998, 139: 205-217
    
    30. Zhong JJ, Yoshida T. High-density cultivation of Perilla frutescens cell suspension for anthocyanin production: Effects of sucrose concentration and inoculum size. Enzyme and Microbial Technology, 1995, 17: 1073-1079
    
    31. Han J, Zhong JJ. High density cell culture of panax notoginseng for production of ginseng sapoinin and polysaccharide in an airlift bioreactor. Biotechnology Letters, 2002, 24: 1927-1930
    
    32. Han J, Zhong JJ. Effects of oxygen partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enzyme and Microbial Technology, 2003, 32: 498-503
    
    33. Benke K , Phillip M. The physiological state of suspension cultured cells affects the expression of the β-glucuronidase gene following transformation of tall fescue (Festuca arundinacea ) protoplasts. Plant Science, 1995,110: 235-247
    
    34. Atanas P, Vasil G and Petia K. Relationship between type and age of inoculum cultures and betalalins biosynthesis by Beta vulgaris hairy root culture. Biotechnology Letters, 2003, 25: 307-309
    
    35. Neto VBDP, Otoni WC. Carbon sources and their osmotic potential in plant tissue culture: does it matter?. Scientia Horticulturae, 2003, 97: 193-202
    
    36. Krook J, Vreugdenhil D, Palas LHW. Uptake and phosphorylation of glucose and fructose in Daucus carota cell suspensions are different regulated. Plant Physiol Biochemstry, 2000, 38: 603-612
    
    37. Rajoka MI, Malike KA. Cellulase production by cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresource Technology, 1997, 59: 21-27
    
    38. Liu S, Zhong JJ. Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng: Nitrogen effects. Enzyme and Microbial Technology, 1997,21:518-524
    
    39. Zhong JJ, Wang SJ. Effects of nitrogen source on the production of sinseng saponin and polysaccharide by cell cultures of Panax quinquefolium. Process Biochemistry, 1998, 33: 671-675
    40. Khosroushahi AY, Valizadeh M, Ghasempour A et al. Improved taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biology International, 2006, 30:262-269
    41. Scaramagli S, Biondi S, Leone A, Grillo S, Torrigiani P. Acclimation to low water potential in potato cell suspension cultures leads to changes in putrescine metabolism. Plant Physiol. Biochem. 2000,38:345-351
    42. Shigeta JI, Sato K, Mii M. Effects of initial cell densty, pH and dissolved oxygen on bioreactor production of carrot somatic embryos. Plant Science, 1996, 115:109-114
    43. Thimmaraju R, Bhagyalakshmi N, Narayan MS, Rvishankar GA. Kinetics of pigment release from hairy root cultures of Beta vulgaris under the influence of pH, sonication, temperature and oxygen stress. Process Biochemistry, 2003, 38:1069-1076
    44.郑穗平,郭勇.主要营养成分对悬浮培养玫瑰茄细胞生长和花青素合成的影响.广西植物,1998,18(1):70-74
    45. Pan XW, Xu HH, Liu X, Gao X, Lu YT. Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnology Letters, 2004, 26:1745-1748
    46. Wang JW, Tan RX. Artemisinin production in Artemisia annua hairy root cultures with improved growth by altering the nitrogen source in the medium. Biotechnology Letters, 2002, 24:1153-1156
    47. Chert BM, Wang ZH, Li SX, Wang GX, Song HX, Wang XN. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, 2004, 167:635-643
    48. Majerowicz N, Kerbauy GB, Nievola CC, Suzuki RM. Growth and nitrogen metabolism of catasetum fimbriatum(orchidaceae) grown with different nitrogen sources. Environmental and Experimental Botany, 2000, 44:195-206
    49. Shimogawara K, Usuda H. Uptake of inorganic phosphate by suspension cultured tobacco cells: kinetics of regulation by Pi starvation. Plant Cell Physiology, 1995, 36:341-351
    50. Zhong JJ, Zhu QX. Effect of initial phosphate concentration on cell growth and ginsenoside saponin production by suspension cultures of Panax notoginseng. Applied Biochemistry and Biotechnology, 1995, 55:241-247
    51.王关林,石若夫,方宏筠.培养基和培养条件对栀子悬浮细胞合成多糖的影响.生物工程学报,2001,17(6):688-692
    52.姜绍通,魏明,罗建平.磷对霍山石斛类原球茎悬浮培养细胞生长和多糖合成的影响. 生物工程学报, 2006, 22(4): 613-618
    
    
    53. Konradora H, Lipavska H, Albrechtora J, Vreugdenhil D. Sucrose metabolism during somatic and zygotic embryogeneses in Norway spruce: content of soluble saccharide and localization of key enzyme activities. J. Plant Physiol, 2002, 159: 387-396
    
    54. Iraqi D, Le VQ, Lamhamedi MS, Tremblay FM. Sucrose utilization during somatic embryo development in black spruce involvement of apoplastic invertase in the tissue and of extracellular invertase in the medium. J.Plant Physiol, 2005,162: 115-126
    
    55. Liu S, Zhong JJ. Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng: Nitrogen effects. Enzyme and Microbial Technology , 1997,21:518-524
    
    56. Liu S, Zhong JJ. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochemistry, 1998, 33(1): 69-74
    
    57. Vu JCV, Nedz RP and Yelenosky G. Glycerol stimulation of chlorophyll synthesis embryogenesis and carboxylatin and sucrose metabolism enzymes in nucellar callus of Hamlin sweet orange. Plant Cell Tissue Organ Culture, 1993, 33: 75-80
    
    58. Vu JCV, Randall PN, Yelenosky G. Activities of sucrose metabolism enzymes in glycerol-grown suspension cultures of sweet orange (Citrus Sinensis L.osbeck). Environmental and Experimental Botany, 1995, 35: 455-463
    
    59. Schlatamann JE, Koolchaas CMA, Vinke JL et al. The role of glucose in ajmalicine production by Catharanthus roseus cell cultures. Biotechnology and Bioengineering, 1995, 47: 525-534
    
    60. Camach-Cristobal JJ, Maldonado JM, Gonzalez-Fontes A. Effects of phosphate on in vitro nitrate reductase activity from tobacco leaves. Plant Science, 2002, 163:455-461
    
    61.武维华,张蜀秋,袁明等.植物生理学.科学出版社,北京,2003,106-107
    
    62. Stitt M. Nitrate regulation of metabolism and growth. Curr. Opin. Plant Bio. 1999,2: 178-186.
    
    63. Aslam M, Travis RL, Rains DW. Enhancement of nitrate reductase activity and metabolic nitrate concentration by methionine sulfoximine in barley roots. Plant Science, 2001, 161: 133-142
    
    64. Haba PDL, Agueia E, Benitez L, Maldonado JM. Modulation of nitrate reductase activity in cucumber (Cacumis Sativus) roots. Plant Science, 2001, 161: 231-237
    
    65. Ukaij T, Ashihara H. Changes in the levels of cellular constituents in suspension culture of Catharanthus roseus associated with inorganic phosphate depletion. Z. Naturforsch, 1986, 41: 1045-1051
    
    66. Knobloch KH, Beutnagel G, Berlin J. Influence of accumulated phosphate on culture growth and formation of cinnamoyl putrescines in medium-induced cell suspension cultures of Nicotiana tabacum. Planta, 1981, 153: 582-585
    
    67. Gulik WM van, Hoopen HJG ten, Heijnen JJ. A structured model describing carbon and phosphate limited growth of Catharanthus roseus plant cell suspension in batch and chemostat culture. Biotechnology and Bioengineering. 1993, 41: 771-780
    
    68. Curtis WR, Hasegawa PM, Emery AH. Modeling liner and variable growth in phosphate limited suspension culture of opium poppy. Biotechnology and Bioengineering, 1991, 38: 371-379
    
    69. Balague C, Wilson G Growth and alkaloid biosynthesis by cell suspension of Catharanthus roseus in a chemostat under sucrose and phosphate limiting conditions. Physiol. Veg, 1982, 20: 515-522
    
    70. Schiel O, Jarchow-Redecker K, Piehl GW et al. Increased formation of cinnamoyl-putrescines by fedbatch fermentation of cell suspension cultures of Nicotiana tabacum. Plant Cell Report, 1984,3: 18-20
    
    71. Dougall DK, Weyrauch KW. Growth and anthocyanin production by carrot suspension cultures grown under chemostat conditions with phosphate as the limiting nutrient. Biotechnology and Bioengineering, 1980, 22: 337-352
    
    72. Dedaldechamp F, Uhel C, Macheix JJ. Enhancement of anthocyabub synthesis and dihydeoflavonol reductase (DFR) activity in response to phosphate deprivation in grape cell suspensions. Phytochemistry, 1995,40: 1357-1360
    1.戚以正,汪叔雄.生化反应动力学与反应器.化学工业出版社,北京,1996
    2. Scragg AH, Cresswell RC, Ashton S et al. Growth and alkaloid production in bioreactor by a selected Catharanthus roseus cell line. Microbial Enzyme Technology, 1989, 11:329-333
    3. Guaradiola J, Iborra JL, Canovas M. A model that links growth and secondary metabolite production in plant cell suspension cultures. Biotechnology and Bioengineering, 1995, 46: 291-297
    4. Bailey CM, Nicholson H. A new structured model for plant cell culture. Biotechnology and Bioengineering, 1989, 34:1331-1336
    5. Bailey CM, Nicholson H. Optimal temperature control for a structured model of plant cell culture. Biotechnology and Bioengineering, 1990, 35:252-259
    6. Hooker BS, Lee JM. Application of a new structured model to tobacco cell cultures. Biotechnology and Bioebgineering, 1992, 39:765-774
    7. Glicklis R, Mills D, Sitton D et al. Polysaccharide production by plant cells in suspension: experiments and mathematical modeling. Biotechnology and Bioengineering, 1998, 57: 732-740
    8. Taticek RA, Moo-Yang M, Legge RL. Effect of bioreactor configuration on substrate uptake by cell suspension culture of the plant Eschscholtzia californica. Apply Microbial Biotechnology, 1990, 33:280-286
    9. Gulik WMV, Hoppen HJGT, Heijnen JJ. Astructured model describing carbon and phosphate limited growth of Catharanthus roseus plant cell suspension in batch and chemostat culture. Biotechnology and Bioengineering, 1993, 41: 771-780
    10. Chio JW, Kim YK, Lee WH et al. Kinetic model for cell growth and secondary metabolite synthesis in plant cell culture of Thalictrum rugosum. Biotechnology.Bioprocess Engineering, 1999, 4:129-137
    11.罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养.中国中药杂志,2003,28(7):611-613
    12.张元兴,许学书.生物反应器工程.华东理工大学出版社,上海,2001,30-46
    1 罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养.中国中药杂志,200328(7):611-613
    2 Zhong JJ, Wang DJ. Improvement of cell growth and production of ginseng sapoin and polysaccharide in suspension cultures of Panax notoginseng: Cu~+ effect. J. Biotechnol, 1996, 46:69-72
    3 Bradford MM. A rapid and sensitive method for the quantitation of microgarm quantities of protein using the principles of protein dye-binding. Anal.Biochem, 1976, 72:248-254
    4 张桂英,李琳,蔡妙颜等.微波辐射下不同植物油品指标变化的对比研究.中国油脂,2000,2(4):26-30
    5 胡常英,刘丽娜,胡凤英等.用721-分光光度计测定过氧化氢酶活性的新方法.中国食品添加剂,2005,6:116-118
    6 张志良.植物生理学实验指导.北京,高等教育出版社,1993:160-162
    7 Wen ZY, Zhong JJ. Effect of phosphate concentration on physiological aspects of suspension cultures of rice cells: a kinetic study. Journal of Fermentation and Bioengineering, 1997,83: 381-385
    8 Liu S, Zhong. Effect of potassium ion on cell growth and production ginseng saponin and polysaccharide in suspension cultures of Panax ginseng. Journal of Biotechnology, 1996,52: 121-126
    9 林岚,鲁明波,洪琦等.植酸对红豆杉细胞悬浮培养影响作用的研究.生物技术,1999,9(6):8-11
    10 刘俊,吉晓佳,刘友良.检测植物中多胺含量的高效液相色谱法.植物生理学通讯,2002,38(6):596-598
    11 Vu JCV, Randall PN, Yelenosky G. Activities of sucrose metabolism enzymes in glycerol-grown suspension cultures of sweet orange (Citrus Slnensis L.osbeck). Environmental and Experimental Botany, 1995, 35:455-463
    12 Chen BM, Wang ZH, Li SX, Wang GX, Song HX, Wang XN. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetable. Plant Science, 2004, 167:635-643
    13 于荣敏,宋永波,张辉等.西洋参冠英组织培养及其人参皂苷Re和人参皂苷Rgl的产生.生工程学报,2003,19(3):372-375
    14 马力耕,徐小冬,崔素娟,孙大业.肌醇磷脂信号途径参与胞外钙调素启动花粉萌发和花粉管伸长.植物生理学报,1998,24(2):196-200
    15 陈思学,焦新之.植物细胞的肌醇磷脂信号传递系统.植物生理学通讯,1994,30(6):405-413
    16 Schalatamann J E, Koolchaas C M A, Vinke J L. The role of glucose in ajamlicine production by catharanthus roseus cell cultures. Biotechnology and Bioengineering, 1995, 47: 525-534.
    17 Ahn H J, Kim J H, Jo C et al. Comparison of irradiated phytic acid and other antioxidants for antioxidant activity. Food Chemistry, 2004, 88:173-178
    18 Sharma P, Yadav J S, Rajam M V. Induction of laterals in root cultures of eggplant (Solsnum melongena L.) in hormone-free liquid medium: A novel system to study the role of polyamines. Plant Science, 1997, 125:103-111
    19 Tassoni A, Buuren MV, Franceschetti M et al. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem. 2000, 38:383-393
    20 Suresh B, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA. Polyamine and methyl jasmonate-influenced enhancement of betalaine production in hair root cultures of Beta vulgar is grown in a bubble column reactor and studies on efflux of pigments. Process Biochem. 2004, 39:2091-2096
    21 Bais HP, Sudha G, Ravishankar GA. Putrescine influences growth and production of coumarins in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local). J.Plant Growth Regul. 1999, 18:159-165
    22 Bais HP, Madhusudhan R, Bhagyalakshmi N, Rajasekaran T, Ramesh BS, Ravishankar GA. Influence of polyamines on growth and formation of secondary metabolites in hairy root cultures of Beta vulgaris and Tagetes patula. Acta Physiol Plant. 2000, 22: 151-158
    23 Silveira V, Santa-Catarina C, Tun NN et al. Polyamine effects on the endogenous polamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures ofAraucaria angustifolia (Bert.) O.Ktze. Plant Science, 2006, 171: 91-98
    24 Sudh G, Ravishankar GA. Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens. J. Plant Physiology, 2003, 160:339-346
    25 Robie CA, Minocha SC. Polyamines and somatic embryogenesis in carrot: the effect of difluoromethylornithinine and difluoromethylarginine. Plant Science, 1989, 65:45-54
    26 Yadav JS, Rajam MV. Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant. Plant Physiology, 1998, 116:617-625
    27 Konradora H, Lipavska H, Albrechtora J, Vreugdenhil D. Sucrose metabolism during somatic and zygotic embryogeneses in Norway spruce: content of soluble saccharide and localization of key enzyme activities. J. Plant Physiology, 2002, 159:387-396
    28 Navarro FJ, Perdomo G, Jejera D, Medina B, Machin F, Guillen RM, Lancha A, Siverio JM. The role of nitrate reductase in the regulation of the nitrate assimilation pathway in the Yeast Hansenula Polymorpha. FEMS Yeast. Research, 2003, 4:149-155
    29 Vu JCV, Randall PN, Yelenosky G. Activities of sucrose metabolism enzymes in glycerol-grown suspension cultures of sweet orange (Citrus Slnensis L.osbeck). Environmental and Experimental Botany, 1995, 35:455-463
    30 Campbell WH. Nitrate reductase and its role in nitrate assimilation in plants. Physiol Plant, 1988, 74:214-219
    31 姜绍通,魏明,罗建平.磷对霍山石斛类原球茎悬浮培养细胞生和多糖合成的影响.生物工程学报,2006,22(4):613-618
    1 Zhang YH, Zhong JJ, Yu JT. Enhancement of ginseng saponin production in suspension cultures of Panax notoginseng: manipulation of medium sucrose. Journal of Biotechnology, 1996, 51:49-56
    2 Yun JW, Kim JH, Yoo YJ. Optimization of carotenoid biosynthesis by controlling sucrose concentration. Biotechnology Letters, 1990, 12:905-910
    3 Zhong JJ, Xu GR, Yoshida T. Effect of initial sucrose concentration on excretion of anthocyanin pigments in suspended cultures of Perilla frutescens cells.World J.Microbial Biotechnology, 1994, 10:590-592
    4 Wang HQ, Yu JT, Zhong JJ. Significant improvement of taxane production in suspension cultures of Taxus chinensis by sucrose feeding strategy. Process Biochemistry, 1999, 35: 479-483
    5 Dong HD, Zhong JJ. Enhanced taxane productivity in bioreactor cultivation of Taxus chinensis cells by combining elicitation, sucrose feeding and ethylene incorporation. Enzyme and Microbial Technology, 2002, 31: 116-121
    6 Srinvasan V, Ryu DDY. Improvement of shikonin productivity in Lithospermum erythrorhizon cell cultures by alternating carbon and nitrogen feeding strategy. Bioteehnology and Bioengineering. 1993,42:793-799
    7 Komaraiah P, Kishor PB, Kavi C M et al. Enhancement of anthraquinone accumulation in Morinda eitrifolia suspension cultures. Plant Science. 2005, 168:1337-1344.
    8 罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养.中国中药杂志,2003,28(7):611-613
    9 Zhang YH, Zhong JJ. Hyperproduction of ginseng saponin and polysaccharide by high density cultivation of Panax notoginseng cells. Enzyme and Microbial Technology, 1997, 21: 59-63
    10 Han J, Zhong JJ. High density cell culture of Panax notoginseng for production of ginseng saponin and polysaccharide in an airlift bioreactor. Biotechnology Letters, 2002, 24: 1927-1930
    11 Zhong JJ, Chen F, Hu WW. High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin. Process Biochemistry, 1999, 35:491-496
    12 Liu S, Zhong JJ. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochemistry, 1998, 33:69-74
    13 刘咏,罗建平.霍山石斛类原球茎液体培养条件的优化.食品科学,2005,26(9):84-87
    1 元英进,葛志强.植物细胞培养工程.化学工业出版社,2004:185-186.
    2 Tanaka H. Rotating drum fermentor for cell suspension culture. Biotechnology and Bioengineering, 1981, 23:1203-1218
    3 Jolicoeur M, Chavarie C, Carreau PJ et al. Development of a Helical-Ribbon bioreactor for high density plant cell suspension culture. Biotechnology and Bioengineering, 1992, 39: 511-516
    4 Kintzios S, Kollias H, Straitouris E et al. Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Biotechnology Letters, 2004, 26:521-523
    5 Schiel O, Berlin J. Large scale fermentation and alkaloid production of cell suspension cultures of Catharanthus roseus. Plant Cell Tissue and Organ Culture, 1987, 8: 153-161
    6 Shin KS, Murthy HN, Ko JY et al. Growth snd betacyanin production by hairy roots of Beta vulgaris in airlift bioreactors. Bioteehnology Letters, 2002, 24:2067-2069
    7 Seki M, Ohzora C, Takeda M et al. Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidata. Biotechnology and Bioengineering, 1997, 53: 214-219
    8 Fukui H, Tanaka M. An envelop-shaped film culture vessel for plant cell suspension cultures and metabolite production without agitation. Plant Cell Tissue and Organ Culture, 1995, 41: 17-21
    9 元英进,葛志强.植物细胞培养工程.化学工业出版社,2004,275-278
    10 Assa A, Bar R. Biomass axial distribution in airlift bioreactor with yeast and plant cells. Biotechnology and Bioengineering, 1991, 38:1325-1330
    11 Neves JM, Teixeira JA, Simoes N et al. Effect of airflow rate on yields of steinernema carpocapse Az 20 in liquid culture in an external-loop airlift bioreactor. Biotechnology and Bioebgineering, 2001, 72:369-373
    12 Smart NJ, Fowler MW. Effect of aeration on large scale cultures of plant ceils. Biotechnology Letters, 1981, 3:171-176
    13 Ballica R, Ryu DDY. Effect of rheological properties and mass transfer on plant cell bioreactor performance: Production of tropane alkaloids. Biotechnology and Bioengineering, 1993, 42:1181-1189
    14 Hohe A, Winkelmann T, Schwenkel HG. The effect of oxygen partial pressure in bioreactors on cell proliferation and subsequent differentiation of somatic embryos of Cyclamen persicum. Plant Cell Tissue Organ Culture, 1999, 59:39-45
    15 Han J, Zhong JJ. Effect of oxygen partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enzyme and Microbial Technology, 2003, 32: 498-503
    
    16 Wang H Q, Yu J T,Zhong J J. Significant improvement of taxane production in suspension cultures of Taxus chinensis by surose feeding strategy. Process Biotechnology. 1999, 35: 479-483
    
    17 Dong DH, Zong J J. Enhanced taxane productivity in bioreactor cultivation of Taxus chinensis cell by combining elicitation surose feeding and ethylene incorportion. Enzyme and Microbial Technology. 2002, 31:116-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700