飞机地面动力学若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机的地面运动特性是一个复杂的动力学问题。本文从飞机地面动力学的精确建模入手,结合飞机的防滑刹车系统建模,研究了飞机在着陆、滑跑、刹车和转弯时的动态特性,对指导飞机起落架和防滑刹车系统设计,提高飞机和起落架疲劳寿命,保证飞机具有良好的地面运动特性,具有重要意义。
     首先以多轮多支柱式起落架飞机和多轮小车式起落架飞机为研究对象,建立了含机体六自由度运动的多轮飞机地面动力学模型。采用时域积分法求解动力学方程,对飞机的对称和非对称着陆进行了仿真分析,并根据仿真结果指导小车式起落架辅助缓冲器和刹车平衡装置的设计。基于滑移速度和滑移率控制方式分别建立了小车式起落架多通道防滑刹车控制系统,在全机动力学模型的基础上,对飞机在干燥跑道和湿滑跑道的滑跑刹车进行仿真分析。结果表明,滑移率控制方式在干燥跑道和湿滑跑道上均能得到满意的控制效果;而滑移速度式控制方式在干燥跑道上能得到满意的控制效果,在湿滑跑道上控制效果较差。在非对称条件下,施加交叉保护和自锁保护后的滑移率控制防滑系统能够自动调节刹车力矩,避免飞机产生剧烈的偏航运动。将多学科协同仿真技术应用于飞机地面动力学研究,以ADAMS/Aircraft软件进行多体动力学建模为核心,联合CATIA软件生成飞机和起落架几何构件,PATRAN/NASTRAN软件进行模态分析生成柔性体,MATLAB软件建立控制系统模型,采用落震与静力试验的结果校核模型,然后对飞机地面滑跑转弯、防滑刹车、摆振等进行多学科协同仿真。
     提出了随机中心差分法结合改进的等价线性化方法,求解飞机地面滑行非平稳随机激励下的动态响应的方法。该方法导出的递推算法只涉及矩阵相加和相乘,简单易行,计算效率高。通过与已有文献结果和Monte Carlo数字模拟的比较验证了该方法的正确性。飞机在不平跑道变速滑跑,受非平稳随机激励时,由于非对称项的存在,致使响应的平衡点移动,响应均值不再为零。同时,非零均值响应使等价线性化方法求得的等效刚度系数和阻尼系数发生改变,并对结果产生影响。
     将主动控制缓冲器应用于飞机地面滑行减振。建立了飞机在随机跑道激励下,计及机身弹性的简化非线性随机动力学模型。采用等价线性化方法,使模型在平衡点附近线性化。加入前置线性滤波器将随机路面高斯激励转换成高斯白噪声激励。基于随机最优控制理论,分别对飞机匀速和变速滑跑,设计了线性二次型高斯(LQG)控制器。结果表明,与被动控制缓冲器相比,采用主动控制缓冲器后,不同滑行速度下,飞机的舒适性和减振性能都得到较大改善。
The research on aircraft ground maneuver characteristics is very complicated. From modeling aircraft ground maneuver dynamics exactly, combined with the anti-skid braking system modeling, investigation of the dynamic characteristics of aircraft landing, taxing, braking to stop with anti-skid, and steering, is quite significant in guidancing aircraft landing gears and braking systems design, improving aircraft fatigue life, and ensuring aircraft having good ground maneuver characteristics.
     A mathematic model of aircraft ground movement is established for aircraft with multi-wheels and multi-landing gears, and for aircraft with four wheel bogies, considering the six-degree-of-freedom aircraft body and the flexible landing gear strut and body. The time-domain integral method is adopted to solve the dynamics equations. Then, the aircraft symmetric landing and asymmetric landing are simulated. The results are used to guidance the design of pitch damper and brake balance mechanism of the bogie.
     A multi-channel anti-skid braking system with slip-ratio-control or with slip-velocity-control is established separately. Based on the aircraft dynamics model, aircraft brakeing to stop with anti-skid on dry runway and on wet runway are simulated. The results indicate that: the slip-ratio-controlled braking syetem can obtain good control effect nowhere on dry runway or on wet runway. The slip-velocity-controlled one can obtain good control effect on dry runway, but bad effect on wet runway. Under asymmetric conditions, using cross protection and self-locked protection system, the braking system with slip-ratio-control can automatically regulate brake torque to avoid deep sliding and correct aircraft course.
     A new method called multi-disciplinary collaborative simulation is presented for research on aircraft ground maneuver characteristics. The virtual prototyp established in ADAMS/Aircraft, which is taken as core, integrated with the aircraft and landing gear geometry components biult in CATIA, the flex parts exported from PATRAN/NASTRAN, and the control system established in MATLAB, are used to implement the multi-disciplinary collaborative simulation of aircraft ground maneuvers. Then, some important conclusions are obtainted.
     Using the stochastic central difference formula, together with the time-dependent equivalent linearization, a recursive algorithm for the covariance matrix of the nonstationary random response of nonlinear systems is developed. Then, the equivalent linearization method is modified for the problem of asymmetric nonlinear systems,considering the nonzero mean response induced by the asymmetric term. The derived algorithm is simple,efficient and easy to implement in computers.The examples given in this paper show that the results obtained with the recursive algorithm are in agreement with those from the Monte Carlo simulation, and they are more exact than those obtained in the reference.
     Active control landing gears are used to alleviate vibration during aircraft taxiing. A simple nonlinear stochastic dynamics model is established, considering the aircraft elastic vibration excited by the random runway. The equivalent linearization method is adopted to make the model linearity near the balance point, and the Gaussian random process of the runway is generated from the Gaussian white noise by a shape filter. Based on the stochastic optimal control theory, the Linear Quadratic Gaussian controller is designed with weighted quadratic performance index related to comfort, shock absorption, and expending lest energy. The aircraft dynamic responses are obtained through the runway random process modeled by Monte Carlo method. The results from simulation show that,compared with the passive ones,active control landing gears can effectively improve comfort and shock absorption of the aircraft.
引文
[1] P. D. Khapane. Simulation of asymmetric landing and typical ground maneuvers for large transport aircraft. Aerospace Science and Technology, 2003, 7: 611–619.
    [2] P. D. Khapane. Gear walk instability studies using flexible multibody dynamics simulation methods in SIMPACK. Aerospace Science and Technology, 2006, 10: 19–25.
    [3]李四政.多轮多支柱起落架飞机滑跑响应分析, [硕士学位论文].西安:西北工业大学, 2006.
    [4] Ting-Whai Lee. Dynamic response of landing gears on rough repaired runway. SAE 912154, 1991.
    [5] Matthew S. Schmidt, Chris Paulson. CAD embedded CAE tools for aircraft designers as applied to landing gear[R]. AIAA-97-3793, 1997: 333-340.
    [6]秦民.整车动力学控制仿真分析, [博士学位论文],长春:吉林大学, 2003.
    [7]杨耀东.矿用自卸汽车液压举升和转向系统仿真与优化, [博士学位论文].北京:北京科技大学, 2005.
    [8]王纪森,何长安.防滑刹车控制系统分析.西北工业大学学报, 2000, 18(3): 469-473.
    [9]王昊.整车悬架振动智能半主动控制研究, [博士学位论文].南京:南京航空航天大学, 2006.
    [10] C Rodney Hanke. The simulation of a large jet transport aircraft-Vol.1 Mathematical model. NASA-CR-1756, 1971.
    [11] C Rodney Hanke. The simulation of a large jet transport aircraft-Vol.2 modeling data. US National Technical Information Service N73-10027, Septemper 1970.
    [12] A. G. Barnes, T. J. Yager. Simulation of aircraft behavious and close to the ground, AGARD-AG-285, 1985.
    [13] W. S. Pi*, J. R.Yamane, M.J.C.Smith. Generic Aircraft Ground Operation simulation. AIAA 86-0989, 1986.
    [14] Alan Shepherd, Tyrone Catt, David Cowling. The simulation of aircraft landing gear dynamics. ICAS-92-1. 7. 1, Beijing, China.
    [15] D. Fischenberg, W. monich. C-160 ground handling model update using taxi taxi test data. Paper 12 for AGARD FVP Panel Symposium, Braunschweig, 22-25 May 1995.
    [16] Goldthorpe, S. H., Kernik, A.C., Mcbee, L.S. et al. Ground and control requirement for high-speed Rollout and Turnoff(ROTO). NASA-CR-195026, 1995.
    [17] Goldthorpe, S. H., Kernik, A.C., Mcbee, L.S. et al. Guidance and Control Design for High-Speed Rollout and Turnoff(ROTO) . NASA-CR-201602, 1995.
    [18] Nick Giannias, an advanced ground handling model for traning simulators.
    [19] A. G. Barnes, T. J. Yager. Enhencement of aircraft Ground Handling Simulation Capability. AGARD-AG-333, 2000.
    [20]赵震炎,许佩珍,余思尧.飞机地面运动的模拟,飞行力学, 1985, 2: 8-24.
    [21]芮裕亭.弹性飞机在不平的跑道上起飞和着陆的数字模拟.航空学报, 1986, 7(4): 347-353.
    [22]黄树春,汪长元.副翼配重的着陆冲击响应.航空学报, 1992, 13(8): 427-430.
    [23]王孝英,诸德培.飞机操纵前轮转弯运动德数学模型及数值仿真,应用力学学报, 1997, 14(4): 46-50.
    [24]高泽炯.飞机地面操纵减摆系统及地面运动力学.北京:航空学报杂志社, 1997.
    [25]牟让科,胡孟权.飞机非对称着陆和滑跑载荷分析.机械科学与技术, 2000, S: 72-74.
    [26]顾宏斌.飞机地面运动的综合仿真研究, [博士学位论文],南京:南京航空航天大学, 2001.
    [27]顾宏斌.飞机地面运行的动力学模型.航空学报, 2000, 7(4): 347-353.
    [28]扬新,王小虎,申功璋等.飞机六自由度模型及仿真研究.系统仿真学报, 2000, 12(3): 210-213.
    [29]段松云,朱纪洪,孙增圻.无人机着陆数学模型研究-三轮着地滑行.系统仿真学报, 2004, 16(6): 1296-1299.
    [30]袁东.飞机起落架数学模型建立与仿真研究, [硕士学位论文].西安:西北工业大学, 1999.
    [31]陆晓洁,谢利理,林晖.飞机防滑刹车系统的回顾与展望.航空科学技术, 2003, 2: 29-32.
    [32] Yadav D., Singh C. V. K., Landing Response of Aircraft with Optimal Anti-skid Braking. Journal of Sound and Vibration, 1995, 181(3): 401-416.
    [33] Tanner J. A., Review of NASA Anti-skid Braking Research. NASA Langley Research Center, Virginia, SAE 821393, Oct. 1982.
    [34] Stubbs S. M., Tanner J. A., Review of Anti-skid and Brake Dynamics Research. Conference on Aircraft Safety and Operating Problems, NASA Langley Research Center, Virginia, NASA CP-2170, 1981: 555-568.
    [35] Stubbs S. M., Tanner J. A. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: A velocity-rate-controlled, pressure-bias-modulated system. NASA Langley Research Center, Virginia, NASA TN D-8332, Dec. 1976.
    [36] Sandy M. Stubbs, John A. Tanner, and Eunice G. Smith. Behavior of Aircraft Antiskid Braking Systems 0n Dry and Wet Runway surfaces: A Slip-Velocity-Controlled, Pressure-Bias-Modulated System. NASA Langley Research Center, Virginia, NASA TP-1051, Dec.1979.
    [37] Tanner J. A., Stubbs S. M. Behavior of Aircraft Antiskid Braking Systems on Dry and Wet Runway surfaces: A Slip-Ratio-Controlled Systems with Ground Speed Reference from Unbraked Nose Wheel. NASA Langley Research Center, Virginia, NASA TN D-8455, Oct. 1977.
    [38]陆晓洁.基于模糊控制的防滑刹车系统建模与仿真研究, [硕士学位论文].西安:西北工业大学, 2003.
    [39]邹美英.飞机防滑刹车系统新型控制律设计与仿真研究, [硕士学位论文].西安:西北工业大学, 2005.
    [40]姜伟.非对称载荷下飞机刹车系统控制与仿真技术, [硕士学位论文].西安:西北工业大学, 2006.
    [41]王纪森.非线性控制理论在防滑刹车系统中的应用, [博士学位论文].西安:西北工业大学, 2001.
    [42]齐洁.多轮系飞机刹车系统控制与仿真研究, [硕士学位论文].西安:西北工业大学, 2007.
    [43]赵海鹰,王占林,裘丽华.飞机防滑刹车系统鲁棒控制器的设计与研究.北京航空航天大学学报, 2000, 26(2): 164-166.
    [44]黄佑.飞机防滑刹车控制系统LQ最优控制仿真.北京航空航天大学学报, 2003, 29(12): 1119-1122.
    [45]曹强.新型航空机轮刹车控制技术研究, [硕士学位论文].长沙:中南大学, 2005.
    [46]何恒,吴瑞祥,黄伟明.基于ANN与FNN的飞机防滑刹车系统设计.航空学报, 2005, 26(1): 116-120.
    [47]黄伟明,吴瑞祥,张燮年.神经网络及模糊控制在飞机防滑刹车系统中的应用.航空学报, 2001, 22(4): 317-320.
    [48]孟庆慈,何恒,吴瑞祥.基于模糊神经网络得飞机防滑刹车系统研究.控制工程, 2005, 12(5): 449-495.
    [49]李化良,林辉,汤恒先等.模糊PID在飞机全电刹车系统中的应用.航空计算技术, 2005, 35(4): 15-18.
    [50]田广来,谢利理,岳开宪等.飞机防滑刹车系统的最佳滑移率式控制方法研究.航空学报, 2005, 26(4): 461-464.
    [51] Evers B. Expert supervision of an antiskid control system of a commercial aircraft. Proceedings of the 1996 IEEE International Symposium on Intelligent Control, Washington: IEEE Compute Socity Press, 1996: 420-425.
    [52] Tseng, H. C., Chi, W. C. Aircraft antilock brake system with neural networks and fuzzy logic. Journal of Guidance control and dynamics, 18(5): 1113-1118, 1995.
    [53] R. Somakumar, J. Chandrasekhar. Intelligent anti-skid brake controller using a neural network. Control engineering practice, 1999, 7: 611-621.
    [54] Ilker Tunay, Massoud A. Min, Ervin Rodin. Neural network augmented anti-skid controller for transport aircraft. 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV: AIAA 99-0260, 1999.
    [55]姜伟,谢利理,雒雪芳.基于双通道调节的飞机刹车系统仿真.航空精密制造技术, 42(2): 22-25.
    [56]丁晓阳.建设CAD/CAE数字设计仿真平台. CAD/CAM与制造业与信息化, 2006, 8: 4-8.
    [57]王斌锐,金英连,徐心和.仿生膝关节虚拟样机与协同仿真方法研究.系统仿真学报, 2006, 18(6): 1554-1557.
    [58]熊光楞,郭斌,陈晓波等.协同仿真与虚拟样机技术.北京:清华大学出版社, 2004.
    [59] MSC.Software公司. MSC.Simmaneger企业级仿真管理平台. 2007MSC.Software虚拟产品开发(VPD)中国用户大会宣传册,北京, 2007.
    [60] Msc.Software软件在航空航天国防领域的运用. http://www.mscsoftware.com.cn/ SuccessStories/Detail.asp?id=426, 2008.
    [61] MSC.Software公司.虚拟产品开发解决方案(VPD)——航空航天. MSC.Software公司产品宣传册, 2006.
    [62] W. R. Kruger, W. Kortum. Multibody simulation in the integrated design of semi-active landing gears. AIAA-98-4361, 1998: 246-256.
    [63]晋萍,聂宏.起落架着陆动态仿真模型及参数优化设计.南京航空航天大学学报, 2003, (5): 498-502.
    [64]方平.小车式飞机起落架着陆与滑跑动态性能仿真分析, [硕士学位论文].南京:南京航空航天大学, 2004.
    [65]魏小辉.飞机起落架着陆动力学分析及减震技术研究, [博士学位论文],南京:南京航空航天大学, 2006.
    [66]肖宇. ADAMS在起落架动态性能仿真分析中的应用, [硕士学位论文].南京:南京航空航天大学, 2005.
    [67]樊海龙.多轮多支柱飞机地面载荷研究, [硕士学位论文].南京:南京航空航天大学, 2006.
    [68]洪学玲,陈建平.基于ADAMS/View小车式起落架动态仿真. 2007MSC.Software虚拟产品开发(VPD)中国用户大会,北京, 2007.
    [69]陶小将,任志勇,程普强等.多支柱起落架着陆载荷仿真分析. 2007MSC.Software虚拟产品开发(VPD)中国用户大会,北京, 2007.
    [70]付焕兵,刘昆.起落架落震仿真方法研究. 2007MSC.Software虚拟产品开发(VPD)中国用户大会,北京, 2007.
    [71] Kirk C L, Perry P J. Analysis of taxiing induced vibrations in aircraft by the power spectral density method. The Aeronautical Journal of the Royal Aeronautical Society, 1971, 75: 182-194.
    [72]张江监.非线性系统对非平稳随机激励和确定性外力联合输入的响应分析, [硕士学位论文].南京:南京航空航天大学, 1985.
    [73]张江监.非线性路面运行系统随机振动分析, [博士学位论文],南京:南京航空航天大学, 1988.
    [74] C. C. Tung. The effects of runway roughness on the dynamic response of airplanes. NASA CR-119, 1967.
    [75]刘锐琛.飞机地面滑行动力响应分析.航空学报, 1987, 8(12): 601-610.
    [76]国防科学技术工业委员会, GJB 67.4-85,军用飞机强度和刚度规范——地面载荷:北京, 1985.
    [77]航空航天工业部科学技术委员会.飞机起落架强度设计指南.四川:四川科学技术出版社, 1989.
    [78]刘莉.飞机地面滑行动态响应分析与起落架缓冲系统优化设计, [博士学位论文].北京:北京航空航天大学, 1991.
    [79]张曾锠,张江监,王裕昌.飞机起落架滑行载荷识别.航空学报, 1994, 15(1): 54-61.
    [80] Nie Hong, W.kortum. Analysis for aircraft taxiing at variable velocity on unevenness runway by the power spectral density method[J]. Transactions of Nanjing University of Aeronautics &Astronautics, 2000, 17(1):64-70.
    [81]朱位秋.非线性随机振动理论的近期进展.力学进展, 1994, 24(2): 163-172.
    [82]朱位秋.随机振动.北京:科学出报社, 1992: 322-355.
    [83] C.W.S.To, M.L.Liu. Recursive expressions for time dependent means and mean square responses of a multi-degree-of-freedom non-linear system. Computers and Structures, 1993, 48 (6): 993–1000.
    [84]张明.非线性系统在非白噪声激励下非平稳响应的中心差分法.非线性动力学学报, 1995, 2(1): 64-69.
    [85]缪炳祺,许礼深,胡夏夏.非线性系统非平稳随机响应矩计算的Newmark递推算法.振动工程学报, 1997, 10(2): 242-246.
    [86]张明.非线性系统非平稳随机响应的时域模态分析法.应用力学学报, 1997, 14(1): 36-40.
    [87]王军,林家浩.多自由度Duffing系统受演变随机激励的的非平稳响应.工程力学, 1999, 16(6): 7-13.
    [88] C.W.S.To, M.L.Liu. Large nonstationary random responses of shell structures with geometrical and material nonlinearties. Finite Elements in Analysis and Design, 2000, 35: 59-77.
    [89] Z. Chen, C.W.S.To. Responses of discretized systems under narrow band nonstationary random excitations. Part 1: linear problems. Journal of Sound and Vibration, 2005, 287: 433-458.
    [90] Z. Chen, C.W.S.To*. Responses of discretized systems under narrow band nonstationary random excitations. Part 2: nonlinear problems. Journal of Sound and Vibration, 2005, 287: 459-479.
    [91] P. D. Spanos. Formulation of stochastic linearization for symmetric or asymmetric M.D.O.F. nonlinear system. Journal of Applied Mechanics, 1980, 47: 209-211.
    [92] J.B. Roberts, P. D. Spanos. Random Vibration and Statistical Linearization. Wiley, New York, 1990.
    [93] Wignot Jack E, Durup Paul C., Gamon Max A. Design, Formulation and Analysis of an Active Landing Gear, Volume I: Analysis. AFFDL-TR-71-80, vol. I, U. S. Air Force, Aug. 1971. (Available from DDC as AD 887 127L)
    [94] Bender E. K., Berkman E. F., Bieber. M. A Feasibility-Study of Active Landing Gear. AFFDI-TR-70-126, U. S. Ai r Force, July 1971. (Available from DDC as AD 887 451L)
    [95] John R M, Huey D C. A. A mathematical model of an active control landing gear for load control during impact and roll-out. NASA-TND8080, 1976.
    [96] J. R. McGehee, H. D. Carden. Improved Aircraft Dynamic Response and Fatigue Life During Ground Operations Using an Active Control Landing Gear System, AlAA AIRCRAFT SYSTEMS AND TECHNOLOGY CONFERENCE, Los Angeles, Calif.: August 21-23, 1978, 78-1499.
    [97] John R M, Huey D C.A. Analytical Investigation of the Landing Dynamics of a Large Airplane with a Load-Control System in the Main Landing Gear. NASA TP 1555, 1979.
    [98] John R M, Huey D C. A. Experimental Investigation of Active Loads Control for Aircraft Landing Gear. NASA TP 2042, 1982.
    [99] Ross Irving, Edson Ralph. An Electronic Control for an Electrohydraulic Active Control Aircraft Landing Gear. NASA CR-3113, 1979.
    [100] Ross Irving. Flightworthy Active Control Landing Gear System for a Supersonic Aircraft. NASA-CR-3298, 1980.
    [101] Ross Irving, Edson Ralph, An Electronic Control for an Electrohydraulic Active Control Landing Gear for the F-4 Aircraft. NASA CR-3552, 1982.
    [102] Howell W. E., McGehee J. R., Daugherty R. H. et al. F-106B airplane active control landing gear drop test performance. SAE Technical Paper Series 901911, 1990.
    [103] Freymann, Raymond. Actively Damped Landing Gear System. Landing Gear Design Loads, AGARD CP-484, 1990.
    [104] Daniels James N. A Method for Landing Gear Modeling and Simulation with Experimental Validation, NASA CR-201601, 1996.
    [105] Lucas G Horta, Robert H Daugherty, Veloria J Martinson. Modeling and Validation of a Navy A6-Intruder actively Controlled Landing Gear System. NASA/TP-1999-209124, 1999.
    [106] Gian Luca Ghiringhelli*. Testing of Semi-active Landing Gear Control for a General Aviation Aircraft. JOURNAL OF AIRCRAFT, 2000, 37(4): 606-616.
    [107] W. R. Kruger, W. Kortum. Multibody simulation in the integrated design of semi-active landing gears. AIAA-98-4361, 1998.
    [108]刘晖,顾宏斌,吴东苏.半主动控制起落架缓冲性能初步研究.航空学报, 2006, 27(5): 863-868.
    [109]刘晖,顾宏斌,吴东苏.基于高速开关阀的起落架着陆冲击载荷控制.机械科学与技术, 2007, 26(8): 1055-1058.
    [110] Robert D. E., Zheng Lou, Frank E. Filisko, etc. Electrorheology for Smart Landing Gear. NASA-CR-200883, 1996.
    [111]汪岸柳.飞机着陆滑跑动力学控制与仿真, [硕士学位论文],南京:南京航空航天大学, 2005.
    [112]贾玉红,吴永康,张冠超.半主动控制起落架实验系统实验室研究与探索.实验室研究与探索, 2006, 25(2): 173-175.
    [113] Kyungmoon Nho, Ramesh K. Agarwal. Automatic Landing System Design Using Fuzzy Logic. AIAA-98-4483, 1998.
    [114]贾玉红,何庆芝,杨国柱.主动控制起落架滑行性能分析.航空学报, 1999, 20(6): 545-548.
    [115]贾玉红,王建军.飞机半主动起落架的自适应控制.振动与冲击, 2006, 25(2): 55-58.
    [116]贾玉红,刘鹰.采用主动控制提高民用客机的滑跑性能.北京航空航天大学学报, 2003, 29(11): 1017-1021.
    [117]贾玉红,王建军.飞机起落架的主动控制与半主动控制研究.兵工学报, 2006, 27(3): 528-532.
    [118] WU Dong-su, GU Hong-bin, LIU Hui. GA-Based Model Predictive Control of Semi-Active Landing Gear[J]. 20(2007): 47-54.
    [119]范伟.飞机起落架着陆半主动控制研究, [硕士学位论文].南京:南京航空航天大学, 2006.
    [120]吕祥生.飞机起落架自适应控制与仿真, [硕士学位论文].南京:南京航空航天大学, 2006.
    [121]и.и.智维列夫, C. C.科柯宁.航空机轮和刹车系统设计.北京:国防工业出版社, 1980.
    [122] ROBERT F. SMILEY and WALTER B. HORNE. Mechanical Properties of Pneumatic Tires With Special Reference To Modern Aircraft Tires, NASA TR R-64, 1960.
    [123]诸德培.摆振理论及防摆措施.北京:国防工业出版社, 1984.
    [124]中国航空科学技术研究院.飞机起落架结构耐久性设计与分析指南.西安:中国航空工业总公司《AFFD》办, 1995.
    [125]聂宏.飞机起落架的缓冲性能分析与设计及其寿命计算方法, [博士学位论文].南京:南京航空航天大学, 1990.
    [126]陈再新,刘福长,鲍国华.空气动力学.北京:航空工业出版社, 2002.
    [127]××型飞机气动特性参数报告, 2004.
    [128]蒋余芬.基于虚拟样机技术的柔性机翼协同仿真与应用, [硕士学位论文].北京:清华大学. 2006.
    [129] MSC公司. Using ADAMS/Aircraft: Getting Started. ADAMS 2005r2 help.
    [130]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社, 2005.
    [131]邢俊文. MSC.ADAMS/Flex与AutoFlex培训教程.北京:科学出版社, 2006.
    [132] MSC公司. Using ADAMS/Controls. ADAMS 2005r2 help.
    [133]范成建,熊光明,周明飞.虚拟样机软件——MSC.ADAMS应用与提高.北京:机械工业出版社, 2006.
    [134]××型飞机前起落架刚度和静强度试验报告, 2004.
    [135]××型飞机前起落架落震试验报告, 2004.
    [136]××型飞机主起落架落震试验报告, 2004.
    [137] Walls, J.H., Houbolt, J.C., Harry Press. Some Measurements and Power Spectra of Runway Roughness. NACA TN-3305, 1954.
    [138] Thompson, W.E. Measurements and Power Spectra of Runway Roughness at Airports in Countries of the North Atlantic Treaty Organization. NACA TN-4303, 1958.
    [139] Houbolt, J.C., Walls, J.H., Robert F. Smiley. On spectral analysis of runway roughness and loads developed during taxiing. NACA TN 3484, 1955.
    [140]童忠钫,俞可龙.机械振动学(随机振动).杭州:浙江大学出版社, 1992: 135-136.
    [141] Narayanan S, Senthil S. Stochastic optimal active control of a 2-dof quarter car model with non-linear Passive suspension elements. Journal of sound and vibration, 1998, 211: 495-506.
    [142] A Hac. Stochastic optimal control of vehicles with elastic body and active suspension. Journal of dynamic systems, measurement, and control. 1986, 108: 106-110.
    [143]张立军.车辆非平稳行驶动力学与控制研究, [博士学位论文].沈阳:东北大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700