亚精胺诱导Hela细胞自噬与降低细胞活力关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚精胺是广泛分布于生物体内的一种多胺类物质,在细胞增殖、机体衰老等生物学过程中发挥重要作用,其在诱导自噬方面的作用成为近年来的研究热点。研究表明,外源性亚精胺可诱导细胞自噬、抑制细胞增殖,但其是否能降低癌细胞活力及其诱导的自噬与降低癌细胞活力之间是否具有相关性的研究还未见报道。本文旨在研究亚精胺诱导癌细胞自噬及其诱导的自噬对细胞活力的影响,探究亚精胺诱导癌细胞自噬与活性氧自由基(ROS)的调控关系,探讨线粒体在亚精胺诱导的癌细胞自噬以及对细胞活力影响中的作用。
     本研究以人宫颈癌Hela细胞为实验材料,以亚精胺为处理药物,结合自噬抑制剂三甲基腺嘌呤进行了以下研究:用噻唑蓝比色法检测亚精胺及其诱导的自噬对细胞活力的影响;用透射电子显微镜观察亚精胺诱导细胞内形成自噬体或自噬溶酶体的情况;用蛋白质免疫印记技术检测亚精胺对细胞内自噬标志性分子LC3蛋白表达的变化;用流式细胞术检测亚精胺诱导的自噬对细胞内活性氧自由基的影响及细胞内线粒体膜电位的变化。
     通过研究,得到以下实验结果:不同浓度亚精胺(0、0.1、0.5、1.0mM)处理Hela细胞8h后均显著抑制了Hela细胞的活力(p<0.05),0.5mM亚精胺使细胞活力下降至对照组的65.45%;0.5mM亚精胺处理Hela细胞8h后,在透射电镜下观察到自噬体和自噬溶酶体形成,自噬标志性蛋白LC3的表达变化(LC3-II/LC3-I)为对照组的1.83倍(p<0.05);0.5mM亚精胺与自噬抑制剂联合处理Hela细胞8h,细胞活力显著上升了9.75%(p<0.05);0.5mM和1.0mM亚精胺处理Hela细胞8h,细胞内ROS含量分别显著下降14.18%和15.36%(p<0.05),亚精胺与自噬抑制剂联合处理细胞后,ROS水平显著升高(p<0.05),但不能完全恢复:0.5mM和1.0mM亚精胺连续处理细胞8h后,线粒体膜电位均分别显著下降至对照组的62.59%和61.90%(p<0.05)。
     综上所述,本研究证明了亚精胺诱导Hela细胞发生的自噬性死亡为降低细胞活力的原因之一,其诱导自噬可调控细胞内部分ROS,而亚精胺造成的线粒体膜电位急剧下降可能介导了对细胞自噬的诱导和对细胞活力的影响。
Spermidine, a polyamine widely distributed in organisms, plays an important role in many biological processes such as cell proliferation, organism aging, etc.. Recent years, autophagy induced by spermidine has become a well focused study area. Previous studies have shown that exogenous spermidine can induce autophagy and inhibit cell proliferation, but few reports are concern about whether spermidine could inhibit viability of cancer cells. There are also no studies about the relationship between spermidine-induced autophagy and the reduction of cancer cell viability. The present research aimed to explore the effect of spermidine-induced autophagy on cancer cell viability, as well as the regulation between spermidine-induced autophagy and intracellular ROS. In addition, the role of mitochondria in spermidine-induced autophagy and reduction of viability in cancer cells was also investigated.
     This study selected Hela cells as experimental material, spermidine as a drug. Viability of Hela cells treated with spermidine or spermidine combined with autophagy inhibitor3-Methyladenine (3-MA) was measured using MTT assay. The formation of autophagysomes or autolysosomes induced by spermidine in cells was observed by transmission electron microscopy. The expression of LC3, the classical indicator of autophagy, was detected by Western Blot. Intracellular ROS content and mitochondrial membrane potential was determined by flow cytometry.
     Through the above research, we draw the following experimental results. Exposure to0.1mM,0.5mM and1.0mM spermidine for8h significantly inhibited Hela cell vitality (p<0.05).0.5mM spermidine decreased cell viability to65.45%compared with control group. Autophagosomes and autolysosomes induced by0.5mM spermidine for8h can be observed through transmission electron microscope. In addition, the ratio of LC3-II/LC3-I (autophagy marker protein) in0.5mM spermidine group was1.83fold higher than that of control (p<0.05). Cell viability was increased by9.75%(p<0.05) when Hela cells were exposed to0.5mM spermidine combined with5.0mM3-MA for8h. Moreover, intracellular ROS level was significantly reduced by14.18%(p<0.05) and the mitochondrial membrane potential was respectively declined to62.59%and61.90%when Hela cells were treated with0.5mM and1.0mM spermidine for8h. However, once autophagy was inhibited, the content of ROS was prominently rescued by about10%(p<0.05). In summary, our study proved spermidine-induced autophagic death was one of the reasons to reduce Hela cell viability. Autophagy induced by spermindine could regulate ROS partly. The sharp decline of mitochondrial membrane potential caused by spermidine might mediate the induction of autophagy and reduction of cell viability.
引文
1. 杨筱珍,陈耀星,余锐萍,et al.多胺与细胞凋亡[J].动物医学进展.2004,25(2):11-14.
    2. Osborne, D.L.,E.R. Seidel. Gastrointestinal luminal polyamines:cellular accumulation and enterohepatic circulation[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology.1990,258(4):576-584.
    3. Seiler, N.,T. Schmidt-Glenewinkel. Regional distribution of putrescine, spermidine and spermine in relation to the distribution of RNA and DNA in the rat nervous system[J]. Journal of neurochemistry.1975,24(4):791-795.
    4. Bardocz, S., T.J. Duguid, D.S. Brown, et al. The importance of dietary polyamines in cell regeneration and growth[J]. British Journal of Nutrition.1995,73(6):819-828.
    5. Brachet, P., V. Quemener, R. Havouis, et al. Alterations in intestinal uptake of putrescine and tissue polyamine concentrations in tumor-bearing rats[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease.1994,1227(3):161-170.
    6. Moinard, C., L. Cynober, and J.-P. de Bandt. Polyamines:metabolism and implications in human diseases[J]. Clinical Nutrition.2005,24(2):184-197.
    7. Poduslo, J.F..G.L. Curran. Polyamine Modification Increases the Permeability of Proteins at the Blood-Nerve and Blood-Brain Barriers[J]. Journal of neurochemistry.1996,66(4): 1599-1609.
    8. Seiler, N. Polyamine metabolism[J]. Digestion.2009,46(Suppl.2):319-330.
    9. 王建红.多胺缀合物的合成及抗肿瘤活性研究[D].河南:河南大学.2008.
    10. Casero, R.A.,P.M. Woster. Terminally alkylated polyamine analogues as chemotherapeutic agents[J]. Journal of medicinal chemistry.2001,44(1):1-26.
    11. Ashford, T.P.,K.R. Porter. Cytoplasmic components in hepatic cell lysosomes[J]. The Journal of cell biology.1962,12(1):198-202.
    12. Wang, C.-W.,D.J. Klionsky. The molecular mechanism of autophagy[J]. Molecular Medicine. 2003,9(3-4):65-76.
    13. Kabeya, Y., N. Mizushima, T. Ueno, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. The EMBO journal.2000,19(21): 5720-5728.
    14. Klionsky, D.J., J.M. Cregg, W.A. Dunn Jr, et al. A Unified Nomenclature for[J]. Developmental cell.2003,5:539-545.
    15. 陈景红.ATM磷酸化PTEN介导拓扑替康诱导肿瘤细胞自噬及其分子机制[D].广州:暨南大学.2012.
    16. Klionsky, D.J.,S.D. Emr. Autophagy as a regulated pathway of cellular degradation[J]. Science.2000,290(5497):1717-1721.
    17. Dunn Jr, W.A. Autophagy and related mechanisms of lysosome-mediated protein degradation[J]. Trends in cell biology.1994,4(4):139-143.
    18. Crotzer, V.L.,J.S. Blum. Autophagy and intracellular surveillance:Modulating MHC class Ⅱ antigen presentation with stress[J]. Proceedings of the National Academy of Sciences.2005, 102(22):7779-7780.
    19. Kim, J.,D.J. Klionsky. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells[J]. Annual review of biochemistry.2000,69(1):303-342.
    20. Mizushima, N., B. Levine, A.M. Cuervo, et al. Autophagy fights disease through cellular self-digestion[J]. Nature.2008,451(7182):1069-1075.
    21. Johansen, T.,T. Lamark. Selective autophagy mediated by autophagic adapter proteins[J]. Autophagy.2011,7(3):279-296.
    22. Geisler, S., K.M. Holmstrom, D. Skujat, et al. PINK 1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nature cell biology.2010,12(2):119-131.
    23. Dunn Jr, W.A., J.M. Cregg, J.A. Kiel, et al. Pexophagy:the selective autophagy of peroxisomes[J]. Autophagy.2005,1(2):75-83.
    24. Nazarko, V.Y., K.O. Futej, J.M. Thevelein, et al. Differences in glucose sensing and signaling for pexophagy between the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris[J]. Autophagy.2008,4(3):381-384.
    25. Tasdemir, E., M.C. Maiuri, L. Galluzzi, et al. Regulation of autophagy by cytoplasmic p53[J]. Nature cell biology.2008,10(6):676-687.
    26. Maiuri, M., E. Tasdemir, A. Criollo, et al. Control of autophagy by oncogenes and tumor suppressor genes[J]. Cell Death & Differentiation.2008,16(1):87-93.
    27. Ossareh-Nazari, B., M. Bonizec, M. Cohen, et al. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy[J]. EMBO reports.2010,11 (7):548-554.
    28. Hanada, T., N.N. Noda, Y. Satomi, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy[J]. Journal of Biological Chemistry.2007,282(52): 37298-37302.
    29. Tooze, S.A.,T. Yoshimori. The origin of the autophagosomal membrane[J]. Nature cell biology.2010,12(9):831-835.
    30. Levine, B.,D.J. Klionsky. Development by self-digestion:molecular mechanisms and biological functions of autophagy[J]. Developmental cell.2004,6(4):463-477.
    31. Mizushima, N. Methods for monitoring autophagy[J]. The international journal of biochemistry & cell biology.2004,36(12):2491-2502.
    32. Yang, Z., J. Huang, J. Geng, et al. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy[J]. Molecular biology of the cell.2006,17(12):5094-5104.
    33. Rong, Y., M. Liu, L. Ma, et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation[J]. Nature cell biology.2012,14(9):924-934.
    34. Itoh, T., N. Fujita, E. Kanno, et al. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation[J]. Molecular biology of the cell.2008, 19(7):2916-2925.
    35. Levine, B.,G. Kroemer. Autophagy in the pathogenesis of disease[J]. Cell.2008,132(1): 27-42.
    36. Schworer, C.M.,G.E. Mortimore. Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids[J]. Proceedings of the National Academy of Sciences.1979,76(7):3169-3173.
    37. Codogno, P.,A.J. Meijer. Autophagy and signaling:their role in cell survival and cell death[J]. Cell Death & Differentiation.2005,12:1509-1518.
    38. Hsu, P.P. The identification of the mTOR-regulated phosphoproteome and a mediator of feedback inhibition to P13K-Akt[D]. America:Massachusetts Institute of Technology.2011.
    39. Kabeya, Y., Y. Kamada, M. Baba, et al. Atg17 functions in cooperation with Atgl and Atg13 in yeast autophagy[J]. Molecular biology of the cell.2005,16(5):2544-2553.
    40. Leslie, N.R., X. Yang, C.P. Downes, et al. PtdIns (3,4,5) P3-Dependent and-Independent Roles for PTEN in the Control of Cell Migration[J]. Current Biology.2007,17(2):115-125.
    41. Seglen, P.O.,P.B. Gordon.3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes[J]. Proceedings of the National Academy of Sciences.1982,79(6):1889-1892.
    42. Irani, K. Oxidant signaling in vascular cell growth, death, and survival a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling[J]. Circulation research.2000,87(3):179-183.
    43. Ullah Khan, A.,T. Wilson. Reactive oxygen species as cellular messengers[J]. Chemistry & biology.1995,2(7):437-445.
    44. Apel, K.,H. Hirt. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annu. Rev. Plant Biol.2004,55:373-399.
    45. Higaki, Y., T. Mikami, N. Fujii, et al. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway[J]. American Journal of Physiology-Endocrinology And Metabolism.2008,294(5):889-897.
    46. Pouyssegur, J.,F. Mechta-Grigoriou. Redox regulation of the hypoxia-inducible factor[J]. Biological chemistry.2006,387(10/11):1337-1346.
    47. 张文雅.三氧化二砷(As2O3)对小鼠卵母细胞线粒体DNA的损伤机制研究[D].兰州:兰州大学.2012.
    48. Richter, C. Reactive oxygen and DNA damage in mitochondria[J]. Mutation Research/DNAging.1992,275(3):249-255.
    49. Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods[J]. Mutation research. Fundamental and molecular mechanisms of mutagenesis.2003,523:9-20.
    50. Lemasters, J.J., A.-L. Nieminen, T. Qian, et al. The mitochondrial permeability transition in cell death:a common mechanism in necrosis, apoptosis and autophagy[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics.1998,1366(1):177-196.
    51. Scherz-Shouval, R., E. Shvets, E. Fass, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J]. The EMBO journal.2007,26(7): 1749-1760.
    52. Azad, M.B., Y. Chen, and S.B. Gibson. Regulation of autophagy by reactive oxygen species (ROS):implications for cancer progression and treatment[J]. Antioxidants & redox signaling. 2009,11(4):777-790.
    53. Kirkland, R., R. Adibhatla, J. Hatcher, et al. Loss of cardiolipin and mitochondria during programmed neuronal death:evidence of a role for lipid peroxidation and autophagy[J]. Neuroscience.2002,115(2):587-602.
    54. Bellot, G.L., D. Liu, and S. Pervaiz. ROS, Autophagy, Mitochondria and Cancer:Ras, The Hidden Master?[J]. Mitochondrion.2012,13(3):155-162.
    55. Kiffin, R., C. Christian, E. Knecht, et al. Activation of Chaperone-mediated Autophagy during Oxidative Stress[J]. Molecular biology of the cell.2004,15(11):4829-4840.
    56. Loschen, G., L. Flohe, and B. Chance. Respiratory chain linked H2O2 production in pigeon heart mitochondria[J]. FEBS letters.1971,18(2):261-264.
    57. Zorov, D.B., M. Juhaszova, and S.J. Sollott. Mitochondrial ROS-induced ROS release:an update and review[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics.2006,1757(5): 509-517.
    58. Wang, C., J.-G. Delcros, J. Biggerstaff, et al. Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates[J]. Journal of medicinal chemistry.2003,46(13):2672-2682.
    59. 易同寅.亚精胺对日本血吸虫培养细胞影响的研究[D].武汉:武汉大学.2004.
    60. Seiler, N.,F. Raul. Polyamines and apoptosis[J]. Journal of cellular and molecular medicine. 2005,9(3):623-642.
    61. Takano, K., Y. Nakamura, and Y. Yoneda. Microglial cell death induced by a low concentration of polyamines[J]. Neuroscience.2003,120(4):961-967.
    62. Akar, U., B. Ozpolat, K. Mehta, et al. Tissue transglutaminase inhibits autophagy in pancreatic cancer cells[J]. Molecular Cancer Research.2007,5(3):241-249.
    63. Kondo, Y., T. Kanzawa, R. Sawaya, et al. The role of autophagy in cancer development and response to therapy[J]. Nature Reviews Cancer.2005,5(9):726-734.
    64. Liang, X.H., S. Jackson, M. Seaman, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature.1999,402(6762):672-676.
    65. Kroemer, G.,B. Levine. Autophagic cell death:the story of a misnomer[J]. Nature Reviews Molecular Cell Biology.2008,9(12):1004-1010.
    66. Landry, J.J., P.T. Pyl, T. Rausch, et al. The genomic and transcriptomic landscape of a HeLa cell line[J]. G3:Genes| Genomes| Genetics.2013.
    67. Eisenberg, T., H. Knauer, A. Schauer, et al. Induction of autophagy by spermidine promotes longevity[J]. Nature cell biology.2009,11(11):1305-1314.
    68. Akl, H.,G. Bultynck. Altered Ca2+signaling in cancer cells:Proto-oncogenes and tumor suppressors targeting IP3 receptors[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer.2012,1835(2):180-193.
    69. Smiley, S.T., M. Reers, C. Mottola-Hartshorn, et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1[J]. Proceedings of the National Academy of Sciences.1991,88(9):3671-3675.
    70. Madeo, F., T. Eisenberg, S. Buttner, et al. Spermidine:a novel autophagy inducer and longevity elixir[J]. Autophagy.2010,6(1):160-162.
    71. Hegardt, C., G. Andersson, and S.M. Oredsson. Different roles of spermine in glucocorticoid-and Fas-induced apoptosis[J]. Experimental cell research.2001,266(2): 333-341.
    72. Hudson, E.A., L.M. Howells, B. Gallacher-Horley, et al. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line[J]. BMC cancer.2003,3(2):1-18.
    73. Giuseppina Monti, M., S. Ghiaroni, D. Barbieri, et al.2-deoxy-d-ribose-induced apoptosis in HL-60 cells is associated with the cell cycle progression by spermidine[J]. Biochemical and biophysical research communications.1999,257(2):460-465.
    74. 易同寅,董惠芬,蒋明森,et al.亚精胺对日本血吸虫成虫培养细胞SDH的影响[J].中国寄生虫病防治杂志.2005,18(5):339-341.
    75. Orrenius, S., P. Nicotera, and B. Zhivotovsky. Cell death mechanisms and their implications in toxicology[J]. Toxicological Sciences.2011,119(1):3-19.
    76. Klionsky, D.J., F.C. Abdalla, H. Abeliovich, et al. Guidelines for the use and interpretation of assays for monitoring autophagy[J]. Autophagy.2012,8(4):445-544.
    77. Eskelinen, E.-L. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells[J]. Autophagy.2008,4(2):257-260.
    78. 王海杰,谭玉珍.细胞自噬研究技术进展及其应用[J].中国细胞生物学学报.2011,33(7):816-821.
    79. Wang, S., Y. Shih, W. Ko, et al. Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway[J]. Cellular and molecular life sciences.2008,65(22): 3640-3652.
    80. Bursch, W., A. Ellinger, H. Kienzl, et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:the role of autophagy[J]. Carcinogenesis.1996,17(8):1595-1607.
    81. Khan, M.J., M. Rizwan Alam, M. Waldeck-Weiermair, et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells[J]. Journal of Biological Chemistry. 2012,287(25):21110-21120.
    82. Mizushima, N., T. Yoshimori, and B. Levine. Methods in mammalian autophagy research[J]. Cell.2010,140(3):313-326.
    83. Levine, B.,J. Yuan. Autophagy in cell death:an innocent convict?[J]. Journal of Clinical Investigation.2005,115(10):2679-2688.
    84. Zhang, H., M. Bosch-Marce, L.A. Shimoda, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. Journal of Biological Chemistry. 2008,283(16):10892-10903.
    85. Semenza, G.L. HIF-1:upstream and downstream of cancer metabolism[J]. Current opinion in genetics & development.2010,20(1):51-56.
    86. Zhang, Y., H. Qi, R. Taylor, et al. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains[J]. Autophagy.2007,3(4):337-346.
    87. Dewaele, M., H. Maes, and P. Agostinis. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy[J]. Autophagy.2010,6(7):838-854.
    88. Liu, L., D. Feng, G. Chen, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nature cell biology.2012,14(2):177-185.
    89. Decuypere, J.-P., G. Monaco, L. Missiaen, et al. IP3 Receptors, Mitochondria, and Ca2+[J]. Journal of aging research.2011,2011:1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700