单萘酰亚胺—亚精胺缀合物抗肿瘤机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化疗是治疗肿瘤的重要手段之一。化疗药物的主要缺陷是缺乏肿瘤细胞选择性。将药效团与多胺基团结合,形成多胺缀合物,可提高药效团与肿瘤细胞的亲和力,进而具有肿瘤细胞选择性。萘酰亚胺及其衍生物是DNA嵌入剂,具有显著的抗肿瘤活性。将萘酰亚胺与多胺缀合,可增加萘酰亚胺的水溶性和抗肿瘤活性,并使之具有肿瘤细胞选择性。因此,开发具有靶向性转运萘酰亚胺进入肿瘤细胞的萘酰亚胺-多胺缀合物是当今化疗研究领域中一个新的热点。然而,对萘酰亚胺-多胺缀合物抗肿瘤机制的研究尚不广泛,其机制尚未完全澄清。
     本文着重探讨单萘酰亚胺-亚精胺(mononaphthalimide spermidine, MNISpd)缀合物的多胺转运通道(polyamine transport, PAT)识别性和靶向性,对人宫颈癌HeLa细胞活力影响的机制,及其与活性氧(reactive oxygen species, ROS)间的关系。本文实验表明,在48h内,MNISpd对HeLa细胞的IC_(50)为4.71±0.21,对人胚肺成纤维细胞HELF的IC_(50)为16.68±0.18,对HELF细胞的细胞毒作用显著小于对HeLa细胞的细胞毒作用。MNISpd与SPD联用对HeLa细胞的IC_(50)为7.37±0.16,提示,SPD对HeLa细胞具有保护作用;MNISpd与DFMO联用对HeLa细胞的IC_(50)为3.47±0.05,提示,DFMO对MNISpd具有增效作用。以MNISpd<6μM处理HeLa细胞可诱导其细胞周期阻滞于S期,导致其增殖抑制。MNISpd在此浓度范围内诱导的HeLa细胞周期阻滞与p21表达活性上调、Cdc2表达活性下调有关,而与CDK2的表达无关。以MNISpd≥6μM处理HeLa细胞,可诱导其凋亡,且在48h内,9μM的MNISpd最适合诱导HeLa细胞凋亡。实验进一步表明,MNISpd介导的HeLa细胞凋亡与XIAP表达活性下调、caspase-3和caspase-9表达活性上调、线粒体膜电位去极化及继发的线粒体释放细胞色素c(cytochrome c)、凋亡诱导因子(apoptosis inducing factor, AIF)从线粒体中转移至细胞核有关,但对caspase-8的表达活性没有影响。同时,MNISpd介导的HeLa细胞凋亡与Bax表达活性上调、Bcl-2表达活性下调有关。当以10mM的N-乙酰半胱氨酸(N-acetyl-cysteine, NAC)预孵育HeLa细胞2h时,MNISpd介导的诱导HeLa细胞凋亡的事件均被抑制,但细胞周期仍阻滞于S期。MNISpd介导的活性氧在HeLa细胞的蓄积与其PAO活性上调、谷胱甘肽含量的复杂性变化有关。基于以上实验结果,本文认为,①MNISpd能被PAT识别,并通过PAT进入HeLa细胞;②MNISpd对HeLa细胞具有靶向性;③MNISpd对HeLa细胞活性的抑制主要源于诱导细胞凋亡和增殖抑制,且与MNISpd的处理浓度有关:在MNISpd<6μM,以诱导细胞增殖抑制为主,在MNISpd≥9μM,以诱导细胞凋亡为主;④MNISpd诱导的HeLa细胞凋亡可通过caspase依赖性内源性途径和AIF介导的非caspase依赖性途径发生,且与caspase依赖性外源性途径无关;⑤MNISpd诱导的HeLa细胞凋亡与MNISpd介导的氧化应激有关;MNISpd介导的活性氧在HeLa细胞的蓄积与还原性谷胱甘肽代谢池的耗竭有关,且PAO活性上调可能是ROS产生的源泉;⑥MNISpd诱导的HeLa细胞凋亡被NAC所抑制而其诱导的细胞周期阻滞则不受NAC预孵育的影响。另外,本文实验还表明,MNISpd可诱导人白血病K562细胞的增殖抑制和细胞凋亡。综上所述,MNISpd可以作为靶向性抗肿瘤药物进一步开发。
Chemotherapy is one of the important developing strategies in cancer therapy. The major shortcoming of current cancer chemotherapies of many anti-cancer drugs is poor selectivity between tumor cells and healthy cells. Conjugating an anti-tumor agent with a polyamine motif elevates their affinity for tumor cells, and expresses excellent selectivity between tumor cells and normal cells. Naphthalimides and their derivates exhibit considerable potential as DNA intercalating anti-tumor compounds. Conjugating naphthalimides with a polyamine motif enhances their aqueous solubility and anti-tumor effects. Naphthalimide-polyamine conjugates are capable of specific entry into tumor cells. Then, developing naphthalimide- polyamine conjugates having the potential of transporting naphthalimide selectively into tumor cells is attractive in improving chemotherapeutic efficacy. However, the evaluation of their cytotoxic mechanism has not been comprehensive, and exact cytotoxic mechanism of these conjugates is not well known.
     This study focused on the effects of mononaphthalimide spermidine (MNISpd) conjugate on recognization by polyamine transport (PAT), selectivity between tumor cells and healthy cells, growth and survival, and the relationship between MNISpd-induced anti-tumor effects and reactive oxygen species (ROS) in HeLa cells. Our results determined that after 48 h, an IC_(50) of 4.71±0.21 and 16.68±0.18 was observed for HeLa cells and HELF cells respectively, and MNISpd exerted a higher cytotoxicity towards HeLa cells but with less cytotoxicity on HELF cells. An IC_(50) of 7.37±0.16 and 3.47±0.05 was observed for HeLa cells treated with MNISpd plus SPD and MNISpd plus DFMO for 48 h respectively, indicating a protection effects for SPD in MNISpd plus SPD treatment HeLa cells and a synergism effects for DFMO in MNISpd plus DFMO treatment HeLa cells. In characterizing the mechanism of MNISpd cytotoxicity in HeLa cells, inhibition of proliferation was observed when HeLa cells were treated with MNISpd < 6μM and MNISpd induced a cell cycle arrest in S phase correlated with enhanced p21 expression and decreased Cdc2 but not CDK2 expression in this range. There were evidences of apoptosis in MNISpd≥6μM treatments HeLa cells, and 9μM MNISpd was suitable to induce apoptosis during a 48-h period. Our findings further determined that MNISpd-induced apoptosis was correlated with decreased XIAP expression and a loss of mitochondrial membrane potential following cytochrome c release, elevation of caspase-3, -9 activity, apoptosis inducing factor (AIF) translocation and up-/down-regulation of Bax/Bcl-2 protein expression, but not caspase-8, and these effects were completely antagonized by pre-incubation with 10 mM NAC for 2 h. MNISpd induced a significant ROS accumulation following up-regulation in polyamine oxidase (PAO) activity and complex variations in glutathione levels. Based on all these evidences, it is proposed: (1) MNISpd could be recognized by PAT and transfer naphthalimide entry into HeLa cells via PAT, (2) MNISpd expressed a targeting effect to HeLa cells, (3) MNISpd-mediated cytotoxicity towards HeLa cells primarily results from apoptosis induction and proliferation inhibition dependent on variations: with MNISpd < 6μM treatment, effects on cell proliferation predominate, while MNISpd≥9μM, apoptosis develops, (4) MNISpd-induced apoptosis via both intrinsic caspase-dependent and AIF-mediated caspase independent apoptosis pathways, but not extrinsic caspase-dependent pathway in HeLa cells is related to oxidative stress, (5) MNISpd-induced ROS production results from GSH (reduced form of glutathione) pool depletion, and PAO is likely to be the source of ROS, (6) MNISpd- induced apoptosis susceptible to be inhibited with NAC treatment but not cell cycle arrest in HeLa cells.
     In addition, MNISpd-mediated cytotoxicity towards k562 cells was related to apoptosis induction and proliferation arrest.
     It is concluded that MNISpd could act as potential tumor targeting agent for further development.
引文
[1] Hamana K, Matsuzaki S. Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol, 1992, 18: 261-283.
    [2] van Leeuwenhoek A. Observationes D. Anthonii Leeuwenhoek, de Natis e semine genitali Animalculis. Letter dated November 1677. Philos. Trans. Roy. Soc. London, , 1678, 12: 1040-1043
    [3] Ladenburg A, Abel J.über das Aethylenimin (Spermin?). . Ber. Dtsch. chem. Ges., 1888, 21: 758-766.
    [4] Dudley HW, Rosenheim MC, Rosenheim O. The Chemical Constitution of Spermine. I. The Isolation of Spermine from Animal Tissues, and the Preparation of its Salts. Biochem J, 1924, 18: 1263-1272.
    [5] Dudley HW, Rosenheim O, Starling WW. The Chemical Constitution of Spermine: Structure and Synthesis. Biochem J, 1926, 20: 1082-1094.
    [6] Wrede F.über die aus menschlichem Sperma isolierte Base Spermin. Dtsch. Med. Wochenschr, 1925, 51: 24
    [7] Wallace HM. The physiological role of the polyamines. Eur J Clin Invest, 2000, 30: 1-3.
    [8] Casero RA, Jr., Woster PM. Terminally alkylated polyamine analogues as chemotherapeutic agents. J Med Chem, 2001, 44: 1-26.
    [9] Casero RA, Jr., Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov, 2007, 6: 373-390.
    [10] Xie S, Wang J, Zhang Y, et al. Antitumor conjugates with polyamine vectors and their molecular mechanisms. Expert Opin Drug Deliv, 2010, 7: 1049-1061.
    [11] Pegg AE. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res, 1988, 48: 759-774.
    [12] Childs AC, Mehta DJ, Gerner EW. Polyamine-dependent gene expression. Cell Mol Life Sci, 2003, 60: 1394-1406.
    [13] Sarkar T, Petrov AS, Vitko JR, et al. Integration host factor (IHF) dictates the structure of polyamine-DNA condensates: implications for the role of IHF in the compaction of bacterial chromatin. Biochemistry, 2009, 48: 667-675.
    [14] Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life, 2009, 61: 880-894.
    [15] Seidenfeld J, Gray JW, Marton LJ. Depletion of 9L rat brain tumor cell polyamine content by treatment with D,L-alpha-difluoromethylornithine inhibits proliferation and the G1 to S transition.Exp Cell Res, 1981, 131: 209-216.
    [16] Wallace HM. Polyamines in human health. Proc Nutr Soc, 1996, 55: 419-431.
    [17] Schipper RG, Penning LC, Verhofstad AA. Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin Cancer Biol, 2000, 10: 55-68.
    [18] Nitta T, Igarashi K, Yamamoto N. Polyamine depletion induces apoptosis through mitochondria-mediated pathway. Exp Cell Res, 2002, 276: 120-128.
    [19] Choi SH, Kim SW, Choi DH, et al. Polyamine-depletion induces p27Kip1 and enhances dexamethasone-induced G1 arrest and apoptosis in human T lymphoblastic leukemia cells. Leuk Res, 2000, 24: 119-127.
    [20] Packham G, Cleveland JL. Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis. Mol Cell Biol, 1994, 14: 5741-5747.
    [21] Penning LC, Schipper RG, Vercammen D, et al. Sensitization of tnf-induced apoptosis with polyamine synthesis inhibitors in different human and murine tumour cell lines. Cytokine, 1998, 10: 423-431.
    [22] Harada J, Sugimoto M. Polyamines prevent apoptotic cell death in cultured cerebellar granule neurons. Brain Res, 1997, 753: 251-259.
    [23] Redman C, Xu MJ, Peng YM, et al. Involvement of polyamines in selenomethionine induced apoptosis and mitotic alterations in human tumor cells. Carcinogenesis, 1997, 18: 1195-1202.
    [24] Basu HS, Smirnov IV, Peng HF, et al. Effects of spermine and its cytotoxic analogs on nucleosome formation on topologically stressed DNA in vitro. Eur J Biochem, 1997, 243: 247-258.
    [25] Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J, 2003, 376: 1-14.
    [26] Alm K, Berntsson PS, Kramer DL, et al. Treatment of cells with the polyamine analog N, N11-diethylnorspermine retards S phase progression within one cell cycle. Eur J Biochem, 2000, 267: 4157-4164.
    [27] Seiler N, Atanassov CL, Raul F. Polyamine metabolism as target for cancer chemoprevention (review). Int J Oncol, 1998, 13: 993-1006.
    [28] Seiler N. Oxidation of polyamines and brain injury. Neurochem Res, 2000, 25: 471-490.
    [29] Hoet PH, Nemery B. Polyamines in the lung: polyamine uptake and polyamine-linked pathological or toxicological conditions. Am J Physiol Lung Cell Mol Physiol, 2000, 278: L417-433.
    [30] Seiler N, Atanassov CL. The natural polyamines and the immune system. Prog Drug Res, 1994, 43: 87-141.
    [31] Thomas TJ, Gunnia UB, Thomas T. Reversal of the abnormal development of T cell subpopulations in the thymus of autoimmune MRL-lpr/lpr mice by a polyamine biosynthesisinhibitor. Autoimmunity, 1992, 13: 275-283.
    [32] Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int. J. Biochem Cell Biol., 2009.
    [33] Coleman CS, Hu G, Pegg AE. Putrescine biosynthesis in mammalian tissues. Biochem J, 2004, 379: 849-855.
    [34] Pegg AE. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J, 1986, 234: 249-262.
    [35] Janne J, Alhonen L, Pietila M, et al. Genetic manipulation of polyamine catabolism in rodents. J Biochem, 2006, 139: 155-160.
    [36] Niiranen K, Keinanen TA, Pirinen E, et al. Mice with targeted disruption of spermidine/spermine N1-acetyltransferase gene maintain nearly normal tissue polyamine homeostasis but show signs of insulin resistance upon aging. J Cell Mol Med, 2006, 10: 933-945.
    [37] Jell J, Merali S, Hensen ML, et al. Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem, 2007, 282: 8404-8413.
    [38] Pirinen E, Kuulasmaa T, Pietila M, et al. Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol, 2007, 27: 4953-4967.
    [39] Wang Y, Devereux W, Woster PM, et al. Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res, 2001, 61: 5370-5373.
    [40] Vujcic S, Diegelman P, Bacchi CJ, et al. Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J, 2002, 367: 665-675.
    [41] Wang Y, Casero RA, Jr. Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J Biochem, 2006, 139: 17-25.
    [42] Murray-Stewart T, Wang Y, Goodwin A, et al. Nuclear localization of human spermine oxidase isoforms - possible implications in drug response and disease etiology. FEBS J, 2008, 275: 2795-2806.
    [43] Higgins ML, Tillman MC, Rupp JP, et al. The effect of polyamines on cell culture cells. J Cell Physiol, 1969, 74: 149-154.
    [44] Tabor CW, Tabor H, Bachrach U. Identification of the Aminoaldehydes Produced by the Oxidation of Spermine and Spermidine with Purified Plasma Amine Oxidase. J Biol Chem, 1964, 239: 2194-2203.
    [45] Sharmin S, Sakata K, Kashiwagi K, et al. Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem Biophys Res Commun, 2001, 282: 228-235.
    [46] Yoshida M, Tomitori H, Machi Y, et al. Acrolein toxicity: Comparison with reactive oxygenspecies. Biochem Biophys Res Commun, 2009, 378: 313-318.
    [47] Igarashi K, Ueda S, Yoshida K, et al. Polyamines in renal failure. Amino Acids, 2006, 31: 477-483.
    [48] Tomitori H, Usui T, Saeki N, et al. Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke, 2005, 36: 2609-2613.
    [49] Yoshida M, Tomitori H, Machi Y, et al. Acrolein, IL-6 and CRP as markers of silent brain infarction. Atherosclerosis, 2009, 203: 557-562.
    [50] Porter CW, Miller J, Bergeron RJ. Aliphatic chain length specificity of the polyamine transport system in ascites L1210 leukemia cells. Cancer Res, 1984, 44: 126-128.
    [51] Seiler N, Delcros JG, Moulinoux JP. Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol, 1996, 28: 843-861.
    [52] Seiler N, Dezeure F. Polyamine transport in mammalian cells. Int J Biochem, 1990, 22: 211-218.
    [53] Fraser AV, Woster PM, Wallace HM. Induction of apoptosis in human leukaemic cells by IPENSpm, a novel polyamine analogue and anti-metabolite. Biochem J, 2002, 367: 307-312.
    [54] Byers TL, Kameji R, Rannels DE, et al. Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines. Am J Physiol, 1987, 252: C663-669.
    [55] Rossi T, Coppi A, Bruni E, et al. Mepacrine antagonises tumour cell growth induced by natural polyamines. Anticancer Res, 2008, 28: 2765-2768.
    [56] Kaur N, Delcros JG, Archer J, et al. Designing the polyamine pharmacophore: influence of N-substituents on the transport behavior of polyamine conjugates. J Med Chem, 2008, 51: 2551-2560.
    [57] Holley JL, Mather A, Wheelhouse RT, et al. Targeting of tumor cells and DNA by a chlorambucil-spermidine conjugate. Cancer Res, 1992, 52: 4190-4195.
    [58] Igarashi K, Kashiwagi K. Polyamine transport in bacteria and yeast. Biochem J, 1999, 344 Pt 3: 633-642.
    [59] Furuchi T, Kashiwagi K, Kobayashi H, et al. Characteristics of the gene for a spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome. J Biol Chem, 1991, 266: 20928-20933.
    [60] Pistocchi R, Kashiwagi K, Miyamoto S, et al. Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. J Biol Chem, 1993, 268: 146-152.
    [61] Ames GF. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem, 1986, 55: 397-425.
    [62] Kashiwagi K, Suzuki T, Suzuki F, et al. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem, 1991, 266:20922-20927.
    [63] Kashiwagi K, Miyamoto S, Suzuki F, et al. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci U S A, 1992, 89: 4529-4533.
    [64] Kashiwagi K, Shibuya S, Tomitori H, et al. Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J Biol Chem, 1997, 272: 6318-6323.
    [65] Kurihara S, Oda S, Kato K, et al. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem, 2005, 280: 4602-4608.
    [66] Hasne MP, Ullman B. Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem, 2005, 280: 15188-15194.
    [67] Belting M, Mani K, Jonsson M, et al. Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J Biol Chem, 2003, 278: 47181-47189.
    [68] Welch JE, Bengtson P, Svensson K, et al. Single chain fragment anti-heparan sulfate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation. Int J Oncol, 2008, 32: 749-756.
    [69] Soulet D, Covassin L, Kaouass M, et al. Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport. Biochem J, 2002, 367: 347-357.
    [70] Soulet D, Gagnon B, Rivest S, et al. A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J Biol Chem, 2004, 279: 49355-49366.
    [71] Roy UK, Rial NS, Kachel KL, et al. Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol Carcinog, 2008, 47: 538-553.
    [72] Byers TL, Wechter RS, Hu RH, et al. Effects of the S-adenosylmethionine decarboxylase inhibitor, 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, on cell growth and polyamine metabolism and transport in Chinese hamster ovary cell cultures. Biochem J, 1994, 303 ( Pt 1): 89-96.
    [73] Hyvonen T, Seiler N, Persson L. Characterization of a COS cell line deficient in polyamine transport. Biochim Biophys Acta, 1994, 1221: 279-285.
    [74] Higashi K, Ishigure H, Demizu R, et al. Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol, 2008, 190: 872-878.
    [75] Uemura T, Kashiwagi K, Igarashi K. Uptake of putrescine and spermidine by Gap1p on the plasma membrane in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 2005, 328: 1028-1033.
    [76] Tomitori H, Kashiwagi K, Sakata K, et al. Identification of a gene for a polyamine transport protein in yeast. J Biol Chem, 1999, 274: 3265-3267.
    [77] Tomitori H, Kashiwagi K, Asakawa T, et al. Multiple polyamine transport systems on the vacuolarmembrane in yeast. Biochem J, 2001, 353: 681-688.
    [78] Uemura T, Tachihara K, Tomitori H, et al. Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem, 2005, 280: 9646-9652.
    [79] Tachihara K, Uemura T, Kashiwagi K, et al. Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J Biol Chem, 2005, 280: 12637-12642.
    [80] Uemura T, Tomonari Y, Kashiwagi K, et al. Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 2004, 315: 1082-1087.
    [81] Aouida M, Leduc A, Poulin R, et al. AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem, 2005, 280: 24267-24276.
    [82] Uemura T, Yerushalmi HF, Tsaprailis G, et al. Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem, 2008, 283: 26428-26435.
    [83] Chattopadhyay MK, Park MH, Tabor H. Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci U S A, 2008, 105: 6554-6559.
    [84] Wang X, Ikeguchi Y, McCloskey DE, et al. Spermine synthesis is required for normal viability, growth, and fertility in the mouse. J Biol Chem, 2004, 279: 51370-51375.
    [85] Wang X, Levic S, Gratton MA, et al. Spermine synthase deficiency leads to deafness and a profound sensitivity to alpha-difluoromethylornithine. J Biol Chem, 2009, 284: 930-937.
    [86] Alhonen L, Parkkinen JJ, Keinanen T, et al. Activation of polyamine catabolism in transgenic rats induces acute pancreatitis. Proc Natl Acad Sci U S A, 2000, 97: 8290-8295.
    [87] Heller JS, Fong WF, Canellakis ES. Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci U S A, 1976, 73: 1858-1862.
    [88] Matsufuji S, Matsufuji T, Miyazaki Y, et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell, 1995, 80: 51-60.
    [89] Hayashi S, Murakami Y, Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci, 1996, 21: 27-30.
    [90] Nilsson J, Grahn B, Heby O. Antizyme inhibitor is rapidly induced in growth-stimulated mouse fibroblasts and releases ornithine decarboxylase from antizyme suppression. Biochem J, 2000, 346 Pt 3: 699-704.
    [91] Coffino P. Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie, 2001, 83: 319-323.
    [92] Mitchell JL, Judd GG, Bareyal-Leyser A, et al. Feedback repression of polyamine transport ismediated by antizyme in mammalian tissue-culture cells. Biochem J, 1994, 299 ( Pt 1): 19-22.
    [93] Sakata K, Kashiwagi K, Igarashi K. Properties of a polyamine transporter regulated by antizyme. Biochem J, 2000, 347 Pt 1: 297-303.
    [94] Suzuki T, He Y, Kashiwagi K, et al. Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci U S A, 1994, 91: 8930-8934.
    [95] Burns MR, Graminski GF, Weeks RS, et al. Lipophilic lysine-spermine conjugates are potent polyamine transport inhibitors for use in combination with a polyamine biosynthesis inhibitor. J Med Chem, 2009, 52: 1983-1993.
    [96] Wallace HM, Keir HM. Uptake and excretion of polyamines from baby hamster kidney cells (BHK-21/C13). The effect of serum on confluent cell cultures. Biochim Biophys Acta, 1981, 676: 25-30.
    [97] Wallace HM, Mackarel AJ. Regulation of polyamine acetylation and efflux in human cancer cells. Biochem Soc Trans, 1998, 26: 571-575.
    [98] Wallace HM, Keir HM. Factors affecting polyamine excretion from mammalian cells in culture. Inhibitors of polyamine biosynthesis. FEBS Lett, 1986, 194: 60-63.
    [99] Melvin MA, Melvin WT, Keir HM. Excretion of spermidine from BHK-21/C13 cells exposed to 6-thioguanosine. Cancer Res, 1978, 38: 3055-3058.
    [100] Wallace HM, Keir HM. Excretion of polyamines from baby hamster kidney cells (BHK-21/C13: effect of infection with Herpes Simplex Virus Type 1. J Gen Virol, 1981, 56: 251-258.
    [101] Laitinen J, Holtta E. Methylation status and chromatin structure of an early response gene (ornithine decarboxylase) in resting and stimulated NIH-3T3 fibroblasts. J Cell Biochem, 1994, 55: 155-167.
    [102] Chen KY, Chang ZF, Pang JH, et al. Polyamine metabolism and cell-cycle-dependent gene expression in IMR-90 human diploid fibroblasts during senescence in culture. Exp Gerontol, 1989, 24: 523-537.
    [103] Kramer DL, Vujcic S, Diegelman P, et al. Polyamine analogue induction of the p53-p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells. Cancer Res, 1999, 59: 1278-1286.
    [104] Ray RM, Zimmerman BJ, McCormack SA, et al. Polyamine depletion arrests cell cycle and induces inhibitors p21(Waf1/Cip1), p27(Kip1), and p53 in IEC-6 cells. Am J Physiol, 1999, 276: C684-691.
    [105] Wallick CJ, Gamper I, Thorne M, et al. Key role for p27Kip1, retinoblastoma protein Rb, and MYCN in polyamine inhibitor-induced G1 cell cycle arrest in MYCN-amplified human neuroblastoma cells. Oncogene, 2005, 24: 5606-5618.
    [106] J?nne J, Alhonen L, Leinonen P. Polyamines: from molecular biology to clinical applications. Ann. Med., 1991, 23: 241-259.
    [107] Bettuzzi S, Davalli P, Astancolle S, et al. Coordinate changes of polyamine metabolism regulatory proteins during the cell cycle of normal human dermal fibroblasts. FEBS Lett, 1999, 446: 18-22.
    [108] Kingsnorth AN, Wallace HM, Bundred NJ, et al. Polyamines in breast cancer. Br J Surg, 1984, 71: 352-356.
    [109] Kingsnorth AN, Lumsden AB, Wallace HM. Polyamines in colorectal cancer. Br J Surg, 1984, 71: 791-794.
    [110] Fair WR, Wehner N, Brorsson U. Urinary polyamine levels in the diagnosis of carcinoma of the prostate. J Urol, 1975, 114: 88-92.
    [111] Loser C, Folsch UR, Paprotny C, et al. Polyamine concentrations in pancreatic tissue, serum, and urine of patients with pancreatic cancer. Pancreas, 1990, 5: 119-127.
    [112] Kubo S, Tamori A, Nishiguchi S, et al. Effect of alcohol abuse on polyamine metabolism in hepatocellular carcinoma and noncancerous hepatic tissue. Surgery, 1998, 123: 205-211.
    [113] Luk GD, Casero RA, Jr. Polyamines in normal and cancer cells. Adv Enzyme Regul, 1987, 26: 91-105.
    [114] Verma AK, Boutwell RK. Vitamin A acid (retinoic acid), a potent inhibitor of 12-O-tetradecanoyl-phorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis. Cancer Res, 1977, 37: 2196-2201.
    [115] Feith DJ, Shantz LM, Shoop PL, et al. Mouse skin chemical carcinogenesis is inhibited by antizyme in promotion-sensitive and promotion-resistant genetic backgrounds. Mol Carcinog, 2007, 46: 453-465.
    [116] Hibshoosh H, Johnson M, Weinstein IB. Effects of overexpression of ornithine decarboxylase (ODC) on growth control and oncogene-induced cell transformation. Oncogene, 1991, 6: 739-743.
    [117] Hurta RA, Wright JA. Ornithine decarboxylase gene expression is aberrantly regulated via the cAMP signal transduction pathway in malignant H-ras transformed cell lines. J Cell Physiol, 1994, 161: 383-391.
    [118] Clifford A, Morgan D, Yuspa SH, et al. Role of ornithine decarboxylase in epidermal tumorigenesis. Cancer Res, 1995, 55: 1680-1686.
    [119] O'Brien TG, Megosh LC, Gilliard G, et al. Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res, 1997, 57: 2630-2637.
    [120] Kubota S, Kiyosawa H, Nomura Y, et al. Ornithine decarboxylase overexpression in mouse 10T1/2 fibroblasts: cellular transformation and invasion. J Natl Cancer Inst, 1997, 89: 567-571.
    [121] Smith MK, Goral MA, Wright JH, et al. Ornithine decarboxylase overexpression leads to increasedepithelial tumor invasiveness. Cancer Res, 1997, 57: 2104-2108.
    [122] Wallace HM, Duthie J, Evans DM, et al. Alterations in polyamine catabolic enzymes in human breast cancer tissue. Clin Cancer Res, 2000, 6: 3657-3661.
    [123] Casero RA, Jr., Wang Y, Stewart TM, et al. The role of polyamine catabolism in anti-tumour drug response. Biochem Soc Trans, 2003, 31: 361-365.
    [124] Casero RA, Jr., Woster PM. Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem, 2009, 52: 4551-4573.
    [125] Cullis PM, Green RE, Merson-Davies L, et al. Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem Biol, 1999, 6: 717-729.
    [126] Fozard JR, Prakash NJ. Effects of DL-alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, on the rat mammary tumour induced by 7,12-dimethylbenz[a]anthracene. Naunyn Schmiedebergs Arch Pharmacol, 1982, 320: 72-77.
    [127] Heston WD, Kadmon D, Lazan DW, et al. Copenhagen rat prostatic tumor ornithine decarboxylase activity (ODC) and the effect of the ODC inhibitor alpha-difluoromethylornithine. Prostate, 1982, 3: 383-389.
    [128] Quemener V, Moulinoux JP, Havouis R, et al. Polyamine deprivation enhances antitumoral efficacy of chemotherapy. Anticancer Res, 1992, 12: 1447-1453.
    [129] Bartholeyns J, Koch-Weser J. Effects of alpha-difluoromethylornithine alone and combined with adriamycin or vindesine on L1210 leukemia in mice, EMT6 solid tumors in mice, and solid tumors induced by injection of hepatoma tissue culture cells in rats. Cancer Res, 1981, 41: 5158-5161.
    [130] Marton LJ, Levin VA, Hervatin SJ, et al. Potentiation of the antitumor therapeutic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea by alpha-difluoromethylornithine, an ornithine decarboxylase inhibitor. Cancer Res, 1981, 41: 4426-4431.
    [131] Bacchi CJ, Nathan HC, Livingston T, et al. Differential susceptibility to DL-alpha-difluoromethylornithine in clinical isolates of Trypanosoma brucei rhodesiense. Antimicrob Agents Chemother, 1990, 34: 1183-1188.
    [132] Meyskens FL, Jr., Gerner EW. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res, 1999, 5: 945-951.
    [133] Raul F, Gosse F, Osswald AB, et al. Follow-up of tumor development in the colons of living rats and implications for chemoprevention trials: assessment of aspirin-difluoromethylornithine combination. Int J Oncol, 2007, 31: 89-95.
    [134] Paulson YJ, Gilman TM, Heseltine PN, et al. Eflornithine treatment of refractory Pneumocystis carinii pneumonia in patients with acquired immunodeficiency syndrome. Chest, 1992, 101: 67-74.
    [135] Williams-Ashman HG, Schenone A. Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun,1972, 46: 288-295.
    [136] Pleshkewych A, Kramer DL, Kelly E, et al. Independence of drug action on mitochondria and polyamines in L1210 leukemia cells treated with methylglyoxal-bis(guanylhydrazone). Cancer Res, 1980, 40: 4533-4540.
    [137] Regenass U, Mett H, Stanek J, et al. CGP 48664, a new S-adenosylmethionine decarboxylase inhibitor with broad spectrum antiproliferative and antitumor activity. Cancer Res, 1994, 54: 3210-3217.
    [138] Stanek J, Caravatti G, Capraro HG, et al. S-adenosylmethionine decarboxylase inhibitors: new aryl and heteroaryl analogues of methylglyoxal bis(guanylhydrazone). J Med Chem, 1993, 36: 46-54.
    [139] Millward MJ, Joshua A, Kefford R, et al. Multi-centre Phase II trial of the polyamine synthesis inhibitor SAM486A (CGP48664) in patients with metastatic melanoma. Invest New Drugs, 2005, 23: 253-256.
    [140] Pegg AE, Tang KC, Coward JK. Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism. Biochemistry, 1982, 21: 5082-5089.
    [141] Pegg AE, Wechter R, Poulin R, et al. Effect of S-adenosyl-1,12-diamino-3-thio-9-azadodecane, a multisubstrate adduct inhibitor of spermine synthase, on polyamine metabolism in mammalian cells. Biochemistry, 1989, 28: 8446-8453.
    [142] Bergeron RJ, Hawthorne TR, Vinson JR, et al. Role of the methylene backbone in the antiproliferative activity of polyamine analogues on L1210 cells. Cancer Res, 1989, 49: 2959-2964.
    [143] Bergeron RJ, McManis JS, Liu CZ, et al. Antiproliferative properties of polyamine analogues: a structure-activity study. J Med Chem, 1994, 37: 3464-3476.
    [144] Porter CW, Berger FG, Pegg AE, et al. Regulation of ornithine decarboxylase activity by spermidine and the spermidine analogue N1N8-bis(ethyl)spermidine. Biochem J, 1987, 242: 433-440.
    [145] Bey P, Bolkenius FN, Seiler N, et al. N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J Med Chem, 1985, 28: 1-2.
    [146] Seiler N, Duranton B, Raul F. The polyamine oxidase inactivator MDL 72527. Prog Drug Res, 2002, 59: 1-40.
    [147] Wu T, Ling KQ, Sayre LM, et al. Inhibition of murine N1-acetylated polyamine oxidase by an acetylenic amine and the allenic amine, MDL 72527. Biochem Biophys Res Commun, 2005, 326: 483-490.
    [148] Bellelli A, Cavallo S, Nicolini L, et al. Mouse spermine oxidase: a model of the catalytic cycle and its inhibition by N,N1-bis(2,3-butadienyl)-1,4-butanediamine. Biochem Biophys Res Commun, 2004, 322: 1-8.
    [149] Wang Y, Murray-Stewart T, Devereux W, et al. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem Biophys Res Commun, 2003, 304: 605-611.
    [150] Wang Y, Hacker A, Murray-Stewart T, et al. Properties of recombinant human N1-acetylpolyamine oxidase (hPAO): potential role in determining drug sensitivity. Cancer Chemother Pharmacol, 2005, 56: 83-90.
    [151] Bergeron CJ, Basu HS, Marton LJ, et al. Two polyamine analogs (BE-4-4-4 and BE-4-4-4-4) directly affect growth, survival, and cell cycle progression in two human brain tumor cell lines. Cancer Chemother Pharmacol, 1995, 36: 411-417.
    [152] Bergeron RJ, Neims AH, McManis JS, et al. Synthetic polyamine analogues as antineoplastics. J Med Chem, 1988, 31: 1183-1190.
    [153] Bergeron RJ, Feng Y, Weimar WR, et al. A comparison of structure-activity relationships between spermidine and spermine analogue antineoplastics. J Med Chem, 1997, 40: 1475-1494.
    [154] Jeffers L, Church D, Basu H, et al. Effects of the polyamine analogues BE-4-4-4-4, BE-3-7-3, and BE-3-3-3 on the proliferation of three prostate cancer cell lines. Cancer Chemother Pharmacol, 1997, 40: 172-179.
    [155] Hacker A, Marton LJ, Sobolewski M, et al. In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells. Cancer Chemother Pharmacol, 2008, 63: 45-53.
    [156] Davidson NE, Mank AR, Prestigiacomo LJ, et al. Growth inhibition of hormone-responsive and -resistant human breast cancer cells in culture by N1, N12-bis(ethyl)spermine. Cancer Res, 1993, 53: 2071-2075.
    [157] Hector S, Tummala R, Kisiel ND, et al. Polyamine catabolism in colorectal cancer cells following treatment with oxaliplatin, 5-fluorouracil and N1, N11 diethylnorspermine. Cancer Chemother Pharmacol, 2008, 62: 517-527.
    [158] Bergeron RJ, Wiegand J, McManis JS, et al. Polyamine analogue antidiarrheals: a structure-activity study. J Med Chem, 2001, 44: 232-244.
    [159] Choi W, Gerner EW, Ramdas L, et al. Combination of 5-fluorouracil and N1,N11-diethylnorspermine markedly activates spermidine/spermine N1-acetyltransferase expression, depletes polyamines, and synergistically induces apoptosis in colon carcinoma cells. J Biol Chem, 2005, 280: 3295-3304.
    [160] Pledgie-Tracy A, Billam M, Hacker A, et al. The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines. Cancer Chemother Pharmacol, 2009.
    [161] Smith LL. The identification and characterization of a polyamine-accumulation system in the lung. Biochem Soc Trans, 1985, 13: 332-334.
    [162] Rannels DE, Pegg AE, Clark RS, et al. Interaction of paraquat and amine uptake by rat lungs perfused in situ. Am J Physiol, 1985, 249: E506-513.
    [163] Minchin RF, Martin RL, Summers LA, et al. Inhibition of putrescine uptake by polypyridinium quaternary salts in B16 melanoma cells treated with difluoromethylornithine. Biochem J, 1989, 262: 391-395.
    [164] Weeks RS, Vanderwerf SM, Carlson CL, et al. Novel lysine-spermine conjugate inhibits polyamine transport and inhibits cell growth when given with DFMO. Exp Cell Res, 2000, 261: 293-302.
    [165] Phanstiel OI, Price HL, Wang L, et al. The effect of polyamine homologation on the transport and cytotoxicity properties of polyamine-(DNA-intercalator) conjugates. J Org Chem, 2000, 65: 5590-5599.
    [166] Wang L, Price HL, Juusola J, et al. Influence of polyamine architecture on the transport and topoisomerase II inhibitory properties of polyamine DNA-intercalator conjugates. J Med Chem, 2001, 44: 3682-3691.
    [167] Wang C, Delcros JG, Biggerstaff J, et al. Synthesis and biological evaluation of N1-(anthracen-9-ylmethyl)triamines as molecular recognition elements for the polyamine transporter. J Med Chem, 2003, 46: 2663-2671.
    [168] Wang C, Delcros JG, Cannon L, et al. Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem, 2003, 46: 5129-5138.
    [169] Wang C, Delcros JG, Biggerstaff J, et al. Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates. J Med Chem, 2003, 46: 2672-2682.
    [170] Brachet P, Quemener V, Havouis R, et al. Alterations in intestinal uptake of putrescine and tissue polyamine concentrations in tumor-bearing rats. Biochim Biophys Acta, 1994, 1227: 161-170.
    [171] Tian ZY, Xie SQ, Du YW, et al. Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents. Eur J Med Chem, 2009, 44: 393-399.
    [172] Gardner RA, Delcros JG, Konate F, et al. N1-substituent effects in the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem, 2004, 47: 6055-6069.
    [173] Verschoyle RD, Carthew P, Holley JL, et al. The comparative toxicity of chlorambucil and chlorambucil-spermidine conjugate to BALB/c mice. Cancer Lett, 1994, 85: 217-222.
    [174] Holley J, Mather A, Cullis P, et al. Uptake and cytotoxicity of novel nitroimidazole-polyamine conjugates in Ehrlich ascites tumour cells. Biochem Pharmacol, 1992, 43: 763-769.
    [175] Eiseman JL, Rogers FA, Guo Y, et al. Tumor-targeted apoptosis by a novel spermine analogue, 1,12-diaziridinyl-4,9-diazadodecane, results in therapeutic efficacy and enhanced radiosensitivityof human prostate cancer. Cancer Res, 1998, 58: 4864-4870.
    [176] Delcros JG, Tomasi S, Carrington S, et al. Effect of spermine conjugation on the cytotoxicity and cellular transport of acridine. J Med Chem, 2002, 45: 5098-5111.
    [177] Dallavalle S, Giannini G, Alloatti D, et al. Synthesis and cytotoxic activity of polyamine analogues of camptothecin. J Med Chem, 2006, 49: 5177-5186.
    [178] Pang JY, Long YH, Chen WH, et al. Amplification of DNA-binding affinities of protoberberine alkaloids by appended polyamines. Bioorg Med Chem Lett, 2007, 17: 1018-1021.
    [179] Kaur N, Delcros JG, Martin B, et al. Synthesis and biological evaluation of dihydromotuporamine derivatives in cells containing active polyamine transporters. J Med Chem, 2005, 48: 3832-3839.
    [180] Guo H, Naser SA, Ghobrial G, et al. Synthesis and biological evaluation of new citrate-based siderophores as potential probes for the mechanism of iron uptake in mycobacteria. J Med Chem, 2002, 45: 2056-2063.
    [181] Gardner RA, Ghobrial G, Naser SA, et al. Synthesis and biological evaluation of new acinetoferrin homologues for use as iron transport probes in mycobacteria. J Med Chem, 2004, 47: 4933-4940.
    [182] Kaur N, Delcros JG, Imran J, et al. A comparison of chloroambucil- and xylene-containing polyamines leads to improved ligands for accessing the polyamine transport system. J Med Chem, 2008, 51: 1393-1401.
    [183] Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer, 2006, 6: 38-51.
    [184] Varghese S, Gupta D, Baran T, et al. Alkyl-substituted polyaminohydroxamic acids: a novel class of targeted histone deacetylase inhibitors. J Med Chem, 2005, 48: 6350-6365.
    [185] Sailer BL, Barrasso AM, Valdez JG, et al. Reduction in the radiation-induced late S phase and G2 blocks in HL-60 cell populations by amiloride, an efficient inhibitor of the Na+/H+ transporter. Cancer Res, 1998, 58: 413-420.
    [186] Brana MF, Cacho M, Gradillas A, et al. Intercalators as anticancer drugs. Curr Pharm Des, 2001, 7: 1745-1780.
    [187] Brana H, Hubacek J, Michaljanicova D, et al. Membrane mutation affecting energy-linked functions in Escherichia coli K 12. Folia Microbiol (Praha), 1977, 22: 198-205.
    [188] Malviya VK, Liu PY, Alberts DS, et al. Evaluation of amonafide in cervical cancer, phase II. A SWOG study. Am J Clin Oncol, 1992, 15: 41-44.
    [189] Ratain MJ, Mick R, Berezin F, et al. Phase I study of amonafide dosing based on acetylator phenotype. Cancer Res, 1993, 53: 2304-2308.
    [190] Bra?a MF, Cacho M, Garcia MA, et al. New analogues of amonafide and elinafide, containing aromatic heterocycles: synthesis, antitumor activity, molecular modeling, and DNA binding properties. J Med Chem, 2004, 47: 1391-1399.
    [191] Braa MF, Cacho M, Ramos A, et al. Synthesis, biological evaluation and DNA binding properties of novel mono and bisnaphthalimides. Org Biomol Chem, 2003, 1: 648-654.
    [192] Mijatovic T, Mahieu T, Bruyere C, et al. UNBS5162, a novel naphthalimide that decreases CXCL chemokine expression in experimental prostate cancers. Neoplasia, 2008, 10: 573-586.
    [193] Brana MF, Ramos A. Naphthalimides as anti-cancer agents: synthesis and biological activity. Curr Med Chem Anticancer Agents, 2001, 1: 237-255.
    [194] Van Quaquebeke E, Mahieu T, Dumont P, et al. 2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]- 1,3-dioxo-2,3-dihydro-1H-be nzo[de]isoquinolin-5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. J Med Chem, 2007, 50: 4122-4134.
    [195] Brana MF, Castellano JM, Perron D, et al. Chromophore-modified bis-naphthalimides: synthesis and antitumor activity of bis-dibenz[de,h]isoquinoline-1,3-diones. J Med Chem, 1997, 40: 449-454.
    [196] Brana MF, Castellano JM, Moran M, et al. Bis-naphthalimides: a new class of antitumor agents. Anticancer Drug Des, 1993, 8: 257-268.
    [197] Brana MF, Castellano JM, Moran M, et al. Synthesis, structure and antitumor activity of new benz[d,e]isoquinoline-1,3-diones. Arzneimittelforschung, 1995, 45: 1311-1318.
    [198] Pavlov V, Kong Thoo Lin P, Rodilla V. Cytotoxicity, DNA binding and localisation of novel bis-naphthalimidopropyl polyamine derivatives. Chem Biol Interact, 2001, 137: 15-24.
    [199] Lin PK, Pavlov VA. The synthesis and in vitro cytotoxic studies of novel bis-naphthalimidopropyl polyamine derivatives. Bioorg Med Chem Lett, 2000, 10: 1609-1612.
    [200] Dance AM, Ralton L, Fuller Z, et al. Synthesis and biological activities of bisnaphthalimido polyamines derivatives: cytotoxicity, DNA binding, DNA damage and drug localization in breast cancer MCF 7 cells. Biochem Pharmacol, 2005, 69: 19-27.
    [201] Brana MF, Castellano JM, Keilhauer G, et al. Benzimidazo[1,2-c]quinazolines: a new class of antitumor compounds. Anticancer Drug Des, 1994, 9: 527-538.
    [202] Gallego J, Reid BR. Solution structure and dynamics of a complex between DNA and the antitumor bisnaphthalimide LU-79553: intercalated ring flipping on the millisecond time scale. Biochemistry, 1999, 38: 15104-15115.
    [203] McMasters S, Kelly LA. Ground-state interactions of spermine-substituted naphthalimides with mononucleotides. J Phys Chem B, 2006, 110: 1046-1055.
    [204] Ralton LD, Bestwick CS, Milne L, et al. Bisnaphthalimidopropyl spermidine induces apoptosis within colon carcinoma cells. Chem Biol Interact, 2009, 177: 1-6.
    [205] Mei ZH, Tian ZY, Ma HX, et al. Synthesis and in vitro cytotoxicity of naphthalimide polyamine conjugates as antitumor agents. Yao Xue Xue Bao, 2009, 44: 754-757.
    [206] Petros LM, Graminski GF, Robinson S, et al. Polyamine analogs with xylene rings induce antizyme frameshifting, reduce ODC activity, and deplete cellular polyamines. J Biochem, 2006, 140: 657-666.
    [207] Uimari A, Keinanen TA, Karppinen A, et al. Spermine analogue-regulated expression of spermidine/spermine N1-acetyltransferase and its effects on depletion of intracellular polyamine pools in mouse fetal fibroblasts. Biochem J, 2009, 422: 101-109.
    [208] Ueda A, Araie M, Kubota S. Polyamine depletion induces G1 and S phase arrest in human retinoblastoma Y79 cells. Cancer Cell Int, 2008, 8: 2.
    [209] Myhre L, Alm K, Hegardt C, et al. Different cell cycle kinetic effects of N1,N11-diethylnorspermine-induced polyamine depletion in four human breast cancer cell lines. Anticancer Drugs, 2008, 19: 359-368.
    [210] Ha HC, Woster PM, Yager JD, et al. The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci U S A, 1997, 94: 11557-11562.
    [211] Pledgie A, Huang Y, Hacker A, et al. Spermine oxidase SMO(PAOh1), Not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem, 2005, 280: 39843-39851.
    [212] Chen Y, Kramer DL, Diegelman P, et al. Apoptotic signaling in polyamine analogue-treated SK-MEL-28 human melanoma cells. Cancer Res, 2001, 61: 6437-6444.
    [213] Tian ZY, Ma HX, Xie SQ, et al. Synthesis, DNA binding and topoisomerase inhibition of mononaphthalimide homospermidine derivatives. Chin Chem Lett, 2008, 19: 509-512.
    [214] Wang J, Xie S, Li Y, et al. Synthesis and evaluation of unsymmetrical polyamine derivatives as antitumor agents. Bioorg Med Chem, 2008, 16: 7005-7012.
    [215] Hobbs CA, Gilmour SK. High levels of intracellular polyamines promote histone acetyltransferase activity resulting in chromatin hyperacetylation. J Cell Biochem, 2000, 77: 345-360.
    [216] Hobbs CA, Paul BA, Gilmour SK. Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res, 2002, 62: 67-74.
    [217] Bolognesi ML, Calonghi N, Mangano C, et al. Parallel synthesis and cytotoxicity evaluation of a polyamine-quinone conjugates library. J Med Chem, 2008, 51: 5463-5467.
    [218] Ha HC, Woster PM, Casero RA, Jr. Unsymmetrically substituted polyamine analogue induces caspase-independent programmed cell death in Bcl-2-overexpressing cells. Cancer Res, 1998, 58: 2711-2714.
    [219] Hegardt C, Johannsson OT, Oredsson SM. Rapid caspase-dependent cell death in cultured human breast cancer cells induced by the polyamine analogue N(1),N(11)-diethylnorspermine. Eur J Biochem, 2002, 269: 1033-1039.
    [220] Xie SQ, Wang JH, Ma HX, et al. Polyamine transporter recognization and antitumor effects of anthracenymethyl homospermidine. Toxicology, 2009, 263: 127-133.
    [221] Agostinelli E, Belli F, Molinari A, et al. Toxicity of enzymatic oxidation products of spermine to human melanoma cells (M14): sensitization by heat and MDL 72527. Biochim Biophys Acta, 2006, 1763: 1040-1050.
    [222] Averill-Bates DA, Cherif A, Agostinelli E, et al. Anti-tumoral effect of native and immobilized bovine serum amine oxidase in a mouse melanoma model. Biochem Pharmacol, 2005, 69: 1693-1704.
    [223] Palmer AJ, Ghani RA, Kaur N, et al. A putrescine-anthracene conjugate: a paradigm for selective drug delivery. Biochem J, 2009, 424: 431-438.
    [224] Webb HK, Wu Z, Sirisoma N, et al. 1-(N-alkylamino)-11-(N-ethylamino)-4,8-diazaundecanes: simple synthetic polyamine analogues that differentially alter tubulin polymerization. J Med Chem, 1999, 42: 1415-1421.
    [225] Kramer DL, Chang BD, Chen Y, et al. Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype. Cancer Res, 2001, 61: 7754-7762.
    [226] Kramer DL, Vujcic S, Diegelman P, et al. Polyamine analogue-mediated cell cycle responses in human melanoma cells involves the p53, p21, Rb regulatory pathway. Biochem Soc Trans, 1998, 26: 609-614.
    [227] Xie SQ, Liu GC, Ma YF, et al. Synergistic antitumor effects of anthracenylmethyl homospermidine and alpha-difluoromethylornithine on promyelocytic leukemia HL60 cells. Toxicol In Vitro, 2008, 22: 352-358.
    [228] Xie SQ, Wu YL, Cheng PF, et al. A novel homospermidine conjugate inhibits growth and induces apoptosis in human hepatoma cells. Acta Pharmacol Sin, 2007, 28: 1827-1834.
    [229] Tian ZY, Xie SQ, Mei ZH, et al. Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway. Org Biomol Chem, 2009, 7: 4651-4660.
    [230] Vertino PM, Beerman TA, Kelly EJ, et al. Selective cellular depletion of mitochondrial DNA by the polyamine analog N1,N12-bis(ethyl)spermine and its relationship to polyamine structure and function. Mol Pharmacol, 1991, 39: 487-494.
    [231] Albanese L, Bergeron RJ, Pegg AE. Investigations of the mechanism by which mammalian cell growth is inhibited by N1N12-bis(ethyl)spermine. Biochem J, 1993, 291 ( Pt 1): 131-137.
    [232] Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci, 2001, 58: 244-258.
    [233] Kurata HT, Diraviyam K, Marton LJ, et al. Blocker protection by short spermine analogs: refined mapping of the spermine binding site in a Kir channel. Biophys J, 2008, 95: 3827-3839.
    [234] Wallace HM. Targeting polyamine metabolism: a viable therapeutic/preventative solution for cancer? Expert Opin Pharmacother, 2007, 8: 2109-2116.
    [235] Cason AL, Ikeguchi Y, Skinner C, et al. X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur J Hum Genet, 2003, 11: 937-944.
    [236] de Alencastro G, McCloskey DE, Kliemann SE, et al. New SMS mutation leads to a striking reduction in spermine synthase protein function and a severe form of Snyder-Robinson X-linked recessive mental retardation syndrome. J Med Genet, 2008, 45: 539-543.
    [237] Armitage B. Photocleavage of Nucleic Acids. Chem Rev, 1998, 98: 1171-1200.
    [238] Wu A, Xu Y, Qian X, et al. Novel naphthalimide derivatives as potential apoptosis-inducing agents: design, synthesis and biological evaluation. Eur J Med Chem, 2009, 44: 4674-4680.
    [239] Ingrassia L, Lefranc F, Kiss R, et al. Naphthalimides and azonafides as promising anti-cancer agents. Curr Med Chem, 2009, 16: 1192-1213.
    [240] Dancea A-M, Raltona L, Fullera Z, et al. Chemical structures of bisnaphthalimides. In: (Synthesis and biological activities of bisnaphthalimido polyamines derivatives: cytotoxicity Db, DNA damage and drug localization in breast cancer MCF 7 cells, ed), 2005.
    [241] Villalona-Calero MA, Eder JP, Toppmeyer DL, et al. Phase I and pharmacokinetic study of LU79553, a DNA intercalating bisnaphthalimide, in patients with solid malignancies. J Clin Oncol, 2001, 19: 857-869.
    [242] Monti MG, Ghiaroni S, Pernecco L, et al. Polyamine depletion protects HL-60 cells from 2-deoxy-D-ribose-induced apoptosis. Life Sci, 1998, 62: 799-806.
    [243] McGahon AJ, Martin SJ, Bissonnette RP, et al. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol, 1995, 46: 153-185.
    [244] Pegg AE, McGovern KA, Wiest L. Decarboxylation of alpha-difluoromethylornithine by ornithine decarboxylase. Biochem J, 1987, 241: 305-307.
    [245] Metcalf BW, Bey P, Danzin C, et al. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc., 1978, 100: 2551-2553.
    [246] Alhonen-Hongisto L, Seppanen P, Janne J. Intracellular putrescine and spermidine deprivation induces increased uptake of the natural polyamines and methylglyoxal bis(guanylhydrazone). Biochem J, 1980, 192: 941-945.
    [247] Delcros JG, Tomasi S, Duhieu S, et al. Effect of polyamine homologation on the transport and biological properties of heterocyclic amidines. J Med Chem, 2006, 49: 232-245.
    [248] Tsiftsoglou AS, Pappas IS, Vizirianakis IS. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther, 2003, 100: 257-290.
    [249] Moulinoux JP, Quemener V, Khan NA. Biological significance of circulating polyamines in oncology. Cell Mol Biol, 1991, 37: 773-783.
    [250] Porter CW, Cavanaugh PF, Jr., Stolowich N, et al. Biological properties of N4- and N1,N8-spermidine derivatives in cultured L1210 leukemia cells. Cancer Res, 1985, 45: 2050-2057.
    [251] Porter CW, Ganis B, Vinson T, et al. Comparison and characterization of growth inhibition in L1210 cells by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and N1,N8-bis(ethyl)spermidine, an apparent regulator of the enzyme. Cancer Res, 1986, 46: 6279-6285.
    [252] Cordes N, Beinke C, Plasswilm L, et al. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and beta(1)-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro. Strahlenther Onkol, 2004, 180: 157-164.
    [253] Banasiak D, Barnetson AR, Odell RA, et al. Comparison between the clonogenic, MTT, and SRB assays for determining radiosensitivity in a panel of human bladder cancer cell lines and a ureteral cell line. Radiat Oncol Investig, 1999, 7: 77-85.
    [254] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983, 65: 55-63.
    [255] Houck DW, Loken MR. Simultaneous analysis of cell surface antigens, bromodeoxyuridine incorporation and DNA content. Cytometry, 1985, 6: 531-538.
    [256] Penit C, Vasseur F. Sequential events in thymocyte differentiation and thymus regeneration revealed by a combination of bromodeoxyuridine DNA labeling and antimitotic drug treatment. J Immunol, 1988, 140: 3315-3323.
    [257] Weston SA, Parish CR. New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J Immunol Methods, 1990, 133: 87-97.
    [258] Lyons AB, Parish CR. Determination of lymphocyte division by flow cytometry. J Immunol Methods, 1994, 171: 131-137.
    [259] R?del F, Franz S, Sheriff A, et al. The CFSE distribution assay is a powerful technique for the analysis of radiation-induced cell death and survival on a single-cell level. Strahlenther Onkol., 2005, 181: 456-462.
    [260] Milovanova TN, Popma SH, Cherian S, et al. Flow cytometric test for beryllium sensitivity. Cytometry B Clin Cytom, 2004, 60: 23-30.
    [261] Farris GM, Newman LS, Frome EL, et al. Detection of beryllium sensitivity using a flow cytometric lymphocyte proliferation test: the Immuno-Be-LPT. Toxicology, 2000, 143: 125-140.
    [262] Lyons AB, Hasbold J, Hodgkin PD. Flow cytometric analysis of cell division history using dilution of carboxyfluorescein diacetate succinimidyl ester, a stably integrated fluorescent probe. Methods Cell Biol, 2001, 63: 375-398.
    [263] Lyons AB. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods, 2000, 243: 147-154.
    [264] Milovanova TN. Comparative analysis between CFSE flow cytometric and tritiated thymidine incorporation tests for beryllium sensitivity. Cytometry B Clin Cytom, 2007, 72: 265-275.
    [265] Seiler N, Raul F. Polyamines and apoptosis. J Cell Mol Med, 2005, 9: 623-642.
    [266] Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A, 1993, 90: 7804-7808.
    [267] Grassilli E, Desiderio MA, Bellesia E, et al. Is polyamine decrease a common feature of apoptosis? Evidence from gamma rays- and heat shock-induced cell death. Biochem Biophys Res Commun, 1995, 216: 708-714.
    [268] Kues WA, Anger M, Carnwath JW, et al. Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol Reprod, 2000, 62: 412-419.
    [269] Min JK, Kim JH, Cho YL, et al. 20(S)-Ginsenoside Rg3 prevents endothelial cell apoptosis via inhibition of a mitochondrial caspase pathway. Biochem Biophys Res Commun, 2006, 349: 987-994.
    [270] Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007, 35: 495-516.
    [271] Bellamy CO, Malcomson RD, Harrison DJ, et al. Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol, 1995, 6: 3-16.
    [272] Bremer E, van Dam G, Kroesen BJ, et al. Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol Med, 2006, 12: 382-393.
    [273] Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006, 25: 4798-4811.
    [274] Papadopoulos K. Targeting the Bcl-2 family in cancer therapy. Semin Oncol, 2006, 33: 449-456.
    [275] Nagata S, Nagase H, Kawane K, et al. Degradation of chromosomal DNA during apoptosis. Cell Death Differ, 2003, 10: 108-116.
    [276] Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med, 2005, 258: 479-517.
    [277] Darzynkiewicz Z, Bedner E, Smolewski P. Flow cytometry in analysis of cell cycle and apoptosis. Semin Hematol, 2001, 38: 179-193.
    [278] Sherwood SW, Schimke RT. Cell cycle analysis of apoptosis using flow cytometry. Methods Cell Biol, 1995, 46: 77-97.
    [279] Lecoeur H. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp Cell Res, 2002, 277: 1-14.
    [280] Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax isresponsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol, 1999, 144: 891-901.
    [281] Karmakar S, Weinberg MS, Banik NL, et al. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience, 2006, 141: 1265-1280.
    [282] Callus BA, Vaux DL. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ, 2007, 14: 73-78.
    [283] Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell, 2001, 104: 791-800.
    [284] Costantini P, Jacotot E, Decaudin D, et al. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst, 2000, 92: 1042-1053.
    [285] Mathur A, Hong Y, Kemp BK, et al. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res, 2000, 46: 126-138.
    [286] Salvioli S, Ardizzoni A, Franceschi C, et al. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett, 1997, 411: 77-82.
    [287] Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999, 13: 1899-1911.
    [288] Ploszaj T, Motyl T, Zimowska W, et al. Inhibition of ornithine decarboxylase by alpha-difluoromethylornithine induces apoptosis of HC11 mouse mammary epithelial cells. Amino Acids, 2000, 19: 483-496.
    [289] He J, Fan M, Fang Q. [Difluoromethylornithine synergizes with antisense bcl-2 RNA in the induction of apoptosis of HL60 cells]. Zhonghua Zhong Liu Za Zhi, 2000, 22: 105-108.
    [290] Daugas E, Nochy D, Ravagnan L, et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett, 2000, 476: 118-123.
    [291] Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 2002, 297: 259-263.
    [292] Thayyullathil F, Chathoth S, Hago A, et al. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radic Biol Med, 2008, 45: 1403-1412.
    [293] Cande C, Vahsen N, Garrido C, et al. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ, 2004, 11: 591-595.
    [294] Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med, 2000, 192: 571-580.
    [295] Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993, 75: 805-816.
    [296] Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999, 13: 1501-1512.
    [297] Vidal A, Koff A. Cell-cycle inhibitors: three families united by a common cause. Gene, 2000, 247: 1-15.
    [298] Gorospe M, Shack S, Guyton KZ, et al. Up-regulation and functional role of p21Waf1/Cip1 during growth arrest of human breast carcinoma MCF-7 cells by phenylacetate. Cell Growth Differ, 1996, 7: 1609-1615.
    [299]詹彦,支兴刚,骆云鹏.多胺和细胞凋亡.国外医学.生理、病理科学与临床分册, 2002, 22: 412-414.
    [300]王纪防,苏瑞斌,李锦.多胺与肿瘤发生及其在临床上的应用.国外医学药学分册, 2004, 31: 263-267.
    [301] Tabib A, Bachrach U. Role of polyamines in mediating malignant transformation and oncogene expression. Int J Biochem Cell Biol, 1999, 31: 1289-1295.
    [302] Tabib A, Bachrach U. Activation of the proto-oncogene c-myc and c-fos by c-ras: involvement of polyamines. Biochem Biophys Res Commun, 1994, 202: 720-727.
    [303] Celano P, Baylin SB, Casero RA, Jr. Polyamines differentially modulate the transcription of growth-associated genes in human colon carcinoma cells. J Biol Chem, 1989, 264: 8922-8927.
    [304] Xu H, Washington S, Verderame MF, et al. Activation of protein kinase A (PKA) signaling mitigates the antiproliferative and antiinvasive effects of alpha-difluoromethylornithine in breast cancer cells. Breast Cancer Res Treat, 2008, 107: 63-70.
    [305] Guillem JG, Levy MF, Hsieh LL, et al. Increased levels of phorbin, c-myc, and ornithine decarboxylase RNAs in human colon cancer. Mol Carcinog, 1990, 3: 68-74.
    [306] Okuzumi J, Yamane T, Kitao Y, et al. Increased mucosal ornithine decarboxylase activity in human gastric cancer. Cancer Res, 1991, 51: 1448-1451.
    [307] Moulinoux JP, Quemener V, Le Calve M, et al. Polyamines in human brain tumors. A correlative study between tumor, cerebrospinal fluid and red blood cell free polyamine levels. J Neurooncol, 1984, 2: 153-158.
    [308] Erez O, Goldstaub D, Friedman J, et al. Putrescine activates oxidative stress dependent apoptotic death in ornithine decarboxylase overproducing mouse myeloma cells. Exp Cell Res, 2002, 281: 148-156.
    [309] Parchment RE, Pierce GB. Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res, 1989, 49: 6680-6686.
    [310] Bonneau MJ, Poulin R. Spermine oxidation leads to necrosis with plasma membrane phosphatidylserine redistribution in mouse leukemia cells. Exp Cell Res, 2000, 259: 23-34.
    [311] Seiler N. Catabolism of polyamines. Amino Acids, 2004, 26: 217-233.
    [312] Chen Y, Alm K, Vujcic S, et al. The role of mitogen-activated protein kinase activation in determining cellular outcomes in polyamine analogue-treated human melanoma cells. Cancer Res, 2003, 63: 3619-3625.
    [313] Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12: 913-922.
    [314] Madeo F, Frohlich E, Ligr M, et al. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol, 1999, 145: 757-767.
    [315] Vaux DL, Korsmeyer SJ. Cell death in development. Cell, 1999, 96: 245-254.
    [316] Ullrich O, Grune T. Proteasomal degradation of oxidatively damaged endogenous histones in K562 human leukemic cells. Free Radic Biol Med, 2001, 31: 887-893.
    [317] Chen TY, Chi KH, Wang JS, et al. Reactive oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses. Free Radic Biol Med, 2009, 46: 643-655.
    [318] Casero RA, Jr., Celano P, Ervin SJ, et al. Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res, 1989, 49: 3829-3833.
    [319] Casero RA, Jr., Celano P, Ervin SJ, et al. High specific induction of spermidine/spermine N1-acetyltransferase in a human large cell lung carcinoma. Biochem J, 1990, 270: 615-620.
    [320] Devereux W, Wang Y, Stewart TM, et al. Induction of the PAOh1/SMO polyamine oxidase by polyamine analogues in human lung carcinoma cells. Cancer Chemother Pharmacol, 2003, 52: 383-390.
    [321] Soderdahl T, Enoksson M, Lundberg M, et al. Visualization of the compartmentalization of glutathione and protein-glutathione mixed disulfides in cultured cells. FASEB J, 2003, 17: 124-126.
    [322] Voehringer DW. BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med, 1999, 27: 945-950.
    [323] Devereux W, Wang Y, Murray-Stewart T, et al. Differential induction of polyamine oxidase by polyamine analogues in various human lung carcinoma lines. Proc. Am. Assoc. Cancer Res. , 2002, 43: 963-964.
    [324] Aruoma OI, Halliwell B, Hoey BM, et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med, 1989, 6: 593-597.
    [325] Zafarullah M, Li WQ, Sylvester J, et al. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci, 2003, 60: 6-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700