平板形二自由度压电马达的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多自由度马达作为一种可实现多个自由度运动的驱动部件,在需要做多自由度运动的机电系统中得到了越来越广泛的应用,如机器人关节、全景摄像系统、光电跟踪装置等。与多台单自由度马达组合(每台单自由度马达负责一个转动或移动自由度)形成多自由度驱动的形式相比,多自由度马达的机械集成度高、马达的结构材料和驱动控制系统的元件利用率高,可以简化机电系统的结构,减小系统的体积和重量,从而提高机电系统的精度和动态性能。
     压电驱动技术在多自由度驱动领域的运用具有很大的潜力。将压电驱动技术运用于多自由度马达,近年来得到了逐步深入的研究。本文结合国家自然科学基金重点项目等课题,围绕多自由度压电驱动器的研制开展研究工作。在充分分析多自由度压电马达研究现状的基础上,提出了一种采用单片平板形压电振子驱动球形转子,形成二自由度转动的压电马达。这种马达显著的特点是结构紧凑、驱动控制容易、能以较小的定子结构驱动几倍于其体积大小的转子,便于未来结构设计的小型化,具有广阔的工程应用前景。本文通过理论分析、有限元仿真、设计加工、试验测试等方法对平板形单振子二自由度压电马达进行了研究和开发,揭示了马达形成二自由度运动的作用机理,形成了平板形二自由度压电马达的设计理论,掌握了马达的运动性能及驱动能力,为二自由度压电球面马达的实际应用提供了基础依据。
     1、平板形二自由度压电马达的作用机理研究
     在总结目前研制的多自由度压电马达所采用的驱动方式、驱动波类型的基础上,对压电马达定子表面驱动质点椭圆运动的形成机理进行了分析,阐述了压电马达行波驱动和驻波驱动各自的特点。提出了一种用于多自由度压电马达的平板形压电振子,分析了压电振子在B_(23)与B_(32)模态、B_(43)与B_(34)模态下形成二自由度驱动的工作原理;研究了压电振子凸起端部椭圆运动的形成机理,证明了凸起端部的运动轨迹是由基板弯曲振动引起的垂向位移与凸起一阶弯曲振动引起的水平位移的合成,且水平位移滞后于垂向位移,凸起端部可以形成椭圆运动轨迹。
     建立了压电振子的有限元分析模型,利用ANSYS软件对压电振子进了有限元仿真,得出了压电振子各阶模态的振型图;通过ANSYS瞬态分析,获得了马达定子与转子之间的接触点的运动轨迹,分析结果表明各接触点能有效形成时序合理的椭圆运动轨迹,作为支撑足的一组凸起的变形量为作为驱动足的一组凸起的变形量的30%,能够用于驱动球体形成二自由度转动。理论分析与有限元仿真证明了压电振子作用机理的正确性。
     2、平板形压电振子的振动解析
     将压电振子等效为均质的各向同性矩形板,基于Rayleigh-Ritz法,采用适用于各种边界条件的梁函数组合法,建立了压电振子振动频率计算公式的基本形式;将凸起作为压电振子矩形基板的附加质量,压电振子基板层上表面的支承点作为弹性点支承,探讨了考虑凸起及支承的情况下,压电振子振动频率的计算方法;通过进一步的推导,建立了自由振动状态及四点支承状态下,压电振子振动频率的计算公式。结合小挠度弯曲问题的基本假设,采用层合板理论,推导了压电振子在外力和外加电场作用下的运动方程,建立了压电振子弯曲振动时所产生的内力(包括力F与力矩M)的表达式;根据Ritz法,建立了压电振子的虚功方程,给出了在B_(23)、B_(32)、B_(34)、B_(43)四种振动模态下,压电振子挠度的求解公式。求解了凸起端部的弯曲振动位移,进一步说明了压电振子作用机理的合理性,得到了凸起与球形转子接触点的椭圆运动轨迹方程。平板形压电振子的振动解析为马达的结构设计、马达性能的研究提供了重要的理论基础。
     3、平板形二自由度压电马达的设计及分析
     以压电振子的长宽比、基板层厚度、凸起的长宽高等结构参数为变量,选取压电振子的挠度及工作频率作为压电振子结构设计的目标,分析了各结构参数对压电振子的挠度及工作频率影响的数值规律。通过有限元仿真分析进一步确定并验证了压电振子结构参数的设计原则。根据数值分析及仿真分析的结果,制作了压电振子,测试了压电振子工作频率和凸起端部位移,试验结果说明了理论分析及仿真分析中主要结论的正确性。
     将压电振子用于驱动球体,构建了二自由度球面压电马达,对凸起与球体之间的接触条件、压电振子与球体之间的预紧机构、压电陶瓷的布置与接线形式等构建马达时需注意的问题进行分析与探讨。对二自由度球面压电马达进行了接触静力学分析,通过推导,明确了马达定转子间的力传递关系,建立了马达输出转矩的表达式,获得了马达输出转矩的影响因素。通过对平板形压电马达的设计与实践,基本形成了平板形压电马达的设计理论。
     4、平板形二自由度压电马达的试验研究
     分析了现有的球面多自由度运动的测量方法;在此基础上,提出采用鼠标器测量原理的球面多自由度运动测量方法;给出了两种接触式测量方案和一种非接触式测量方案,设计了各方案的测量电路;讨论了非接触式测量方案通过单次测量获取二自由度运动的测量原理,给出了该方案的测量步骤;搭建了三种测量方案的试验测试系统,对三种测量方案进行了试验研究,结果表明三种测量方案的误差均较小,可用于马达球面运动的测量。利用所搭建的测试系统对基于B_(23)与B_(32)模态、B_(43)与B_(34)模态的两种压电马达样机分别进行了运动能力及驱动性能测试;获得了两种马达的输入频率、输入电压与马达转速之间的关系,马达的瞬态响应特性及机械特性;通过对试验结果的分析,反映出在压电振子的制作过程中,应重点保证凸起间距的加工精度;经测试,马达主要的性能指标为:基于B_(23)与B_(32)模态的压电马达,当驱动电压为90V,驱动频率为43.8kHz时,马达绕压电振子长度方向的转速为37.7r/min,堵转力矩为1.15mNm;基于B_(43)与B_(34)模态的压电马达,当驱动电压为90V,驱动频率为99.5kHz时,马达绕压电振子宽度方向的转速为89.35r/min,堵转力矩为1.34mNm。分析了影响马达工作性能的外界环境和马达内部的因素,为提高马达的性能提供了参考。
     5、平板形二自由度压电马达驱动控制电路的研究
     设计了一种满足平板形压电马达工作要求的驱动控制电路,该电路能实现稳定的频率、相位、电压输出,且可以根据马达运动的需要,调整驱动信号,跟踪马达的工作频率。讨论了驱动电路与马达的电学匹配问题,通过合理设置放大电路中电感、电容的相互关系,设置占空比为1/3,可有效减少电路中的寄生谐波。讨论了采用PLL锁相环技术实现马达最佳工作频率跟踪的方法。
     本文的研究内容涉及压电学、机械学、力学、振动分析、电学、控制学等多学科交叉的知识。论文的研究工作为多自由度压电驱动机构的研究提供了新的思路,为全向驱动轮、机器人的驱动关节、全景摄像系统等方面的应用提供了研究基础,对相近机械结构的研制也具有借鉴参考意义。
Multi-degree-of-freedom (DOF) motor is widely used in electromechanical system which need more than one degree of freedom motion, such as robot joints, panoramic camera systems, optical tracking devices, et al. Compared with the driven form that multi-DOF is achieved by single-degree-of-freedom motors (each of single-degree-of-freedom motors is independently responsible for one dimension of motion, which can be either translation or rotation), multi-DOF motor has superiorities in high integration in structure and high efficiency in the utilization of materials and components which is benefit to simplify the structure, reduce the size and weight of electromechanical system, and thereby improve the accuracy and dynamic performance of electromechanical system.
     Piezoelectric driving technology has great potential in the field of multi-DOF motor. To apply piezoelectric driving technology in multi-DOF motor has been gradually in-depth researched in recent decades. This dissertation is supported in part by the National Natural Science Foundation of China [grant number 50735002] and the major projects foster fund for university science and technology innovation of Ministry of Education of China [grant number 708028], and focuses on the development of multi-DOF piezoelectric actuators. Based on the fully analysis of the state of the art of multi-DOF piezoelectric actuators, a novel two-degree-of-freedom (two-DOF) piezoelectric motor using only one piezoelectric ceramic is proposed. The notable feature of the developed piezoelectric motor is that multiple piezoelectric elements in the reported motors used to achieve multi-DOF are optimized into a single piezoelectric element. It’s compact, easy to manufacture and assembly, and easy to control. The proposed motor can rotate a sphere 2~3 times larger than its stator in volume. Therefore, it is available for miniaturization and offers a wide range of engineering applications.
     In this dissertation, theoretical analysis, finite element simulation, design and processing, prototype testing and other methodologies are used to develop the two-DOF piezoelectric motor using single plate type piezoelectric vibrator. The motion mechanism of the two-DOF piezoelectric motor is revealed, design theory of the plate type two-DOF piezoelectric motor is obtained, and performance and driving ability of the motor are mastered. These research conclusions provide a basis for the practical application of two-DOF piezoelectric motor.
     1. Motion mechanism of the plate type two-DOF piezoelectric motor
     Based on the review of the working principles and driven wave signals used in the current developed multi-DOF piezoelectric motors, the elliptical motion formation mechanism of the particles on the surface of the piezoelectric vibrator is analyzed, the characteristics of traveling wave driven and standing wave driven are described and a plate type piezoelectric vibrator for multi-DOF piezoelectric motors is proposed. The working principle of the piezoelectric vibrator used in the B_(23) and B_(32) modal, B_(43) and B_(34) modal to form two-DOF motion is analyzed. The elliptical motion formation mechanism of the tip of the protrusion is examined, which shows that the motion trajectory of the tip of the protrusion is composed of the vertical displacement given by vibration of the substrate and the horizontal displacement given by the first bending vibration of the protrusion. The horizontal displacement caused by the protrusion lags behind the vertical displacement caused by the substrate. The tip of the protrusion can form an elliptical trajectory. The finite element model of the piezoelectric vibrator is established. By the use of ANSYS software, multi-order vibration modes of the piezoelectric vibrator are obtained in modal analysis, and the elliptical trajectory of the four contact points between the stator and the sphere is demonstrated in transient analysis. The simulation results show that the deformation of protrusions which support the sphere is about 30 percent of that of those which drive the sphere, and the four contact points can form timing reasonable elliptical trajectory which can be used to drive the sphere to form two rotation degrees of freedom. Theoretical analysis and finite element simulation verify the feasibility of the working principle for the motor.
     2. Vibration analysis of the plate type piezoelectric vibrator
     The piezoelectric vibrator is taken as a homogeneous isotropic plate in vibration analysis. According to Rayleigh-Ritz method, the basic formula for calculating the vibration frequency of the piezoelectric vibrator is established by using beam function combination method which is suitable for various boundary conditions. Based on the basic formula, the vibration frequency calculation method is investigated in consideration of the protrusions and the supporting columns. The protrusions are taken as additional quality and the supporting columns are taken as elastic supporting point. The vibration frequency calculation formulas in free vibration state and four-point support condition are established by further derivation. The motion equation of the piezoelectric vibrator under external force and external electric field is derived based on the basic assumptions of small deflection bending and laminated plate theory. The expression for calculating the internal forces (including force and moment) generated by the piezoelectric vibrator bending vibration is established. According to Ritz method, the virtual work equation of the piezoelectric vibrator is established, and the deflection solving formulas of the piezoelectric vibrator in B_(23), B_(32), B_(34) and B_(43) vibration modes are given. The deformation of the tip of the protrusion is solved, and the elliptical trajectory equation of the contact point is obtained. Vibration analysis of the plate type piezoelectric vibrator provides a significant theoretical basis for the structural design and performance examination of the piezoelectric motor.
     3. Design and analysis of the plate type two-DOF piezoelectric motor
     The deflection and working frequency of the piezoelectric vibrator which are set as the target variable for the structural optimization are numerical analyzed with the structural parameters such as aspect ratio, substrate thickness and the height, width, thickness of the protrusion set as the variables. Numerical rules between the structural parameters and the deflection and working frequency of the piezoelectric vibrator are obtained. The design principles for the structural parameters of the piezoelectric vibrator are further determined and verified by finite element simulation. A piezoelectric vibrator is fabricated based on the results of numerical analysis and finite element simulation to test the vibration frequency of the piezoelectric vibrator and the tip displacement of the protrusion. The experiment results illustrate the validity of the main conclusions in theoretical analysis and simulation analysis. A two-DOF spherical piezoelectric motor is constructed by using the piezoelectric vibrator. Issues in the specific application of the piezoelectric vibrator and the preload mechanism between the piezoelectric vibrator and sphere are discussed. Contact static analysis is carried out for the two-DOF spherical piezoelectric motor, the force transmission relationship between the stator and rotor are investigated, the output torque expression is established and influence factors of the output torque are obtained.
     4. Experimental research on the plate type two-DOF piezoelectric motor
     Based on the review of the measurement methods used in the existing multi-DOF spherical motor, a multi-DOF spherical motion measurement method is proposed. Two contact measurement program and a non-contact measurement program are offered. The measuring principle of the non-contact measurement program for two degrees of freedom motion measurement resolved from a single measurement point is investigated, and the measurement procedure is given. Experimental measurement systems of the three measurement programs are set up, the experiment results show that the measurement error of the three measurement programs is very small, and these measurement programs can be used in the multi-DOF spherical motion measurement of our proposed piezoelectric motor. Kinematic capability and drive performance of the two kinds of prototype based on B_(23) and B_(32) modes, B_(43) and B_(34) modes, respectively, are test using the constructed measurement system. The relationship between the driven frequency, driven voltage and the rotation speed, the transient response characteristics and mechanical properties of the two kinds of piezoelectric motor are obtained. Analysis of test results demonstrates that the consistency of spacing of the protrusions should be primarily guaranteed in the manufacturing process of the piezoelectric vibrator. The main performance indicators of the piezoelectric motor are: the rotation speed of the motor based on B_(23) and B_(32) modes around an axial along the direction of length of the piezoelectric vibrator is 37.7r/min under the drive voltage 90V and excitation frequency 43.8kHz, and its stall torque is 1.15mNm; the rotation speed of the motor based on B_(43) and B_(34) modes around an axial along the direction of length of the piezoelectric vibrator is 89.35r/min under the drive voltage 90V and excitation frequency 99.5kHz, and its stall torque is 1.34mNm. The external environment and internal factors impacted on the performance of the piezoelectric motor are also analyzed which provides a reference to further improve the performance of the piezoelectric motor.
     5. Drive control circuit of the plate type two-DOF piezoelectric motor
     A drive control circuit which meets the operating requirements of the piezoelectric motor is designed. The circuit can achieve stable voltage, and adjust the drive signal to track the working frequency according to the demands in the operation of the piezoelectric motor. Electrical matching between the drive control circuit and the piezoelectric motor is discussed. And the parasitic harmonics can be effectively reduced by reasonably setting the relationship between inductances and capacitances in the amplification circuit and by setting the duty cycle as 1/3. Method for tracking the optimal working frequency by the use of Phase Locked Loop (PLL) technology is also discussed.
     This study covers piezoelectrics, mechanology, mechanics, vibration analysis, electricity, cybernetics and other multi-disciplinary knowledges. The research in this dissertation provides new ideas for the research of multi-DOF piezoelectric drive mechanism, a research foundation for the applications in omnidirectional wheels, robot ball joints, panoramic camera system and other electromechanical systems, and a reference for the development of similar mechanical structure.
引文
[1] Peter W. Hawkes, John C.H. Spence. Science of Microscopy [M]. New York: Springer Science Business Media, LLC, 2007.
    [2] Wei Cai, Guangyi Shang, Yusheng Zhou, Ping Xu, and Junen Yao. An alternative flat scanner and micropositioning method for scanning probe microscope [J]. Review of scientific instruments, 2010, 81(12): 123701-1-5.
    [3] Landolsi F, Ghorbel FH. Design of a duo-biomorph-based AFM cantilever suitable for nanomanipulation [J]. Smart materials & structures, 2010, 19(6): 065028-1-9.
    [4] Chuang HS, Wen CM, Cheng MY, et al. Automatic Vision-Based Optical Fiber Alignment Using Multirate Technique [J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 2998-3003.
    [5] Hatch A, Hansmann G, Murthy SK. Engineered Alginate Hydrogels for Effective Microfluidic Capture and Release of Endothelial Progenitor Cells from Whole Blood [J]. Langmuir, 2011, 27(7):4257-4264.
    [6] Rahman M, Asad ABMA, Masaki T, et al. A multiprocess machine tool for compound micromachining [J]. International Journal of Machine Tools & Manufacture, 2010, 50(4): 344–356.
    [7] Aggogeri F, Merlo A, Mazzola M. Multifunctional structure solutions for Ultra High Precision (UHP) machine tools [J]. International Journal of Machine Tools & Manufacture, 2010, 50(4): 366-373.
    [8] Gorgi Kostovski, Udayakumar Chinnasamy, Sasani Jayawardhana, Paul R.Stoddart and Arnan Mitchell. Sub-15nm Optical Fiber Nanoimprint Lithography: A Parallel, Self-aligned and Portable Approach [J]. Advanced Materials, 2011, 23: 531–535.
    [9] Kazuaki Suzuki, Bruce W. Smith. Microlithography: science and technology-2nd ed. [M]. Boca Raton: CRC Press, Taylor & Francis Group, LLC, 2007.
    [10] Inderjit Chopra. Review of State of Art of Smart Structures and Integrated Systems [J]. AIAA Journal, 2002, 40(11): 2145-2187.
    [11] Edward F. Crawley, Javier de Luis. Use of piezoelectric actuators as elements of intelligent structures [J]. AIAA Journal, 1987, 25(10):1373-1385.
    [12] Alfayad S, Ouezdou FB, Namoun F. New 3-DOFs Hybrid Mechanism for Ankle and Wrist of Humanoid Robot: Modeling, Simulation, and Experiments [J]. Journal of mechanical design, 2011, 133(2): 021005-1-13.
    [13] Piccigallo M, Scarfogliero U, Quaglia C, et al. Design of a Novel Bimanual Robotic System for Single-Port Laparoscopy [J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6): 871-878.
    [14] Philipp W, Klaus B, Wolfgang G, et al. A pivotable head mounted camera system that is aligned by three-dimensional eye movements [C]// Proceedings of the 2006 symposium on Eye tracking research & applications, San Diego, California, 2006: 117-124.
    [15] Erich Schneider, Thomas Villgrattner, Johannes Vockeroth, et al. EyeSeeCam: An Eye Movement–Driven Head Camera for the Examination of Natural Visual Exploration [J]. Basic and Clinical Aspects of Vertigo and Dizziness: Annals of the New York Academy of Sciences, 2009, 1164: 461–467.
    [16] Yusuf O, Engin C, Harun K O, et al. Design of a new three-degree of freedom spherical motor for photovoltaic-tracking systems [J]. Renewable Energy, 2009, 34(12):2751–2756.
    [17]傅平.多自由度行波型超声波电机的基础研究[D].浙江大学博士学位论文, 2007.
    [18] Christopher Niezrecki, Diann Brei, Sivakumar Balakrishnan and Andrew Moskalik. Piezoelectric Actuation: State of the Art [J]. The Shock and Vibration Digest, 2001, 33(4):269-280.
    [19] Culshaw Brian. Smart structures and materials [M]. Boston MA: Artech House, 1996.
    [20] Seiji Ikeshita1, Akio Gofuku1, Tetsushi Kamegawa1 and Takakazu Nagai. Development of a spherical motor driven by electro-magnets [J]. Journal of Mechanical Science and Technology, 2010, 24:43-46.
    [21] Hadi A, Yousefi-Koma A, Moghaddam MM, et al. Developing a novel SMA-actuated robotic module [J]. Sensors and Actuators A: Physical, 2010, 162(1): 72-81.
    [22] Ueno T, Saito C, Imaizumi N, et al. Miniature spherical motor using iron-gallium alloy (Galfenol) [J]. Sensors and Actuators A: Physical, 2009, 154(1): 92-96.
    [23] Iain A. Anderson, Thom Hale, Todd Gisby, et al. A thin membrane artificial muscle rotary motor [J]. Applied Physics A, 2010, 98: 75–83.
    [24] Iain A. Anderson, Tony Chun Hin Tse, Tokushu Inamura, et al. A soft and dexterous motor [J]. Applied physics letters, 2011, 98: 123704-1-3.
    [25] B.Watson, J. Friend, L.Yeo. Piezoelectric ultrasonic micro/milli-scale actuators [J]. Sensors and Actuators A: Physical, 2009, 152: 219–233.
    [26] Innovative Research and Products (iRAP), Inc. Piezoelectric Operated Actuators and Motors– A Global Industry and Market Analysis (ET-102) [R], Stamford: iRAP, Inc. Dec, 2006.
    [27] Innovative Research and Products (iRAP), Inc. Piezoelectric Actuators and Motors– Types, Applications, New Developments, Industry Structure and Global Markets (ET-112) [R], Stamford: iRAP, Inc. Jul, 2010.
    [28] EOS高速自动对焦系统的关键:USM·超声波马达[Z]. http://www.canon.com.cn/specialsite/ lensbook/.
    [29] Micro Piezo Technology [Z]. http://global.epson.com/innovation/micro_piezo/.
    [30] Bosch Press release. The diesel passenger car turns 75 [J]. February 2011.
    [31]温建明.平面惯性压电叠堆移动机构的研究[D].吉林大学博士学位论文, 2009.
    [32]张宏壮.压电双晶片型二自由度惯性冲击式精密驱动器理论与实验研究[D].吉林大学博士学位论文, 2006.
    [33]张小凤,张光斌.多自由度超声电机的研究现状与展望[J].物理学和高新技术,2009,38(1):41-45.
    [34] http://apps.isiknowledge.com.
    [35] Shigeki T, Shigeru S, Zhang Guo-qiang. Multi degree of freedom spherical ultrasonic motor [C]//Proceedings of the IEEE International Conference on Robotics and Automation. Nagoya, Japan, 1995:2935–2940.
    [36]傅平,郭吉丰,沈润杰.三自由度行波型超声波电机的静力学分析[J].浙江大学学报(工学版), 2007, 41(6): 968-972.
    [37]赵学涛.纵弯复合振动模态球型超声电机的研究[D].哈尔滨工业大学博士学位论文, 2007.
    [38] Brian Andersen. Method for modeling of piezomotors: analysis of resonator, contact and experimental investigations [D]. Aalborg (Denmark): Department of Control Engineering, Aalborg University, PhD dissertation, 2002.
    [39]李志荣,黄卫清,赵淳生.多自由度超声电机研究的一些新进展[J].振动、测试与诊断,2003,23(3):161-164.
    [40] Yung Ting, Yu-ren Tsai, Bing-Kuan Hou, Shuo-chun Lin, and Cheng-chin Lu. Stator Design of a New Type of Spherical Piezoelectric Motor [C]// IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(10):2334-2342.
    [41] Ting Y, Lee YD, Tsai YR, et al. Stator Design of a 2DOF Traveling-Wave Rotary Piezoelectric Motor [J]. IEEE International Conference on Robotics and Biomimetics (ROBIO), Bangkok, THAILAND, FEB 22-25, 2009, Vols 1-4:493-498.
    [42] Yung Ting, Yi-Ta Lee. Spherical rotary piezoelectric motor: United States, US20100207488 A1 [P], Aug, 19, 2010.
    [43] Kenjiro Takemura, Takashi Maeno. Design and control of an ultrasonic motor capable of generating multi-DOF motion [J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 499-506.
    [44] Kenjiro Takemura, Shinsuk Park, Takashi Maeno. Control of multi-dof ultrasonic actuator for dexterous surgical instrument [J]. Journal of Sound and Vibration, 2008, 311: 652–666.
    [45]赵淳生,李志荣,刘俊标,等.圆柱球体多自由度超声电机定子的优化设计[J].压电与声光,2004, 26(1):13-16.
    [46]李志荣,黄卫清,赵淳生.圆柱-球体多自由度超声电机定子驱动端面的运动分析与仿真[J].机械科学与技术, 2004,23(11): 1352-1355.
    [47] Chunsheng Zhao, Zhirong Li, Weiqing Huang. Optimal design of the stator of a three-DOF ultrasonic motor [J]. Sensors and Actuators A: Physical, 2005, 121(2):494–499.
    [48] Zhirong Li, Chunsheng Zhao, Weiqing Huang, et al. Several key issues in developing of cylinder type 3-DOF ultrasonic motor [J]. Sensors and Actuators A: Physical, 2007, 136 (2): 704–709.
    [49]顾菊平,金龙,胡敏强,等.圆柱定子三自由度球转子超声波电机的轨迹方程[J].中国电机工程学报, 2005, 25(10):154-158.
    [50]金龙,顾菊平,胡敏强,等.圆柱定子3自由度球转子超声波电动机驱动控制技术的研究[J].中国电机工程学报,2004, 24 (9):163-166.
    [51] G Rogers. Three degree-of-freedom piezoelectric ultrasonic micro-motor with a major diameter of 350μm [J]. Journal of Micromechanics and Microengineering, 2010, 20(12):1-5.
    [52] Lu Bo, Aoyagi Manabu, Takano Takehiro, Tamura Hideki. Examination of sandwich-type multidegree-of-freedom spherical ultrasonic motor [J]. Japanese Journal of Applied Physics, 2010, 49(7): 07HE24-1-7.
    [53]吴献威,程光明,杨志刚,吴博达,陈西平.圆环驻波型多自由度压电马达的研究[J].压电与声光,2000,22(2):95-97.
    [54]曾平,韩邦成,程光明,杨志刚,王勇.平移式多自由度压电马达的研究[J].压电与声光,2001,23(4):269-271.
    [55] Vasiljev S, Borodinas R, Bareikis R, et al. The square bar-shaped multi-DOF ultrasonic motor [J]. Journal of Electroceramics, 2008, 20(3-4):231–235
    [56] Zhang Minghui, Guo Wei, Sun Lining. A multi-degree-of-freedom ultrasonic motor using in-plane deformation of planar piezoelectric elements [J]. Sensors and Actuators A: Physical, 2008, 148(1):193–200.
    [57] Ter F K, Dinh H D, James F, et al.Triple degree-of-freedom piezoelectric ultrasonic micromotor via flexural-axial coupled vibration [J]. IEEE Transactions on Uitrasonics, Ferroelectrics, and Frequency control, 2009, 56(8):1716-1724.
    [58] Manaba A, Steve P. B, Neil M. White. A novel multi-degree-of-freedom thick-film ultrasonic motor [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49(2):151-158.
    [59] Kayo O, Takashi M. Development of an arrayed-type multi-degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes [C]//IEEE Ultrasonics Symposium. Montréal, Canada, 2004: 1181-1184.
    [60] Hoshina M, Mashimo T, Toyama S. Development of spherical ultrasonic motor as a camera actuator for pipe inspection robot [C]// IEEE International Conference on Intelligent Robots and Systems, St. Louis, MO, OCT, 2009: 2379-2384.
    [61] Zhang Xiaofeng, Gouda Yasuyuki, Koyama Daisuke, Nakamura Kentaro, Ueha Sadayuki. A basic design of robot finger joint using multi-degree-of-freedom ultrasonic motor [J]. Acoustical Science and Technology, 2008, 29(3): 235-237.
    [62] Zhang Xiaofeng, Nakamura Kentaro, Ueha Sadayuki. Two-joint robot finger design based on multi-degree-of-freedom ultrasonic motors [J]. Acoustical Science and Technology, 2009, 30(1): 42-47.
    [63] Hiroshi Kawano, Hideyuki Ando, Tatsuya Hirahara, Cheolho Yun, and Sadayuki Ueha. Application of a multi-DOF ultrasonic servo motor in an auditory tele-existence robot [J]. IEEE Transactions on Robotics, 2005, 21(5):790-800.
    [64] Yasuyuki Goda, Daisuke Koyama, Kentaro Nakamura and Sadayuki Ueha. A 2 x 2 array of the multi-degree-of freedom ultrasonic actuators for a low profile two-dimensional sliding table [J]. IEICE Electron. Express, 2009, 6 (6):317-321.
    [65]杨东平,杨志刚,杨国欣,程光明.双弯曲驻波压电振子的振动及其相位关系研究[J].压电与声光,2000,22(3):177-179,196.
    [66] A. Benjeddou. Advances in piezoelectric finite element modeling of adaptive structural elements: a survey [J]. Computers and Structures, 2000, 76:347-363.
    [67] Malgaca L, Karagülle H. Numerical and experimental study on integration of control actions into the finite element solutions in smart structures [J]. Shock and Vibration, 2009, 16(4): 401-415.
    [68] Jioshi Yang. The Mechanics of Piezoelectric Structures [M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2006.
    [69] Vincent PIEFORT, Andre PREUMONT. Finite Element Modelling of Piezoelectric Active Structures [Z]. www.ulb.ac.be/scmero.
    [70] H. S. Tzou and C. I. Tseng. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parmeter systems: A piezoelectric finite element approach [J]. Journal of Sound and Vibration, 1990, 138(1):17-34.
    [71] D. F. Ostergaard, T. P. Pawlak. Three-dimensional finite elements for analyzing piezoelectric structures [J]. IEEE Ultrasonics Symposium, 1986: 639-644.
    [72] Chi-Hung Huang and Yi-Yu Chen. Transverse Vibration Analysis for Piezoceramic Rectangular Plates Using Ritz’s Method with Equivalent Constants [J]. IEEE Transactions on Uitrasonics, Ferroelectrics, and Frequency control, 2006, 53(2):265-273.
    [73] Chen-Pang Chen, Chi-Hung Huang, Yi-Yu Chen. Vibration analysis and measurement for piezoceramic rectangular plates in resonance [J]. Journal of Sound and Vibration, 2009, 326:251–262.
    [74] Malgaca L, Karagülle H. Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation [J]. Smart Structures and Systems, 2009, 5(1):55-68.
    [75] Vinhais H.F., Ibrahim R.C. and Silva E.C.N. Simulation of a Linear Piezoelectric Motor by Using Finite Element Method [C]// ABCM Symposium Series on Mechatronics, Rio de Janeiro, Brazil, 2004, 1:697-706.
    [76] Wang, J. S., Ostergaard, D. F. A Finite Element-Electric Circuit Coupled Simulation Method for Piezoelectric Transducer [C]// ANSYS, Inc., IEEE Ultrasonics Symposium, 1999: 1105-1108.
    [77] G. Hayward, M. N. Jackson. Discrete-time modeling of the thickness mode piezoelectric transducer [J]. IEEE Trans. Sonics Ultrsonics, 1984, 31(3):137-150.
    [78] William J. McCalla. Fundamentals of computer-aided circuit simulation [M]. Kluwer Academic Publisher, 1987.
    [79]程光明,曾平,杨志刚,等.超声压电马达矩形复合板振子的耦合振动分析[J].压电与声光, 1996, 18(6):386-389.
    [80]杨志刚,程光明,郑学澜.矩形板压电振子型超声马达[J].吉林工业大学学报,1994,24(1):31-37
    [81]任露泉,杨志刚,佟金,曾平.双弯曲型压电振子的振动解析[J].压电与声光,1998,20(3):162-165
    [82]曹志远.板壳振动理论[M ].北京:中国铁道出版社,1989.
    [83]成祥生.角点支承矩形板的纵横弯曲[J].应用数学和力学,1987,8(5):445-452.
    [84]张福范.弹性薄板[M].北京:科学出版社,1984.
    [85]胡海岩.机械振动基础[M].北京航空航天大学出版社.2005.
    [86]斋藤秀雄.工业基础振动学[M].西北电讯工程学院,1980.
    [87] Dana. Young, Vibration of rectangular plates by the Ritz method [J] Journal of Applied Mechanics, 1950, 17(4): 448–453.
    [88]徐业鹏,周叮.点支、线支和弹性地基上简支矩形板的三维弹性力学解[J].中国科学:技术科学,2010,40(2):121-126.
    [89] R.J. Watkins, S. Santillan, J. Radice, O. Barton Jr. Vibration response of an elastically point-supported plate with attached masses [J]. Thin-Walled Structures, 2010, 48:519–527.
    [90]华顺明.压电式粘滑精密运动机构驱动理论与实验研究[D].吉林大学博士学位论文, 2005.
    [91] Wang D H and Huo J. Modeling and testing for the static deflections of circular piezoelectric unimorph actuators [J]. Journal of Intelligent Material Systems and Structures, 2010, 21(16):1603-1616.
    [92] J.N. Reddy. On laminated composite plates with integrated sensors and actuator [J]. Engineering Structures, 1999, 21: 568–593.
    [93] J.N. Reddy. Mechanics of laminated composite plates and shells: theory and analysis, 2nd edition [M]. Boca Raton: CRC Press, LLC, 2004.
    [94] Fox CHJ, Chen X, McWilliam S. Analysis of the deflection of a circular plate with an annular piezoelectric actuator [J]. Sensors and Actuators A: Physical, 2007, 133(1):180-194.
    [95] Cheol-Ho YUN, Shinichiro NIWANO, James R. FRIEND, Kentaro NAKAMURA and Sadayuki UEHA. Support Mechanism for the Ball Rotor in the Three-Degree-of-Freedom Ultrasonic Motor [J]. Japanese Journal of Applied Physics. 2003, 42, Pt.1, No. 5B:3000-3001.
    [96]徐志科,金龙,胡敏强,顾菊平.一种新型双定子三自由度超声波电机特性研究[J].微电机, 2009,42(4): 27-29.
    [97]杨志刚,何文地,曾平,周翔.二维弯曲矩形板压电振子型超声马达研究[J].压电与声光, 1995,17(4): 29-34.
    [98] Guo Jiefng,Gong Shujuna,Guo Haixun,Liu Xiao,Ji Kehui. Force transfer model and characteristics of hybrid transducer type ultrasonic motors [J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control, 2004, 51(4): 387-395.
    [99]龚书娟.纵扭复合型超声波电机的若干问题研究[D].浙江大学博士学位论文,2005.
    [100] M. Kurosawa and S. Ueha. Efficiency of USM using traveling wave [J]. Transactions of Acoustics (In Japan), 1998, 44(l):40-46.
    [101]郭海训.大力矩高精度超声波电机的基础研究[D].浙江大学博士学位论文,2002.
    [102] Kok-Meng Lee, Chi-Kong Kwan. Design concept development of a spherical stepper for robotic applications [J]. IEEE Transactions on Robotics and Automation, 1991, 7(1):175-181.
    [103] Chee Kian Lim, I-Ming Chen, Liang Yan, Zhiqiang Luo. A novel approach for positional sensing of a spherical geometry [J]. Sensors and Actuators: A Physical, 2011, 168(2):328-334.
    [104]上羽贞行,富川义郎(著),杨志刚,郑学伦(译).超声波马达理论与应用[M].上海科学技术出版社,1998:241-244.
    [105] K. Takemura, Y. Ohno, and T. Maeno. Design of a plate type multi-DOF ultrasonic motor and its self-oscillation driving circuit [J]. IEEE Transactions on Uitrasonics, Ferroelectrics, and Frequency control 2004, 9(3): 474-480.
    [106] Puu-An Juang, Ching-Chih Tsai. Characterization of one-wheeled actuator driven by one piezoelectric element [J]. Measurement, 2009, 42: 112–118.
    [107] J.L. Pons, P. Ochoa, M. Villegas, J.F. Fernández, E. Rocon, J. Moreno. Self-tuned driving of piezoelectric actuators: The case of ultrasonic motors [J]. Journal of the European Ceramic Society 2007, 27: 4163–4167.
    [108] J L Pons, J F Fernandéz, M Villegas, P Ochoa, R Ceres, L Calderón, E Rocon. Tuned driving of piezoelectric resonators: impedance matching [J]. Boletín de la Sociedad Espa?ola de Cerámica y Vidrio 2006, 45(3): 178-183.
    [109]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京大学出版社, 2007.
    [110] Schaaf,U. and van der Broek,H. Piezoelectricmotor fed by a PLL-controlled series resonant converter [J]. European Conference on Power Electronics and Applications, 1995.
    [111] Gardner, F. M. Phaselock Techniques [M]. New York, John Wiley & Sons, 1979.
    [112] Pons, J. L., Emerging Actuator Technologies: A Micromechatronic Approach [M]. Chichester: John Wiley & Sons, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700