基于罗丹明B的新型Fe~(3+ )荧光探针的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是生命体中最重要的基础金属之一,在生物体的生命过程中起着非常重要的作用。例如,亚铁血红素的输氧作用,在细胞的新陈代谢中,铁元素作为辅因子参与了许多酶的反应等。不论是铁的缺失还是过量摄入都能够引起生命体系紊乱,因此在体内外对铁离子的检测有着非常重要的意义。由于铁元素具有顺磁性,能够引起荧光淬灭,用荧光分析技术来检测铁离子就显得非常困难。通过金属离子与荧光基团的螯合作用,来增强荧光信号实现对铁离子的检测非常具有挑战性。国内外的许多课题组设计了不同的荧光探针来检测Fe3+离子。
     荧光探针具有能响应离子以及在中性条件下分析的特性,因而被广泛应用于各个领域。迄今为止,出现了许多具有不同激发和发射波长荧光团的化学传感器。罗丹明荧光试剂作为一种荧光团和发色团,因为其良好的光学性质,引起了许多化学工作者的注意。关环状态的罗丹明衍生物的溶液没有颜色,不发射荧光;但是当螺环打开后溶液颜色变为粉色,同时发射出强烈荧光。
     本文设计合成了一系列的罗丹明B衍生物,并且用NMR, ESI-MS和IR等对它们进行了结构确定及表征。通过紫外、荧光分析发现这些化合物对Fe3+有很好的选择性。推测探针的识别机理是通过质子转移和螯合作用使得螺环打开,从而引起强烈的荧光增强效果和颜色改变,通过加入AcO-研究发现这种开环过程是可逆的。我们用Job's plot方程拟合了配体和Fe3+离子的络合比,通过质谱分析推测了配体和Fe3+离子的络合模式。
Ferrum is one of the most essential metal in biological systems and plays a crucial role in many biochemical processes, such as in carrying oxygen by heme, in many enzymatic reactions as a cofactor, and in cellular metabolism. Both its deficiency and overloading induce biological disorders in the living body. So that detection of ferric ions in vitro as well as in vivo is significant. Because of its paramagnetic nature which can lead to fluorescence quenching that uses fluorescent techniques to explore Fe3+is very difficult. Fluorescence enhancement through chelation of Fe3+with any fluorophore is a challenging task. Several groups have successfully detected Fe3+ions using different fluorescent sensors.
     Fluorescent sensors for ions and neutral analytes have consistently demonstrated their potential in a variety of fields. To date, various fluorophores with different excitation and emission wavelengths have been employed as signal reporters of chemosensors. As a fluorophore and chromophore probe, the rhodamine fluorochr-ome has attracted considerable interest from chemists on account of its excellent photophysical properties. Rhodamine derivatives with ring-closure spirolactam are nonfluorescent and colorless, whereas ring-opening of the corresponding spirolactam gived rise to strong fluorescence emission and a pink color,
     In this thesis, we designed and synthesized a few of new Rhodamine B derivatives which were characterized by NMR, ESI-MS and IR. These new compounds exhibited highly selective and sensitive recognition toward Fe3+over other metal ions. The selectivity mechanism of these fluorescent sensors for Fe3+was based on a combinational effect of proton transfer, chelation-enhanced fluorescence, and ring-opening of the spirolactam which resulted in the dramatic enhancement of both fluorescence and absorbance intensity as well as the color change of the solution. Moreover, the interaction between sensors and Fe3+was reversible, which can be verified by the introduction of AcO-ion into the system containing sensors and Fe3+. The Job's plot and MS indicated the formation complex between these derivatives and Fe3+, and the complx patterns were also discussed.
引文
[1]Valeur B. Molecular Fluorescence Principles and Applications [M]. Weinheim: Wiley-VCH, 2002.
    [2]Haugland R. P. Handbook of Fluorescent Probes and Research Chemicals,9th ed.; Molecular Probes: Eugene, OR,2002.
    [3]Amat-Guerri F., Costela A., Figuera J. M., et al. Laser action from rhodamine 6G-doped poly (2-hydroxyethyl methacrylate) matrices with different crosslinking degrees [J]. Chem. Phys. Lett.,1993,209 (4):352-356.
    [4]Yanagida T., Ishii Y. Single Molecule Dynamics in Life Science [M]. Wiley-VCH: Weinheim, Germany,2009.
    [5]Chen X., Tian X., Shin I., et al. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species [J]. Chem. Soc. Rev.,2011,40 (9):4783-4804.
    [6]Kim H. N., Guo Z., Zhu W., et al. Recent progress on polymer-based fluorescent and colorimetric chemosensors [J]. Chem. Soc. Rev.,2011,40 (9):79-93.
    [7]Wang X., Drew C., Lee S. H. et al. Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors [J]. Nano Lett.,2002,2 (11):1273-1275.
    [8]Quang D. T., Kim J. S.. Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens [J]. Chem. Rev.,2010,110 (10):6280-6301.
    [9]Chen X., Zhou Y., Peng X., Yoon J. Fluorescent and colorimetric probes for detection of thiols [J]. Chem. Soc. Rev.,2010,39 (6):2120-2135.
    [10]Zhou Y., Xu Z., Yoon J. Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: highlighted research during 2004-2010 [J]. Chem. Soc. Rev., 2011,40 (5):2222-2235.
    [11]Xu Z., Kim S. K., Yoon J. Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006-2009 [J]. Chem. Soc. Rev.,2010,39 (5):1457-1466.
    [12]Citterio D., Takeda J., Kosugi M. et al. PH- independent fluorescent chemosensor for highly selective lithium ion sensing [J]. Anal. Chem.,2007,79 (3):1237-1242.
    [13]A. Prasanna de Silva and Saliya A. de Silva, Fluorescent signaling crown ethers:“switching on” of fluorescence by alkali metal ion recognition and binding in situ [J]. J. Chem. Soc., Chem. Commun.,1986.23 (1):1709-1710.
    [14]Wu Y. k., Peng X. J., Guo B. C. et al. Boron Dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn (Ⅱ) in living cells [J]. Org.& Biol. Chem.,2005,3 (8): 1387-1392.
    [15]Peng X. J., Du J., Fan J. L. et al. A selective fluorescent sensor for imaging Cd2+ in living cells [J]. J. Am. Chem. Soc.,2007,129 (6):1500-1502.
    [16]A. Prasanna de Silva,*H. Q. Nimal Gunaratne, Thorfinnur Gunnlaugsson, et al. Signaling Recognition events with fluorescent sensors and swiches [J]. Chem. Rev.,1997,97 (5) 1515-1566.
    [17]Rurack K, Danel A, Rotkiewicz K et al.1,3-diphenyl-1 H-pyrazolo (3,4-b) quinoline: A versatile fluorophore for the design of brightly emissive molecular sensor [J]. Org. Lett.,2002, 4 (26):4647-4650.
    [18]Kollmannsberger M., Rurack K, Resch-Genger U. et al. Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: A new design concept for highly sensitive fluorescent probes [J]. J. Phys. Chem.A,1998,102 (50): 10211-10220.
    [19]Haugland R. P. Handbook of Fluorescent Probes and Reserch Chemicals,9 thed. [M].2002, Eugene OR: Molecular Probes 6-18.
    [20]Yang J S., Lin C S., Hwang C Y.. Cu2+ -induced blue shift of the pyrend excimer emission:A new signal transduction mode of pyrene probes [J]. Org. Lett.,2001,3 (6):889-892.
    [21]David Parker and J. A. Gareth Williams. Luminescence behaviour of cadmium, leed, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands beening naphthyl chromophores [J].J. Chem.Soc. Perkin. Trans.2,1995,1305-1314.
    [22]Kim S K., Bok J H., Bartsch R A et al. A fluoride-selective PCT chemosensor based on formation of a static pyrene excimer [J]. Org. Lett.,2005,7 (22):4839-4842.
    [23]Takakusa. H, Kikuchi K, Urano Y et al. Design and synthesis of an enzyme- deevable sensor molecule for phosphodiesterase activity based on fluoresoence resonance enegy transfer [J]. J. Am. Chem. Soc.,2002,124 (8):1653-1657.
    [24]Pearce D A, Walkup G K, Imperiali B.. Peptidyl chemosensors incorporating a FRET mechanism for detection of Ni2+[J]. Bioorg. Med. Chem. Lett.,1998,8 (15):1963-1968.
    [25]Noelting E., Dziewonsky k. Ber. [J]. Dtsch. Chem. Ges.1905,38 (3):3516-3527.
    [26]Chen X., Pradhan T., Wang F. et al. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives [J]. Chem. Rev.,2012,112 (3):1910-1956.
    [27]Dujols V., Ford F., Czarnik A. W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu (Ⅱ) Ion in Water [J]. J. Am. Chem. Soc.,1997,119 (31):7386-7387.
    [28]Lou X., Qiang L., Qin J. et al. A new rhodamine-based colorimetric cyanide chemosensor convenient detecting procedure and high sensitivity and selectivity[J]. ACS Appl.Mater. Interfaces,2009,1 (11):2529-2535.
    [29]Lohani C.R., Kim J. M., Chung S. Y. et al. Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex [J]. Analyst,2010,135 (8):2079-2084.
    [30]Wu J.S., Kim H. J., Lee M. H. et al. Anion- induced ring-opening of fluorescein spirolactam: fluorescent OFF-ON [J]. Tetrahedron Lett.,2007,48 (18):3159-3162.
    [31]Zhang W., Tang B., Liu X. A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells [J]. Analyst,2009,134 (2):367.
    [32]Kang S., Kim S., Yang Y. K et al. Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides [J]. Tetrahedron Lett,2009,50 (17):2010- 2012.
    [33]Xiang Y., Tong A., Jin P. et al. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu (Ⅱ) with High Selectivity and Sensitivity [J]. J. Org..Lett.,2006,8 (13),2863-2866.
    [34]Lou X., Zhang Y., Li Q. et al. A highly specific rhodamine-based colorimetric probe for hypochlorites: a new sensing strategy and real application in tap water [J]. Chem. Commun., 2011,47 (11),3189-3191.
    [35]Zheng H., Shang G. Q., Yang S. Y. et al. Fluorogenic and Chromogenic Rhodamine Spirolactam Based Probe for Nitric Oxide by Spiro Ring Opening Reaction [J]. Org. Lett, 2008,10 (12):2357-2360.
    [36]Pires M.M., Chmielewski J. Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine [J]. Org. Lett.,2008,10 (5),837-840.
    [37]Shibata A., Furukawa K., Abe H. et al. Rhodamine-based fluorogenic probe for imaging biological thiol [J]. Bioorg. Med. Chem. Lett,2008,18 (7):2246-2249.
    [38]Chen X.Q., Ma H. A selective fluorescence- on reaction of spiro form fluorescein hydrazide with Cu (Ⅱ) [J]. Anal. Chim. Acta,2006,575,217-222.
    [39]Yasuhiro S.,* Shigehiro S., Yoshiko K. et al. A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II) [J].J. Org. Chem,2008,73 (21): 8571-8574.
    [40]Wu D., Huang W., Duan C. et al. Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF Aqueous Media [J]. Inorg. Chem.,2007,46 (5):1538-1540.
    [41]Mashraqui S.H., Khan T., Sundaram S. et al. Rhodamine-Pyridyl Probe: A Selective Optical Reporter for Biologically Important Zn2+ [J]. Chem. Lett.,2009,38 (7):730-731.
    [42]Sasaki H., Hanaoka K., Urano Y. et al. Design and synthesis of a novel fluorescence probe for Zn2+ based on the spirolactam ring-opening process of rhodamine derivatives [J]. Bioorg. Med. Chem.,2011,19 (3):1072-1078.
    [43]Xiang Y., Tong A. A New Rhodamine-Based Chemosensor Exhibiting Selective FeⅢ-Amplified Fluorescence [J]. Org. Lett,2006,8 (8):1549-1552.
    [44]Mao J., Wang L., Dou W. et al. Tuning the Selectivity of Two Chemosensors to Fe (III) and Cr (Ⅲ) [J]. Org. Lett.,2007,9 (22),4567-4570.
    [45]Bae S., Tea J. Rhodamine-hydroxamate-based fluorescent chemosensor for FeⅢ[J]. Tetrahedron Lett.,2007,48 (31):5389-5392.
    [46]Zhang X., Shiraishi Y., Hirai T. A new rhodamine-based fluorescent chemosensor for trasition metal cations synthesized by one-stept facile condeensation [J]. Tetrahedron Lett., 2007,48 (31):5455-5459.
    [47]Moon K. S., Yang Y. K., Ji S. H. et al. Aminoxy-linked rhodamine hydroxamate as fluoresce-nt chemosensor for Fe3+ in aqueous media [J]. Tetrahedron Lett,2010,51, (25):3290-3293.
    [48]Lee M. H., Giap T. V., Kim S. H. et al. A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base [J]. Chem. Commun., 2010,46 (9),1407-1409.
    [49]Dong L., Wu C., Zeng X. et al. Facile synthesis and characterization of rhodamine-based colorimetric and“ off-on ” fluorescent chemosensor for Fe3+[J]. Sens. Actuators B,2010, 145(2),433-437.
    [50]Zhang X., Shiraishi Y., Hirai T. Fe (Ⅲ) and Hg (Ⅱ) selective dual channel fluorescence of a rhodamine-azacrown ether conjugate [J]. Tetrahedron Lett.,2008,49 (26):4178-4181.
    [51]Zheng Y., She M., Yin B. et al. Three Rhodamine-Based “ Off-On ” Chemosensor swithHigh Imaging in Living Cells Selectivity and Sensitivity for Fe3+[J]. J. Org. Chem.,2012,77 (2), 1143-1147.
    [52]Zhang L., Wang J., Fan J. et al. A highly selective fluorescent chemosensor for bioimaging of Fe3+[J]. Bioorg. Med. Chem. Lett.,2011,21,5413-5416.
    [53]Kim H. N., Lee M. H., Kim H J. et al. A new trend in rhodamine-based chemosensors: application of spirolactamring-opening to sensingions [J]. Chem. Soc. Rev.,2008,37,1465-1472.
    [54]Kumar M.,* Kumar R., Bhalla V. Optical Chemosensor for Ag+ Fe3+ and Cysteine: Information Processingat Molecular Level [J]. Org. Lett.,2011,13 (3),366-369.
    [55]Yu H., Xiao Y.,* Guo H. et al. Convenient and Efficient FRET Platform Featuringa Rigid Biphenyl Spacer bet ween Rhodamineand BODIPY: Transformation of Turn-On Sensors into Ratiometric Ones with Dual Emission [J]. Chem. Eur. J.,2011,17,3179-3191.
    [56]范敏,罗丹明B-大环多胺缀合物的合成及其金属配合物与DNA的相互作用[D].[硕士学位论文].郑州:郑州大学,2011.
    [57]宋春霞,基于罗丹明B的荧光阳离子探针的研究[D].[硕士学位论文].大连:大连理工大学,2009.
    [58]郝冬玲,三氯化铝/三乙胺催化合成位阻亚胺的研究[D].[硕士学位论文].天津:天津大学,2009.
    [59]张丽珠,罗丹明染料的合成及作为荧光探针的应用研究[D].[博士学位论文].大连:大连理工大学,2007.
    [60]乔丽,基于罗丹明B及萘酰亚胺衍生物的新型阳离子荧光分子探针的设计与合成[D].[硕士学位论文].湖南:湖南大学,2009.
    [61]Hardy J. E., Hubert S., Macquarrie D. J. et al. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions [J]. Green Chem.,2004,6,53-56.
    [62]Zhao Y., Zhang X. B., Han Z. X. et al. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Chemosensor for Cu2+ in Aqueous Solution and Living Cells [J]. Anal. Chem.,2009,81 (16):7022-7030.
    [63]Yang R., Liu W. X., Shen H. et al. Anion Binding in Aqueous Solutions by N-(Isonicotinamido)-N'-phenylthiourea-Based Simple Synthetic Neutral Receptors. Role of the Hydrophobic Microenvironment of the Receptor Molecule [J]. J. Phys. Chem. B,2008,112, 5105-5110.
    [64]Wu C., Zhang W. J., Zeng X. et al. New fluorescent sensor for antimony and transition metal cations based on rhodamine amidearm homotrioxacalix [3] arene [J]. J. Incl Phenom Macrocycl Chem.,2010,66:125-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700