非线性动力系统规范形理论及应用问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规范形理论是研究动力系统、微分方程及非线性振动等领域动力学特征的强有力工具之一。规范形理论又称正规形理论,它的基本思想,是在奇点(或不动点)附近经过光滑变换把向量场(或微分同胚)化成尽可能简单的形式,以便于研究。然而,计算给定系统的最简规范形本身就是一项很复杂的工作,另外,有关Hopf分岔系统、退化Hopf分岔系统及其规范形理论在力学等实际系统的应用研究也越来越受到广大科学工作者的广泛关注。本论文主要研究了规范形理论中最简规范形的计算,规范形理论在力学和生物学系统中的应用,非线性动力系统中的Hopf分岔与混沌等动力学特征。主要创新点有以下几个方面:
     (1)在传统规范形的基础上,利用规范形理论和矩阵表示法的思想研究了Hopf分岔系统的最简规范形,给出最简规范形的计算公式,和所选取的非线性变换公式。研究了余维2及高余维退化Hopf分岔系统的最简规范形。提出由于条件的不同,系统具有两种不同的最简规范形形式,并给出计算公式。
     (2)利用动力系统中的规范形理论研究Neimark-Sacker系统的最简规范形。指出传统的Neimark-Sacker系统的规范形可以继续化简,计算了余维2及高余维退化Neimark-Sacker系统的最简规范形,得出了五个定理,说明退化Neimark-Sacker系统的最简规范形的振幅方程最多含有两个非线性项,具有两种不同的形式,给出了公式的代数表达。本文提出的方法,为深入研究Hopf分岔系统的稳定性、分岔等复杂动力学行为奠定了基础。
     (3)利用Hopf定理和规范形理论,讨论了Furuta旋转倒立摆非线性数学模型的Hopf分岔等动力学特征。给出系统存在Hopf分岔的条件,讨论了周期轨道的稳定性,利用数值模拟,得到系统的相轨迹图。比较严格地证明了系统存在Smale马蹄意义下的混沌现象,并给出发生Silnikov型Smale混沌的条件。为进一步研究旋转倒立摆的复杂动力学行为奠定了基础,同时也为旋转倒立摆的控制和仿真研究,提供了理论依据。
     (4)研究了一类新的连续自治三维混沌系统,即Van del Pol Jerk系统。通过理论分析和数值模拟,研究了系统的基本动力学性质。利用Silnikov定理,研究了系统具有混沌现象,通过Cardano公式和微分方程级数解理论,研究了系统的特征值和同宿轨道。比较严格地证明了系统存在Silnikov型Smale马蹄混沌现象。并指出系统存在混沌现象的充分条件。利用数值模拟,验证了本文提出方法的正确性。
     (5)讨论了一类具有二重饱和反应速度的生化反应动力系统的动力学特征。利用微分方程定性理论,完整地研究了该系统极限环的不存在性和存在唯一性的充分条件,利用规范形理论,研究了该系统的Hopf分岔,并与具有米氏饱和反应速度的生化模型的定性性质进行了比较。
The normal form theory is one of the useful tools in the fields of dynamical system, ordinary differential equations and nonlinear vibration. Normal form theory plays an important role in the study of dynamical behavior of nonlinear systems near the dynamic equilibrium points because it greatly simplifies the analysis and formulations. This simple form can be used conveniently for analyzing the dynamical behavior of the original system in the vicinity of equilibrium. However, it is not a simple task to calculate the normal form for some given ordinary differential equations. The normal forms of Hopf and generalized Hopf bifurcations, as well as their applications have been extensively studied by many researchers. The research contents and the innovative contributions of this dissertation are as follows:
     (1) The Hopf Bifurcations have been studied by normal form theory and the matrix representation method of dynamic system. On the basis of normal form theory, the Hopf bifurcation systems are further simplified to the simplest normal forms. The normal forms of generalized Hopf bifurcations have been extensively studied. Theorems are presented to show that the conventional normal form of generalized Hopf bifurcations is further simplified to the simplest normal form there are at most two terms remaining in the amplitude equation of the simplest normal form up to 2k+1 order. There are two kinds of the simplest normal forms.
     (2) The normal forms of generalized Neimark-Sacker bifurcations have been extensively studied using normal form theory of dynamic system. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcations can be further simplified. We calculate the simplest normal forms of generalized Neimark-Sacker bifurcations. There are two kinds of the simplest normal forms. These algebra expression formulas are given.
     (3) Study Hopf bifurcations by normal form theory in the Furuta pendulum system. We calculate the normal forms of the Hopf bifurcation systems. The stability of the limit cycle is discussed. The space trajectories are investigated via numerical simulation, which are aslo verified the validity of our analysis. Based on the Silnikov criterion, the chaotic characters of the dynamical systems are discussed. Using Cardano formula and series solution of differential equation, eigenvalue problem and the existence of homoclinic orbit are studied respectively. Furthermore, a rigorous proof for the existence of Silnikov-sense Smale horseshoes chaos is presented and some conditions which lead to the chaos are obtained.
     (4) Study a new three-dimensional continuous autonomous chaotic system. The new Van del Pol Jerk system contains a cubic terms and six system parameters. Basic dynamic properties of the new system are studied by means of theoretical analysis and numerical simulation. Based on the Silnikov criterion, the chaotic characters of the dynamical systems are discussed. Using Cardano formula and series solution of differential equation, eigenvalue problem and the existence of homoclinic orbit are studied respectively. Furthermore, a rigorous proof for the existence of Silnikov-sense Smale horseshoes chaos is presented and some conditions which lead to the chaos are obtained. The formation mechanism shows that this chaotic system has impulsive homoclinic chaos, and numerical simulation demonstrates that there is a route to chaos.
     (5) Study a class of multimolecules saturated reaction model. By using the qualitative theory of ordinary differential equations, completely discuss the existence, nonexistence and uniqueness of limit cycles of the system. By using the normal form theory, the Hopf bifurcation behavior of the dynamic system is exploited. We compared qualitative property with the system with saturated reaction speed.
引文
[1]韩茂安,顾圣士编著,非线性系统的理论和方法,北京:科学出版社2004.
    [2]高普云编著,非线性动力学——分叉、混沌与孤立子,长沙:国防科技大学出版社,2005.
    [3]张芷芬,李承治,郑志明等,向量场的分岔理论基础,北京:高等教育出版社,1997.
    [4] Arnold V I,Geometric Methods in the Theory of Ordinary Differential Equations. Second Edition. New York: Spring-Verlag,1983.
    [5] Wang D,An introduction to the normal form theory of ordinary differential equations, Advances in Mathematics, 1990, 19(1): 38-71.
    [6]张琪昌,Hopf分叉理论及其在非线性振动系统中的应用:[博士学位论文],天津:天津大学,1991.
    [7]王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科学技术出版社,2002 .
    [8] Ushiki S,Normal form for singularities of vector fields, Japan Journal of Applied Mathematics,1984, 1:1-34.
    [9] Chen G, Jean Della Dora,An algorithm for computing a new normal form for dynamical systems, Journal of Symbolic Computation,2000, 29(3):393-418.
    [10] Wang Xiaofeng,Chen Guoting, Wang Duo,Unique normal forms for the Takens–Bogdanov singularity in a special case, Comptes Rendus de l'Academiedes Sciences Series I Mathematics Volume, 2001, 332(6):551-555.
    [11] Yu P,Computation of normal forms via a perturbation technique, Journal of Sound and Vibration, 1998, 211(1): 19-38.
    [12] Yu P,Yuan Y,The simplest normal forms for the singularity of a pure imaginary pair and a zero eigenvalue, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 2001, 8(2):219-249.
    [13] Yuan Y,Yu P,Computation of simplest normal forms of differential equations associated with a double-zero eigenvalue, International Journal of Bifurcation and Chaos, 2001, 11 (5): 1307-1330.
    [14] Yu P,Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling, Journal of Computation and Applied Mathematics, 2002, 144(1-2): 359-373.
    [15]张琪昌,胡兰霞,何学军,高维Hopf分岔系统的最简规范形,天津大学学报,2005,38(10): 878-881.
    [16]陈予恕,张琪昌,一种求解非线性振动系统渐近解的新方法,力学学报,1990,22(4): 413-419.
    [17] Leung AY T,Zhang Qichang,Chen Yushu,Normal form analysis of Hopf bifurcation exemplified by duffing’s equation, Journal of Shock and Vibration, 1994, 1(3): 233-240.
    [18] Leung AYT,Zhang Qichang,Normal form computation without central manifold reduction, Journal of Sound and Vibration, 2003, 266(2): 261-279.
    [19]符文彬,唐驾时,含平方项非线性动力系统的分岔研究,湖南大学学报,2004, 31(1): 99-102.
    [20] Yu P,Leung AY T,The simplest normal form of Hopf bifurcation, Nonlinearity, 2003,16(1): 277-300.
    [21] Valverde JC,Simplest normal forms of Hopf-Neimark-Sacker bifurcations, International Journal of Bifurcation and Chaos, 2003, 13(7): 1831-1839.
    [22] Tian Ruilan,Zhang Qichang,He Xuejun,Calculation of Coefficients of Simplest Normal Forms of Hopf and Generalized Hopf Bifurcations, Transactions of Tianjin University, 2007,13(1): 18-22.
    [23]丁玉梅,张琪昌,余维2退化Hopf分岔系统的最简规范形,振动工程学报,2008,21(6): 594-599.
    [24] Shiriaev A S, Friesel A, Perram J, Pogromsky A, On stabilization of rotational modes of an inverted pendulum, Proc of the 39th IEEE Conference on Decision and Control, NSW Australia Sydney, 2000,12(5): 5047-5052.
    [25] Mrad F, El-Hassan N M, ahmoud S E H, Alawieh B, Adlouni F. Real-time control of free-standing cartmounted inverted pendulum using LabVIEW RT [A]. Conference Record of the 2000 IEEE Industry Applications Conference, Italy Rome, 2000, 10 (2): 1291-1298.
    [26] Park J I, Lee S G, Synthesis of control inputs for simultaneous control of angle and position of inverted pendulum, Proc of 1 996 4th International Workshop on Advanced Motion Control, Japan: Mie,1996, 3(2):619-624.
    [27]段旭东,许可,单级旋转倒立摆的建模与控制仿真,机器人技术与应用,2002(5): 43-46.
    [28]吴爱国,张小明,张钊,基于Lagrange方程建模的单级旋转倒立摆控制,中国工程科学, 2005,7(10):11-15.
    [29]张姝,朱善安,基于Lagrange方程建模的旋转倒立摆的分析与控制,工业控制计算机,2003,16(8):30-32.
    [30] Wang X F,Chen G, andYu X,Anticontrol of chaos in continuous-time systems via time-delay feedback,American Institute Physics, 2000,10: 771-779.
    [31] Guckenheimer J,Hoffman K & Weckesser W,The forced Van der Pol equation I: Slow flow and its bifurcation,SIAM J, Applied Dynamical System, 2003,2:1-35.
    [32] Acho L, Rolon J and Benitez S,A chaotic oscillator using the Van der Pol dynamic immersed into a Jerk system,WSEAS Trans. Circuits System, 2004, 3:198-199.
    [33] Sinuhe Benitez, Leonardo Acho & Citedi-ipn,Impulsive synchronization for a new chaotic osciliator,International Journal of Bifurcation and Chaos,2007, 17(2): 617-623.
    [34] Zhong Li, Chen Guanrong & Wolfgand A, Halang,Homoclinic and heteroclinic orbits in a modified Lorenz system,Information Sciences, 2004,165:235-245.
    [35]张琪昌,田瑞兰,王炜,一类机电耦合非线性动力系统的混沌动力学特征,物理学报, 2008, 57(5):2799-2804.
    [36]陈兰荪,数学生态学模型与研究方法,北京:科学出版社,1988.
    [37]陈兰荪,陈健,非线性生物动力系统,北京:科学出版社,1993.
    [38]胡丽平,一个生化反应数学模型的定性研究,河南师范大学学报,2001, 29(3):108-110.
    [39]徐瑞,董士杰,一类多分子生化反应系统的定性分析,工程数学学报,2000,17(1): 109-112.
    [40]沈伯骞,谭继智,一类食物链培养数学模型,生物数学学报,1999, 14(5): 549-554.
    [41] Yu P,Simplest normal forms of Hopf and generalized Hopf bifurcations, International Journal of Bifurcation and Chaos, 1999, 9(10):1917-1939.
    [42] Chow S N,Drachman B, Wang D, Computation of Normal forms,Journal of Computation and Applied Mathematics, 1990, 29:129-143.
    [43] Farr WW, Li C Z, Labouriau I S et al, Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem,SIAM Journal of Mathematical Analysis, 1989, 20: 13-30.
    [44] Leung Y T, Zhang Q C,ChenY S, Normal form analysis of Hopf bifurcation exemplified by Duffing’s equation,Journal of Shock and Vibration, 1994,1(3): 233-240.
    [45] Leung YT, Zhang Q C, Complex normal form for strongly nonlinear vibration systems exemplified by Duffing-Van der Pol equation,Journal of Sound and Vibration, 1998, 213(5): 907-914.
    [46] Balibrea F,Valverde J C, Bifurcations under non-degenerated conditions of higher degree and a simple proof of the Hopf-Neimark-Sacker bifurcation theorem,Journal of mathematical Analysis and Applications, 1999, 237(1): 93-105.
    [47] Ruelle D,Takens F, On the nature of the turbulence,Communication ofMathematical Physics, 1971, 20:167-192;23:343-344.
    [48] Guckenheimer J, Holmes P, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,Berlin: Spring-Verlag,1983.
    [49] Ioose, G,Bifurcations of Maps and Applications, Mathematical Studies,North Holland: Amsterdam, 1979, 36:27-47.
    [50] Cugno F,Montrucchio L, Some New Techniques for Modelling Nonlinear Economic Fluctuations: A Brief Survey, in Nonlinear Models of Fluctuating Growth,NY: Spring-Verlag, 1984.
    [51]田瑞兰,最简规范形及机电耦合非线性系统的分岔、混沌研究:[博士学位论文],天津:天津大学,2008.
    [52] Astrom K J, Furuta K,Swing-up a pendulum by energy control, Proceedings 13th IFAC World Congress, San Francisco, USA, 1996,37-42 .
    [53] Daniel Pagano, Luis Pizarro and Javier Aracil, Local bifurcation analysis in the furuta pendulum via normal forms,International Journal of bifurcation and chaos,2000, 10(5):981-995.
    [54]王杰智,陈增强,袁著祉,一个新混沌系统及其性质研究,物理学报, 2006, 55(8):3956-3963.
    [55] Silnikov L P,A contribution of the problem of the struxture of an extended neighborhood of rough equilibrium state of saddle focus type, Math USSR-Shornik,1970,10:91-102.
    [56] Zhou Tianshou, Chen Guangrong,Yang Qigui,Constructing a new chaotic system based on the Silnikov criterion,Chaos, Solitons and Fractals,2004, 19(4): 985-993.
    [57]李伟固,正规形理论及其应用,北京:科学出版社,2000, 34-36.
    [58]张琪昌,梁以德,用范式理论研究常微分方程焦点量问题,应用数学和力学,1995,16(9): 829-838.
    [59]张芷芬,丁同仁,黄文灶等,微分方程定性理论,北京:科学出版社,1985
    [60]刘美娟,沈伯骞,捕食者种群具有密度制约的一类厌食系统,纯粹数学与应用数学,1999,15(2): 7-12.
    [61] Coppel WA,Some quadratic systems with at most one limit cycle ,Dynamics Reported,1989,2: 61-88.
    [62]胡兰霞,常微分方程规范形若干问题的研究:[硕士学位论文],天津:天津大学,2005.
    [63]张伟,陈予恕,共轭算子法和非线性动力系统的高阶规范形,应用数学与力学,1997,18(5):421-432.
    [64] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet and G. Iooss,A simple global characterization for normal forms of singular vector fields. Phys. D., 1987(29):95-117 .
    [65]廖晓昕,动力系统的稳定性理论和应用,北京:国防工业出版社,2000.
    [66]叶彦谦,多项式微分系统定性理论,上海:上海科技出版社,1995
    [67]唐云,对称性分岔理论基础,北京:科学出版社,2000.
    [68]丁同仁,常微分方程定性方法的应用,北京:北京大学出版社,1987.
    [69]张锦言,冯贝叶,常微分方程几何理论与分支问题,北京:北京大学出版社,1987.
    [70]陈关荣,吕金虎,Lorenz系统族的动力学分析控制与同步,北京:科学出版社,2003.
    [71]李继彬,冯贝叶,稳定性分支与混沌,昆明:云南科技出版社,1995.
    [72]张琪昌,王洪礼,竺致文等,分岔与混沌理论及应用,天津:天津大学出版社, 2005.
    [73]胡海岩,应用非线性动力学,北京:航空工业出版社, 2000.
    [74]刘曾荣,混沌研究中的解析方法,上海:上海大学出版社, 2002.
    [75]刘秉正,彭建华,非线性动力学,北京:高等教育出版社, 2003.
    [76]徐兆,非线性力学中一种新的渐近方法,力学学报, 1985, 17 (3): 266-271.
    [77]张琪昌,胡仕华,王炜,不经中心流形化简计算半单系统的最简规范形,天津大学学报, 2006, 39(7): 773-776.
    [78]张琪昌,王炜,具有一对纯虚及单零特征根系统的最简规范形,天津大学学报, 2007, 40(8): 971-975.
    [79] Arnold V I, Mathematical Metods of Classical Mechanics, New York: Springer-Verlag, 1980
    [80] Smale S, Differentiable dynamical system, Bulletin of the American Mathematical Society, 1967, 73: 747-817.
    [81] Shilnikov L P, A case of the existence of a countable number of periodic motions, Sov Math Docklady, 1965, 6: 163-166.
    [82] Shilnikov L P, A contribution of the problem of the structure of an extended neighborhood of rough equibrium state of saddle-focus type, Math USSR-Shornik, 1970, 10: 91-102.
    [83] Silva C P, Shilnikov theorem--a tutorial, IEEE Trans Circ Syst-I, 1993, 40(10): 675-682.
    [84]朱淑芹,杨淼,张先华,闵乐泉,利用Shilnikov定理构造混沌系统,北京科技大学学报, 2005, 27(5): 635-637.
    [85] Li Z, Chen G R, Halang W A, Homoclinic and heteroclinic orbits in modifiedLorenz system, Information Sciences, 2004, 165(3-4): 235-245.
    [86] Li T C, Chen G T, Chen G R, On homoclinic and heteroclinic orbits of Chen's system, International Journal of Bifucation and Chaos, 2006, 16(10): 3035-3041.
    [87] Chang Y, Chen G R, Complex dynamics in Chen's system, Chaos, Solitons and Fractals, 2006, 27(1): 75-86.
    [88] Chang Y, Chen G R, Hopf bifurcation and chaos analysis of Chen's system with distributed delays, Chaos, Solitons and Fractals, 2005, 25(1): 197-220.
    [89] Xu P C, Jing Z J, Shilnikov’s orbits in coupled Duffing’s systems, Chaos, Solitons and Fractals, 2000, 11(6): 853-858.
    [90] Li W, Jing Z J, Xu P C, The existence of Shilnikov’s orbits in one coupled Duffing equation, Science In China( Series A), 2003, 46(1): 11-23.
    [91] Li W, Xu P C, The existence of Shilnikov’s orbit in four-dimensional Duffing’s systems, Acta Mathematicae Applicatae Sinica, English Series, 2003, 19(4): 677-690.
    [92] Liu X B, Fu X L, Zhu D M, Bifurcation of homoclinic orbits with saddle-center equilibrium, Chinese Annals of Mathematics, Series B, 2007, 28B(1): 81-92.
    [93] Yao M H, Zhang W, Multi-pulse Shilnikov orbits and chaotic dynamics of a parametrically and externally excited thin plate, International Journal of Bifurcations and Chaos, 2007, 17(3): 1-25.
    [94] Yu P, Zhang W, Bi Q, Vibration analysis on a thin plate with the aid of computation of normal forms, International Journal of Non-Linear Mechanics, 2001, 36(4) 597-627.
    [95] Nayfeh A H, Chin C M, Nonlinear interactions in a parametrically excited system with widely spaced frequencies, Nonlinear Dynamics, 1995, 7(2): 195-216.
    [96] Palmer K J, Shadowing and shilnikov chaos, Nonlinear Analysis, Theory, Methods & Applications, 1996, 27(9): 1075-1093.
    [97] Cui F S et al, Bifurcation and chaos in the Duffing oscillator with a PID controller, Nonlinear Dynamics, 1997, 12(3): 251-262.
    [98]陈予恕,非线性振动,天津:天津科技出版社, 1982.
    [99] Ding Yumei,Zhang Qichang, Simplest Normal Forms of Generalized Neimark-Sacker Bifurcation,Transactions of Tianjin University, 2009,15(4) :260-265.
    [100]王东生,混沌、分形及其应用,合肥:中国科学技术出版社, 1995.
    [101] Nayfeh A H, Mook D T, Nonlinear Oscillations, New York: John Wiley and Sons, 1979.
    [102] Chow S Y, Li C Z,Wang D, Normal forms and bifurcation of planar vector fields, Cambridge: Cambridge University Press, 1984.
    [103] Rand R H, Armbruster D, Perturbation methods, bifurcation theory and computer algebra, Berlin: Springer-Verlag,1987.
    [104]刘扬正,姜长生,林长圣,四维切换超混沌系统,物理学报,2007,56(9):5131-5135.
    [105]王光义,丘水生,许志益,一个新的三维二次混沌系统及其电路实现,物理学报,2006,55(7):3295-3301.
    [106]张琪昌,梁以德,陈予恕,非共振双Hopf分叉系统的规范形及其应用,振动工程学报,1998,11(3):351-355.
    [107]吴志强,胡海岩,非半单分叉Normal form计算,力学学报,1998,30(4):423-431.
    [108]闻邦春,刘凤翘,振动机械的理论及应用,北京:机械工业出版社,1983.
    [109]邱勇,邱宇,邱家俊,机电耦联系统余维3动态分岔研究,力学学报,2006,38(3):421-428.
    [110]陈予恕,王德石,余俊,参外激励作用下非线性振动系统的混沌,振动工程学报,1996,9(1):54-69.
    [111]姚明辉,多自由度非线性机械系统的全局分叉和混沌动力学研究:[博士学位论文],北京:北京工业大学,2007.
    [112]王炜,复规范形理论的应用问题研究:[硕士学位论文],天津:天津大学,2006.
    [113]符文彬,唐驾时,用规范形理论研究含平方项非线性振动问题,湖南大学学报,2003, 30(1): 25-28.
    [114]符文彬,唐驾时,用规范形理论求参数激励系统的近似解,非线性动力学学报,2001,8(3):263-266.
    [115]张琪昌,何学军,胡兰霞,一类含参分叉系统最简规范形系数的计算,振动工程学报,2005,18(4):495-499.
    [116]张琪昌,胡仕华,王炜,双零加一对纯虚根特征值系统的最简规范形,力学季刊,2006,27(4):585-590.
    [117]张琪昌,胡兰霞,何学军,非共振双Hopf分叉系统最简规范形类的研究,振动工程学报,2005,18(3):384-388.
    [118]张伟,含有参数激励的非线性动力系统的高余维和复杂动力学:[博士论文],天津:天津大学,1997.
    [119]吴志强,陈予恕,非半简分岔问题的范式,应用数学和力学,1997,18(4):325-330.
    [120]陈予恕,吴志强,多重非内共振Hopf分岔的正规形,力学学报,1997,29(6):669-675.
    [121]陈炜,张伟,六维非线性动力系统三阶规范形的计算,动力学与控制学,2004,2(3):31-35.
    [122]吴志强,多自由度非线性系统的非线性模态及normal form直接方法:[博士论文],天津:天津大学,1996.
    [123]唐友刚,谷家扬,用Melnikov方法研究船舶在随机横浪中的倾覆,中国船舶研究, 2004, 8(5): 27-34.
    [124]吴志强,陈予恕,具有单边约束的基本分岔问题的新分岔模式,应用力学和数学, 2001, 22(11): 1135-1141.
    [125]杨绍普,申永军,滞后非线性系统的分岔与奇异性,北京:科学出版社, 2003.
    [126]吴志强,陈予恕,含约束非线性动力系统的分岔分类,应用力学和数学, 2002, 23(5): 477-482.
    [127]李银山,陈予恕,李伟锋,各种板边条件下大挠度圆板的全局分岔和混沌,天津大学学报, 2001, 34(6): 718-722.
    [128]陈芳启,吴志强,黏弹性圆柱形壳动力学高余维分岔、普适开折问题,力学学报, 2001, 33(5): 661-668.
    [129]梁建术,陈予恕,一类含平方立方非线性项1:2内共振两自由度系统的全局分岔,应用力学学报, 2002, 19(4): 62-67
    [130]黄德斌,刘曾荣,郑永爱, Sine-Gordon方程中混沌跳跃行为的机制,力学学报, 2002, 34(2): 238-247.
    [131]陈立群,带慢变角参数摄动平面非Hamilton可积系统的混沌,应用数学和力学, 2001, 22(11): 1172-1176.
    [132]毕勤胜,陈予恕, Duffing系统解的转迁集的解析表达式,力学学报,1997,29(5): 573-581.
    [133]唐驾时,尹小波,一类强非线性振动系统的分叉,力学学报,1996,28(3):363-369.
    [134]徐兆,非线性力学中一种新的渐近方法,力学学报, 1985, 17 (3): 266-271.
    [135]冯登泰,应用非线性振动力学,北京:中国铁道出版社,1982.
    [136]韩景龙,朱德懋,非线性振动系统的规范形与平均法,振动工程学报,1996,9(4):371-377.
    [137]陆启韶,分岔与奇异性,北京:北京航空航天大学出版社,1995.
    [138]陆启韶,常微分方程的定性理论与几何方法,北京:北京航空航天大学出版社,1988.
    [139] Chen G, Controlling Chaos and Bifurcation in Engineering Systems, CRC Press, Boca Raton, FL, USA,1999.
    [140] Chen G, Dong X, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, Singapore, 1998.
    [141] Wang X F, Chen G, Chaotification via arbitrarily small feedback controls: Theory, method, and applications, International Journal of Bifurcations and Chaos, 2000, (10):549-570.
    [142] Li Zhong, Chen Guangrong, Wolfgang A Halang, Homoclinic and heteroclinic orbits in a modified Lorenz system, Information Sciences, 2004, 165: 235-245.
    [143] Baran D D, Mathematical models used in studying the chaotic vibration of buckled beams, Mechanics Research Communications, 1994, 21(2):189-196.
    [144] Chen G, Ueta T, Yet another chaotic attractor, International Journal of Bifurcations and Chaos, 1999, 9:549-570.
    [145] Ueta T, Chen G, Bifurcation analysis of Chen’s equation, International Journal of Bifurcations and Chaos, 2000, 10:1917-1931.
    [146]李继彬,赵晓华,刘正荣,广义哈密顿系统理论及应用,北京:科学出版社,1997.
    [147] B. N.阿诺尔德著,齐民友译,经典力学的数学方法,北京:高等教育出版社,1992.
    [148]王兴元,复杂非线性系统中的混沌,北京:电子工业出版社,2003.
    [149]谢应齐,曹杰,非线性动力学数学方法,北京:气象出版社,2001.
    [150] Perko L, Differential Equations and Dynamical Systems, New York: Springer-Verlag, 1991.
    [151]丁玉梅,张琪昌,用内积法研究Hopf分岔系统的规范形,天津师范大学学报2006,26(2):38-40.
    [152]王炜,待定固有频率法与非线性动力系统的复杂动力学:[博士论文],天津:天津大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700