西佛碱类衍生物的阴离子识别与多重刺激响应体系的构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几年,小分子离子探针以及多重刺激响应性凝胶由于具有重要的应用价值而受到化学工作者越来越多的关注。其中,小分子探针和刺激响应性小分子凝胶都是建立在小分子体系对外界刺激的选择性响应的基础之上。适当的离子识别位点既可以应用于小分子探针的设计合成,也可以作为功能基团应用于刺激响应性小分子凝胶领域。到目前为止,阳离子探针已经发展的比较成熟,许多探针都具有简便高效的检测能力,甚至有些探针已经应用于活体检测。然而,阴离子探针的发展相对比较缓慢,目前还有许多问题需要解决,比如更低的检测限,更高的选择性,新颖有效的识别机理等等。同时,小分子凝胶作为一种新型的软材料,其应用也日益广泛。而其中对刺激响应性凝胶的研究还相对匮乏,这一点也在某种程度上制约了凝胶的应用。因此,如何开发出简单实用的新型刺激响应性小分子凝胶因子也成为了凝胶研究者努力的目标之一。
     西佛碱类化合物合成简单,产率高,易提纯,同时具有优良的刺激响应性质,在医药、催化、检测、液晶、发光材料等领域都已经有了很好的应用。因此,该类分子是一类比较理想的设计阴离子探针和刺激响应性小分子凝胶的分子体系。本论文结合本组多年来在西佛碱类化合物方面的研究经验,设计合成了一系列西佛碱类阴离子探针,对这类化合物阴离子识别过程中影响选择性和灵敏性的因素进行研究,并开发新的识别机理;同时也对合成新型的西佛碱类多重刺激响应性凝胶因子进行了尝试。具体内容分为以下四个部分:
     第一,以腙类水杨醛西佛碱分子体系为基础,通过改变不同的取代基团,较为系统地研究了推电子基团、吸电子基团、共轭效应对阴离子识别选择性和灵敏性的影响。结果表明,推电子基团的引入增强了阴离子识别的选择性,但降低了阴离子的结合能力,导致探针的灵敏度降低;而共轭基团和吸电子基团能够增强阴离子识别的灵敏度,但是却降低了阴离子识别的选择性。此外,核磁滴定实验表明该类分子对氟离子识别的机理是氟离子引起了该类化合物酚羟基的去质子化。
     第二,以酚西佛碱类化合物为基础,合成了一种具有双通道分别识别不同阴离子的小分子探针。该探针在紫外可见吸收光谱上对氟离子具有很好的选择性,可以选择性裸眼识别氟离子;而在荧光光谱上则对氰离子具有特异响应性,而且荧光光谱在识别氰离子之后变化很大,荧光量子效率达到了0.9095,增强了大约606倍,这在文献报道中还是很罕见的。通过对识别机理的研究,我们揭示了产生上述双通道分别识别不同阴离子的原因,即氟离子的加入引起了酚羟基的去质子化,氰离子的加入促使酚西佛碱发生闭环反应而转变为苯并恶唑结构。这种氰离子促使的闭环反应还是第一次被报道,可以作为一种新的识别氰离子的机理和制备苯并恶唑类化合物的方法。
     第三,以苯腙类西佛碱化合物为基础,利用该类分子的还原性,开发了一种新型的次氯酸根荧光探针。合成的探针由于分子内的PET效应而几乎没有荧光,但次氯酸根能有效的破坏这种PET作用,使荧光显著增强,识别后的荧光量子效率达到0.2259,增强了42.6倍。此外,常见的金属离子、阴离子、具有氧化性的离子、一些自由基都不会引起探针的荧光增强,表明该探针对次氯酸根具有非常好的选择性。同时,本章中用到的C=N-NH结构是一种新型的识别次氯酸根的分子结构,可以发展为新的次氯酸根识别位点。
     第四,以水杨醛类西佛碱化合物为基础,结合之前对西佛碱类化合物识别性质的研究以及对西佛碱类化合物响应性质的认识,我们将具有多重响应性质的水杨醛类西佛碱引入到小分子凝胶因子的设计当中,成功合成了一种新型的ALS型凝胶因子。该分子在许多醇类溶剂中表现出了良好的成胶性质,可以通过加热-冷却或加热-超声的操作形成凝胶。形成的凝胶具有很好的纤维结构,并且具有荧光增强的性质。此外,该凝胶还具有热致变色、锌离子响应、氟离子响应性质。本章利用具有多重刺激响应性质的单一的官能团实现了凝胶的多重刺激响应性,这为多重刺激响应凝胶因子的设计合成提供了一种新的思路。
In recent years, it has cause a great attention to design and synthesize the smallmolecular ion probes and multiple stimuli responsive gels. Both ion probes and stimuliresponsive gel are based on selective response system,therefore, the design ofappropriate recognition sites, which can be integrated on the ion probes and stimuliresponsive gel become the research focus. Though the metal ion probes have beendeveloped quickly, the design of anion probes is relatively slow. Thus, the developing ofmultiple stimuli responsive gels with new molecular structures and properties is quitechallenging.
     Schiff bases, as excellent stimuli responsive molecules, are good candidates fordesign and synthesize the new anion probes and multiple stimuli responsive gels.Therefore, we synthesized several anion probes and a new ALS type multiple stimuliresponsive gel based on schiff bases and conducted thoroughly examination on theselectivity, sensitivity, and mechanism of them. The main content contained fouraspects:
     Firstly, based on the salicylic aldehyde hydrazone molecules, we studied the groupeffect on the anions sensing. By changing different substituents, including theelectron-donating groups, electron-withdrawing groups, the conjugate effect, we foundthe substituents had a great effect on the selectivity and sensitivity for anion recognition.For example, electron-donating groups could reduce the combination ability of probewith anion, but enhance the selectivity of anion recognition; in contrast, the conjugatedgroup and electron-withdrawing group could enhance the capacity for combining anions,but reduce the selectivity of probe. Furthermore, we found the mechanism of thesensing process was a deprotonation process.
     Secondly, based on the phenol schiff bases, we had developed a dual channel probewhich could detect fluoride ions and cyanide ions in different channel respectively. Inthe UV-vis absorption spectra, the probe could response to fluoride ions with goodselectivity. It could be used as a naked eye probe to fluoride ions; while in the fluorescence spectra, the probe only responsed to cyanide ions with high selectivity.Furthermore, we proved that the colorimetric response to fluoride anions was based on adeprotonation process and the fluorescent response to cyanide anions (fluorescencequantum yield reached to0.9095,606-fold enhancement) was based on a cyclizationprocess. Moreover, it is the the first time to report cyclization of phenolic Schiff basesinduced by cyanide, and this mechanism could be used as a new way to synthesize2-substituted benzoxazoles.
     Thirdly, the pyrene phenol–hydrazone has been selected as a hypochlorite probe. Thisprobe displayed a color bleaching and fluorescence turning on in the presence ofhypochlorite. The fluorescence quantum yield reached to0.2259(42.6-foldenhancement) after sensing hypochlorite. The probe also exhibited a high selectivity andsensitivity to hypochlorite. Furthermore, the structure of C=N NH plays a key role inthe sensing process. As the phenol–hydrazone structure is easily synthesized; thisstrategy has great potential application in designing simple and efficient probes forhypochlorite.
     Fourthly, a new multi-response gelator based on salicylidene Schiff base has beensynthesized and demonstrated. The gelator can gelate many solvents by self-cooling orultrasonic processing. Scanning electron microscopy reveals that the xerogels of thestable gels have fibrillar microstructure. The gel exhibits an enhanced fluorescenceemission which is ascribed to the combination of inhibition of the intramolecularrotation and the formation of J-aggregates. Thermochromism is observed, which can beexplained by the equilibrium between the enol form and the keto form. Furthermore, thegel shows a selective fluorescent response to Zn2+in protic solvent ethanol and anexcellent colorimetric response to F in the aprotic solvent acetonitrile.
引文
[1]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007.
    [2]巴尔扎尼(意)等著,田禾,王利民译分子器件与分子机器[M].北京:化学工业出版,2005.
    [3] R. M-Manez,F. Sancenon. Fluorogenic and Chromogenic Chemosensors andReagents for Anions[J]. Chem. Rev.,2003,103:4419-4476.
    [4]龙凌亮.一系列有机小分子荧光功能材料的设计、合成及其应用研究[D].长沙:湖南大学化学化工学院,2010.
    [5]胡伟.调控单一染料存在状态制备多色图案[D].长春:吉林大学化学学院,2009.
    [6]李亨.颜色技术原理及其应用[M].北京:科学出版社,1994.
    [7]黄量,于德泉.紫外光谱在有机化学中的应用[M].北京:科学出版社,1988.
    [8]陈国珍.荧光分析法[M].北京:科学出版社,1975.
    [9](美)拉科维兹.荧光分析法原理[M].北京:科学出版社,2008.
    [10]祝大昌等译.分子发光分析法(荧光法和磷光法)[M].上海:复旦大学出版社,1985.
    [11] ISADDRE BERLMAN.芳香分子的荧光光谱手册[M].1971.
    [12] K-S Lee, T-K Kim, J. H. Lee, H-J Kim and J-I Hong. Fluorescence turn-onprobe for homocysteine and cysteine in water[J]. Chem. Commun.,2008,6173-6175
    [13] Y-W Wang, M-X Yu, Y-H Yu, Z-P Bai, Z Shen,F-Y Li,X-Z You. A colorimetricand fluorescent turn-on chemosensor for Al3+and its application inbioimaging[J].Tetrahedron Letters,2009,50:6169-6172.
    [14] Q. Meng, X. Zhang, C. He, G. He, P. Zhou and C. Duan. MultifunctionalMesoporous Silica Material Used for Detection and Adsorption of Cu2Rin Aqueous Solution and Biological Applications in vitro and in vivo[J].Adv. Funct. Mater.,2010,20:1903-1909
    [15] X. Zhang, Y. Shiraishi, T. Hirai. Fe(III)-and Hg(II)-selective dualchannel fluorescence of a rhodamine–azacrown ether conjugate[J].Tetrahedron Letters,2008,49:4178-4181.
    [16] P. Xue, R. Lu, G. Chen, Y. Zhang, H. Nomoto, M. Takafuji and H. Ihara.Functional Organogel Based on a Salicylideneaniline Derivative withEnhanced Fluorescence Emission and Photochromism[J]. Chem. Eur. J.,2007,13:8231-8239.
    [17] H. Tong,Y. Hong, Y. Dong,Y. Ren,M. Ha1ussler,J. W. Y. Lam,K. S. Wongand B. Z. Tang. Color-Tunable, Aggregation-Induced Emission of aButterfly-Shaped Molecule Comprising a Pyran Skeleton and TwoCholesteryl Wings[J]. J. Phys. Chem. B,2007,111:2000-2007.
    [18] T. Fukaminato, T. Doi, N. Tamaoki, K. Okuno, Y. Ishibashi, H. Miyasaka,and M. Irie. Single-Molecule Fluorescence Photoswitching of aDiarylethene-Perylenebisimide Dyad: Non-destructive FluorescenceReadout[J]. J. Am. Chem. Soc.,2011,133:4984-4990.
    [19]于联合,明阳福,樊美公,姚思德,林念云.芳环取代的俘精酸醉的合成及光致变色反应研究[J].化学学报,1996,54:716-721.
    [20] J. T. C. Wojtyk, P. M. Kazmaier and E. Buncel. Modulation of theSpiropyran-Merocyanine Reversion via Metal-Ion SelectiveComplexation: Trapping of the“Transient” cis-Merocyanine[J]. Chem.Mater.,2001,13:2547-2551.
    [21]侯秋飞.小分子凝胶因子的设计合成及其性质研究[D].长春:吉林大学化学学院,2010.
    [22] J. G. Amoros, W. A. Massad, S. Nonell, and D. Velasco. Fast IsomerizingMethyl Iodide Azopyridinium Salts for Molecular Switches[J]. Org.Lett.,2010,12:3514-3517
    [23] L. Zhao, D. Sui, J. Chai, Y. Wang and S. Jiang. Digital Logic CircuitBased on a Single Molecular System of Salicylidene Schiff Base[J]. J.Phys. Chem. B.,2006,110:24299-24304.
    [24] R. C. Grove, S. H. Malehorn, M. E. Breen and K. A. Wheeler. Aphotoreactive crystalline quasiracemate[J]. Chem. Commun.,2010,46:7322-7324.
    [25] F. Oton, A. Tarraga, A. Espinosa, M. D. Velasco and P. Molina.Ferrocene-Based Ureas as Multisignaling Receptors for Anions[J]. J.Org. Chem.,2006,71:4590-4598.
    [26]钱东金,付艳荣.紫精类化合物分子聚集体材料的界面组装[J].化学进展,2013,25:46-53
    [27] KIM S K,LEE D H,HONG J,et al. Chemosensors for Pyrophosphate[J].Acc. Chem. Res.,2009,42:23-31.
    [28]刘丹丹.分子内电荷转移(ICT)态发光材料的理论研究与分子设计[D].长春:吉林大学化学学院,2012.
    [29]晋卫军.基于光诱导电子转移作用的荧光/磷光分子开关和传感器[J].广西师范大学学报(自然科学版),21:146-147.
    [30] J. Seo, S. Kim and S. Y. Park. Strong Solvatochromic Fluorescence fromthe Intramolecular Charge-Transfer State Created by Excited-StateIntramolecular Proton Transfer[J]. J. Am. Chem. Soc.,2004,126:11154-11155.
    [31] Core-Substituted Naphthalene Bisimides: New Fluorophors with TunableEmission Wavelength for FRET Studies.F. Wurthner, S. Ahmed, C.Thalacker, and T. Debaerdemaeker. Chem. Eur. J.,2002,8:4742-4750.
    [32] L-J Ma, Y-F Liu and Y Wu. A tryptophan-containing fluoroionophoresensor with high sensitivity to and selectivity for lead ion inwater[J]. Chem. Commun.,2006,2702-2704.
    [33] Z. Zhao, S. Chen, X. Shen, F Mahta, Yong Yu, Ping Lu, J. W. Y. Lam,H. S. Kwoka and B. Zhong Tang. Aggregation-induced emission,self-assembly, and electroluminescence of4,4-bis (1,2,2-tri-phenylvinyl)biphenyl[J]. Chem. Commun.,2010,46:686-688.
    [34] R. Sheng, P. Wang, Y. Gao, Y. Wu, W. Liu, J. Ma, H. Li and S. Wu.Colorimetric Test Kit for Cu2+Detection[J]. Org. Lett.,2008,10:5015-5018.
    [35] M. H. Lee, B-K Cho, J. Yoon, and J. S. Kim. Selectively ChemodosimetricDetection of Hg(II) in Aqueous Media[J]. Org. Lett.,2007,22:4515-4518.
    [36] Y. Shiraishi, K. Adachi, M.Itoh, and T. Hirai. Spiropyran as aSelective, Sensitive, and Reproducible Cyanide Anion Receptor[J]. Org.Lett.,2009,11:3482-3485.
    [37] J. Yoo, M-S Kim, S-J. Hong, J. L. Sessler, and C-H. Lee. SelectiveSensing of Anions with Calix[4]pyrroles Strapped with ChromogenicDipyrrolylquinoxalines[J]. J. Org. Chem.2009,74:1065-1069.
    [38] X. He, S. Hu, K. Liu, Y. Guo, J. Xu, and S. Shao. OxidizedBis(indolyl)methane: A Simple and Efficient Chromogenic-SensingMolecule Based on the Proton Transfer Signaling Mode[J]. Org. Lett.,2006,8:333-336.
    [39] N. Kaur and S. Kumar.Single molecular colorimetric probe forsimultaneous estimation of Cu2+and Ni2+[J]. Chem. Commun.,2007,3069-3070.
    [40] A. Caballero, A. Tarraga, M. D. Velasco, A. Espinosa, and P Molina.Multifunctional Linear Triferrocene Derivatives Linked by OxidizableBridges: Optical, Electronic, and Cation Sensing Properties[J]. Org.Lett.,2005,7:3171-3174.
    [41] A. Caballero, A.Espinosa, A. Tarraga, and P. Molina. Ferrocene-BasedSmall Molecules for Dual-Channel Sensing of Heavy-andTransition-Metal Cations[J]. J. Org. Chem.,2008,73:5489-5497.
    [42] D. E-Gomez, L. Fabbrizzi, and M Licchelli.Why, on Interaction ofUrea-Based Receptors with Fluoride, Beautiful Colors Develop[J]. J.Org. Chem,2005,70:5717-5750.
    [43] D. Zhang.Highly selective and sensitive colorimetric probes forhypochlorite anion based on azo derivatives[J]. Spectrochimica ActaPart A,2010,77:397-401.
    [44] Y-H. Qiao, H. Lin, J. Shao, H-K. Lina,A highly selective naked-eyecolorimetric sensor for acetate ion based on1,10-Phenanth-roline-2,9-dicarboxyaldehyde-di-(p-substitutedphenyl-hydrazon)[J].Spectrochimica Acta Part A,2009,72:378–381.
    [45] N. Gimeno, X. Li, J. R. Durrant, and R. Vilar. Cyanide Sensing withOrganic Dyes: Studies in Solution and on Nanostructured Al2O3Surfaces[J]. Chem. Eur. J.,2008,14:3006-3012.
    [46] C-I Lin, S. Selvi, J-M. Fang, P-T. Chou, C-H. Lai, and Y-M. Cheng.Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as SelectiveChemosensors of Fluoride Ion: A Mechanistic Study[J]. J. Org. Chem.,2007,72:3537-3542.
    [47] F. Zapata, A. Caballero, A. Espinosa, A. Tarraga, and P. Molina. CationCoordination Induced Modulation of the Anion Sensing Properties of aFerrocene-Imidazophenanthroline Dyad: Multichannel Recognition fromPhosphate-Related to Chloride Anions[J]. J. Org. Chem.,2008,73:4034-4044.
    [48] H. Okamoto, H. Konishi, M. Kohno, and K. Satake, Fluorescence Responseof a4-Trifluoroacetylaminophthalimide to Iodide Ions upon254nmIrradiation in MeCN[J].2008,10:3125-3128.
    [49] D-S. Kim and K. H. Ahn. Fluorescence “Turn-On” Sensing of CarboxylateAnions with Oligothiophene-Basedo-(Carboxamido) trifluoroaceto-phenons[J]. J. Org. Chem.2008,73:6831-6834.
    [50] Y. Zhang, X. Guo, W. Si, L. Jia, and X. Qian. Ratiometric andWater-Soluble Fluorescent Zinc Sensor of Carboxamidoquinoline with anAlkoxyethylamino Chain as Receptor[J]. Org. Lett.,2008,10:473-476.
    [51] M. Suresh, S. Mishra, S. K. Mishra, E. Suresh, A.l K. Mandal, A.Shrivastav, and A. Das. Resonance Energy Transfer Approach and a NewRatiometric Probe for Hg2+in Aqueous Media and Living Organism[J]. Org.Lett.,2009,11:2740-2743.
    [52] L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff, and C. J. Chang. ASelective Turn-On Fluorescent Sensor for Imaging Copper in LivingCells[J]. J. Am. Chem. Soc.,2006,128:10-11.
    [53] Z. Xu, K-H. Baek, H. N. Kim, J. Cui, X. Qian,D. R. Spring, I. Shin,and J. Yoon.Zn2+-Triggered Amide Tautomerization Produces a HighlyZn2+-Selective,Cell-Permeable, and Ratiometric Fluorescent Sensor[J].J. Am. Chem. Soc.,2010,132:601-610.
    [54] Z-N Sun, F-Q Liu, Y. Chen, P. K. H. Tam, and D Yang. A Highly SpecificBODIPY-Based Fluorescent Probe for the Detection of HypochlorousAcid[J]. Org. Lett.,2008,10:2171-2174.
    [55] H-H. Wang, L. Xue, Y-Y.Qian,and H.Jiang. Novel Ratiometric FluorescentSensor for Silver Ions[J]. Org. Lett.,2010,12:292-295.
    [56] M. Shahid, S. S. Razi, P. Srivastava, R. Ali, B. Maiti, A. Misra. Auseful scaffold based on acenaphthene exhibiting Cu2+induced excimerfluorescence and sensing cyanide via Cu2+displacement approach[J].Tetrahedron,2012,68:9076-9084.
    [57] Y. Ma, Hong Liu,S. Liu and R. Yang. A simple fluorescent receptorselective for Mg2+[J]. Analyst,2012,137,2313-2317.
    [58] M. Dong, Y-W. Wang, and Y. Peng. Highly Selective RatiometricFluorescent Sensing for Hg2+and Au3+, Respectively, in Aqueous Media[J].Org. Lett.,2010,12:5310-5313.
    [59] L. Peng, M. Wang, G. Zhang, D. Zhang, and D. Zhu. A Fluorescence Turn-onDetection of Cyanide in Aqueous Solution Based on theAggregation-Induced Emission[J]. Org. Lett.,2009,11:1943-1946.
    [60] H. N. Lee, K. M. K. Swamy, S. K. Kim, J-Y. Kwon, Y. Kim, S-J. Kim,Y. J. Yoon, and J. Yoon.Simple but Effective Way to Sense Pyrophosphateand Inorganic Phosphateby Fluorescence Changes[J]. Org. Lett.,2007,9:243-246.
    [61] P. J. Flory. Introductory lecture. Faraday Discuss[J]. Chem. Soc.,1974,57:7-18.
    [62] N. M. Sangeetha, U. Maitra. Supramolecular gels: functions and uses[J].Chem. Soc. Rev.,2005,34:821-836.
    [63] Q. Hou, S. Wang, L. Zang, X. Wang, S. Jiang. Hydrogen-bondingA(LS)2-type low-molecular-mass gelator and its thermotropicmesomorphic behavior[J]. J. Colloid Interface Sci.,2009,338:463-467.
    [64] X. Yang, R. Lu, F. Gai, P. Xue and Y. Zhan. Rigid dendritic gelatorsbased on oligocarbazoles[J]. Chem. Commun.,2010,46:1088-1090.
    [65] Q. Liu, Y. Wang, W. Li, and L. Wu. Structural Characterization andChemical Response of a Ag-Coordinated Supramolecular Gel[J].Langmuir,2007,23:8217-8223.
    [66] F. Wurthner, C. Bauer, V. Stepanenko, and S. Yagai. A Black PeryleneBisimide Super Gelator with an Unexpected J-Type AbsorptionBand[J].Adv. Mater.,2008,20:1695-1698.
    [67] M. Yoshida, N. Koumura, Y. Misawa, N. Tamaoki,H. Matsumoto, H. Kawanami,S. Kazaoui, and N. Minami.Oligomeric Electrolyte as a MultifunctionalGelator[J]. J. Am. Chem. Soc.,2007,129:11039-11041.
    [68] R. G. Weiss, P. Terech (eds.), Molecular gels, materials withself-assembled fibrillar networks[M]. Netherlands: Springer,2006,1-13.
    [69] J. Liu, P. He, J. Yan, X. Fang, J. Peng, K. Liu, and Y. Fang. AnOrganometallic Super-Gelator with Multiple-Stimulus ResponsiveProperties[J]. Adv. Mater.,2008,20:2508-2511.
    [70] Y. C. Lin and R. G. Weiss. A Novel Gelator of Organic Liquids and theProperties of Its Gels[J]. Macromolecules,1987,20:414-417.
    [71] F. Camerel, L. Bonardi, M. Schmutz, and R. Ziessel. Highly LuminescentGels and Mesogens Based on Elaborated Borondipyrromethenes[J]. J. Am.Chem. Soc.,2006,128:4548-4549.
    [72] G. John, G. Zhu, J. Li, and J. S. Dordick. Enzymatically DerivedSugar-Containing Self-Assembled Organogels with NanostructuredMorphologies[J]. Angew. Chem. Int. Ed.,2006,45,4772-4775.
    [73] D. K. Kumar, D. A. Jose, A. Das and P. Dastidar.First snapshot of anonpolymeric hydrogelator interacting with its gelling solvents[J].Chem. Commun.,2005,4059-4061.
    [74] M. A. Greenfield, J. R. Hoffman, M. O. Cruz,and S. I. Stupp. TunableMechanics of Peptide Nanofiber Gels[J]. Langmuir2010,26(5),3641-3647.
    [75] B.Huang, A. R. Hirst, D. K. Smith, V. Castelletto, and I. W. Hamley.A Direct Comparison of One-and Two-Component Dendritic Self-AssembledMaterials: Elucidating Molecular Recognition Pathways[J]. J. Am. Chem.Soc.,2005,127:7130-7139.
    [76] A. Kishimura, T. Yamashita, and T. Aida. Phosphorescent Organogelsvia “Metallophilic” Interactions for Reversible RGB-ColorSwitching[J]. J. Am. Chem. Soc.,2005,127,179-183.
    [77] D. G. Velazquez, D. D. Diaz, A. G. Ravelo, and J. M. Tellado.Instantaneous Low Temperature Gelation by a MulticomponentOrganogelator Liquid System Based on Ammonium Salts[J]. J. Am. Chem.Soc.,2008,130,7967-7973.
    [78] M. George and R. G. Weiss. Molecular Organogels. Soft Matter Comprisedof Low-Molecular-Mass Organic Gelators and Organic Liquids[J]. Acc.Chem. Res.,2006,39:489-497.
    [79] J. W. Chung, S. J. Yoon, S. J. Lim, B. K. An, and S. Y. Park. Dual-ModeSwitching in Highly Fluorescent Organogels: Binary Logic Gates withOptical/Thermal Inputs[J]. Angew. Chem. Int. Ed.,2009,48:7030-7034.
    [80] O. Simalou, X. Zhao, R. Lu, P. Xue, X. Yang and X. Zhang. Strategyto Control the Chromism and Fluorescence Emission of a Perylene Dyein Composite Organogel Phases[J]. Langmuir,2009,25:11255-11260.
    [81] T. Naota and H. Koori. Molecules That Assemble by Sound: An Applicationto the Instant Gelation of Stable Organic Fluids[J]. J. Am. Chem. Soc.,2005,127:9324-9325.
    [82] J. B. Beck and S. J. Rowan. Multistimuli, MultiresponsiveMetallo-Supramolecular Polymers[J]. J. Am. Chem. Soc.,2003,125:13922-13923.
    [83] H. Maeda, Y. Haketa and T. Nakanishi. Aryl-Substituted C3-BridgedOligopyrroles as Anion Receptors for Formation of SupramolecularOrganogels[J]. J. Am. Chem. Soc.,2007,129:13661-13674.
    [84] W. Edwards and D. K. Smith. Cation-responsive silver-selectiveorganogel—exploiting silver–alkene interactions in thegel-phase[J]. Chem. Commun.,2012,48:2767-2769.
    [85] F. R-Llansola, B. Escuder, J. F. Miravet, D. H-Merino, Ian. W. Hamley,C. J. Cardinb and W. Hayes. Selective and highly efficient dyescavenging by a pH-responsive molecular hydrogelator[J]. Chem.Commun.,2010,46:7960-7962.
    [86] D-C. Lee, K. K. McGrath and K. Jang. Nanofibers of asymmetricallysubstituted bisphenazine through organogelation and their acidsensing properties[J]. Chem. Commun.,2008,3636-3638.
    [87] S. I. Kawano, N. Fujita, and S. Shinkai. A Coordination Gelator ThatShows a Reversible Chromatic Change and Sol Gel Phase-TransitionBehavior upon Oxidative/Reductive Stimuli[J]. J. Am. Chem. Soc.,2004,126:8592-8593.
    [88] T. Tu, W. Fang, X. Bao, X. Li, K. H. Dotz. Visual Chiral Recognitionthrough Enantioselective Metallogel Collapsing: Synthesis,Characterization, and Application of Platinum–SteroidLow-Molecular-Mass Gelators[J].2011,50:6601-6605.
    [89] H. Tian and S. Wang. Photochromic bisthienylethene as multi-functionswitches[J]. Chem. Commun.,2007,781-792.
    [90] C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, Y. Huang, R. Zhao andD. Zhu. Multistimuli Responsive Organogels Based on a New GelatorFeaturing Tetrathiafulvalene and Azobenzene Groups: Reversible Tuningof the Gel-Sol Transition by Redox Reactions and Light Irradiation[J].J. Am. Chem. Soc.,2010,132:3092-3096.
    [91] J. H. Lee, S. Kang, J. Y. Lee and J. H. Jung. A tetrazole-basedmetallogel induced with Ag+ion and its silver nanoparticle incatalysis [J]. Soft Matter,2012,8:6557-6563.
    [92] C. Giansante, G. Raffy, C. Sch fer, H. Rahma, M-T Kao, A. G. L. Olive,and A. D. Guerzo. White-Light-Emitting Self-Assembled NanoFibers andTheir Evidence by Microspectroscopy of Individual Objects[J]. J. Am.Chem. Soc.,2011,133:316-325.
    [93] E. D. Sone, E. R. Zubarev, S. I. Stupp. Semiconductor NanohelicesTemplated by Supramolecular Ribbons[J]. Angew. Chem. Int. Ed.,2002,1705-1709.
    [94] W. Jeon, H-J. Kim, D. Kim, H. Kim, N. Selvapalam, N. Fujita, S.Shinkai,K. Kim. Cucurbit[7]uril: A Simple Macrocyclic, pH-TriggeredHydrogelator Exhibiting Guest-Induced Stimuli-Responsive Behavior[J].Angew. Chem. Int. Ed.,2006:210-213.
    [95] A. Ajayaghosh, V. K. Praveen, C. Vijayakumar and S. J. George,Molecular Wire Encapsulated into p Organogels: EfficientSupramolecular Light-Harvesting Antennae with Color-TunableEmission[J]. Angew. Chem. Int. Ed.,2007,46:6260-6265.
    [96] I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida, and I.Hamachi. Molecular Recognition in a Supramolecular Hydrogel to Afforda Semi-Wet Sensor Chip[J]. J. Am. Chem. Soc.,2004,126:12204-12205.
    [97] J. Boekhoven, M. Koot, T. A. Wezendonk, R. Eelkema, and J. H. Esch.A Self-Assembled Delivery Platform with Post-production TunableRelease Rate[J]. J. Am. Chem. Soc.,2012,134:12908-12911.
    [98] Z. Qi, P. M. Molina, W. Jiang, Q. Wang, K. Nowosinski, A. Schulz, M.Gradzielski and C. A. Schalley. Systems chemistry: logic gates basedon the stimuli-responsive gel-sol transition of a crownether-functionalized bis(urea) gelator[J]. Chem. Sci.,2012,3:2073-2082.
    [99] P. G. Cozzi. Metal–Salen Schiff base complexes in catalysis:practical aspects[J]. Chem. Soc. Rev.,2004,33,410-421.
    [100] T. Naota and H. Koori.Molecules That Assemble by Sound: An Applicationto the Instant Gelation of Stable Organic Fluids[J]. J. Am. Chem. Soc.,2005,127,9324-9325.
    [101] S J. Wezenberg, E. C. Escudero-Adán, J. Benet-Buchholz and A. W.Kleij. Colorimetric Discrimination between Important Alkaloid NucleiMediated by a Bis-Salphen Chromophore[J]. Org. Lett.,2008,10:3311-3314.
    [102] D. Saravanakumar, S. Devaraj, S. Iyyampillai, K. Mohandoss and M.Kandaswamy. Schiff’s base phenol–hydrazone derivatives ascolorimetric chemosensors for fluoride ions[J]. Tetrahedron Lett.,2008,49:127-132.
    [103] U. C. Saha, K. Dhara, B. Chattopadhyay, S. K. Mandal, S. Mondal, S.Sen, M. Mukherjee, S.van.Smaalen,and P. Chattopadhyay. A NewHalf-Condensed Schiff Base Compound: Highly Selective and SensitivepH-Responsive Fluorescent Sensor[J].Org. Lett.,2011,13:4510-4513.
    [104] W. Tang, Y. Xiang, and A. Tong. Salicylaldehyde Azines as Fluorophoresof Aggregation-Induced Emission Enhancement Characteristics[J]. J.Org. Chem.,2009,74:2163-2166.
    [105] J. Harada, H. Uekusa,and Y. Ohashi. X-ray Analysis of StructuralChanges in Photochromic Salicylideneaniline Crystals.Solid-StateReaction Induced by Two-Photon Excitation[J]. J. Am. Chem. Soc.1999,121,5809-5810
    [106] K Ogawa, Y. Kasahara, Y. Ohtani, and J. Harada. Crystal StructureChange for the Thermochromy of N-Salicylideneanilines. The FirstObservation by X-ray Diffraction[J]. J. Am. Chem. Soc.1998,120:7107-7108.
    [107] W. Lin, L. Long, B. Chen, W. Tan. A ratiometric fluorescent probefor hypochlorite based on a deoximation reaction[J]. Chem. Eur. J.,2009,15:2305-2309.
    [108] J. Shi, Q. Li, X. Zhang, M. Peng, J. Qin, Z. Li. Simpletriphenylamine-based luminophore as a hypochlorite chemosensor[J].Sens. Act. B.,2010,145:583-587.
    [109] X. Cheng, H. Jia, T. Long, J. Feng, J. Qin and Z. Li. A “turn-on”fluorescent probe for hypochlorous acid: convenient synthesis, goodsensing performance, and a new design strategy by the removal of CQNisomerizationw[J].Chem. Commun.,2011,47:11978-11980.
    [110] P. Kovaricek and J-M. Lehn. Merging Constitutional and MotionalCovalent Dynamics in Reversible Imine Formation and ExchangeProcesses[J]. J. Am. Chem. Soc.,2012,134:9446-9455.
    [1] A. Bianchi, K. B. James, and E. G. Espana. Supramolecular Chemistryof Anions[M]. ed. Wiley-VCH, New York,1997.
    [2] Z. Xu, S. K. Kim, J. Yoon, Revisit to imidazolium receptors for therecognition of anions: highlighted research during2006–2009[J].Chem. Soc. Rev.,2010,39:1457-1466.
    [3] J. Janata. Introduction: Modern topics in chemical sensing[J]. Chem.Rev.,2008,108:327-328.
    [4] M. Cametti, and K. Rissanen. Recognition and sensing of fluorideanion[J]. Chem. Commun.,2009,2809-2829.
    [5] P. A. Gale. Anion receptor chemistry: highlights from2008and2009[J].Chem. Soc. Rev.,2010,39:3746-3771.
    [6] V. Amendola. D. E. Goamez, L. Fabbrizzi, and M. Licchelli. What AnionsDo to N-H Containing Receptors[J]. Acc. Chem. Res.,2006,39:343-353.
    [7] K. Parab, K. Venkatasubbaiah, and F. Jakle. Luminescent TriarylboraneFunctionalized Polystyrene: Synthesis, Photophysical Characteri-zation, and Anion-Binding Studies[J]. J. Am. Chem. Soc.,2006,128:12879-12885.
    [8] Kirk, K. L. Biochemistry of the Halogens and Inorganic Halides[M].Plenum: New York, NY,1991. p58.
    [9] Riggs, B. L. Bone and Mineral Research[M]. Annual2; Elsevier: Amsterdam,1984, pp366-393.
    [10] R. M. Má ez and F. Sancenón. Fluorogenic and Chromogenic Chemosensorsand Reagents for Anions[J]. Chem. Rev.,2003,103:4419-4476.
    [11] E. J. Cho, J. W. Moon, S. W. Ko, J. Y. Lee, S. K. Kim, J. Yoon, andK. C. Nam. A New Fluoride Selective Fluorescent as Well as ChromogenicChemosensor Containing a Naphthalene Urea Derivative[J]. J. Am. Chem.Soc.,2003,125:12376-12377.
    [12] J-M You, H. Jeong, H. Seo, S. Jeon. A new fluoride ion colorimetricsensor based on dipyrrolemethanes[J]. Sens. Actuators, B.,2010,146:160-164.
    [13] R. Sivakumar, V. Reena, N.Ananthi, M. Babu, S. Anandan, S. Velmath.Colorimetric and fluorescence sensing of fluoride anions withpotential salicylaldimine based schiff base receptors[J]. Spectrochim.Acta, Part A.,2010,75:1146-1151.
    [14] D. E. Gomez, L. Fabbrizzi, and M. Licchelli. Why, on Interaction ofUrea-Based Receptors with Fluoride, Beautiful Colors Develop[J]. J.Org. Chem.,2005,70:5717-5720.
    [15] L. Zang, D. Wei, S. Wang, S. Jiang. A phenolic Schiff base for highlyselective sensing of fluoride and cyanide via different channels[J].Tetrahedron,2012,68:636-641.
    [16] Q. Wang, Y. Xie, Y. Ding, X. Li and W. Zhu. Colorimetric fluoridesensors based on deprotonation of pyrrole–hemiquinone compounds[J].Chem. Commun.,2010,46:3669-3671.
    [17] X. Jiang, M. C. Vieweger, J. C. Bollinger, B. Dragnea, and D. Lee.Reactivity-Based Fluoride Detection: Evolving Design Principles forSpring-Loaded Turn-On Fluorescent Probes[J]. Org. Lett.,2007,9:3579-3582.
    [18] S. Y. Kim and J-I. Hong. Chromogenic and Fluorescent Chemodosimeterfor Detection of Fluoride in Aqueous Solution[J]. Org. Lett.,2007,9:3109-3112.
    [19] P. Sokkalingam and C-H. Lee. Highly Sensitive Fluorescence “Turn-On”Indicator for Fluoride Anion with Remarkable Selectivity in Organicand Aqueous Media[J]. J. Org. Chem.,2011,76:3820-3828.
    [20] X. Y. Liu, D. R. Bai, and S. Wang. Charge-Transfer Emission in NonplanarThree Coordinate Organoboron Compounds for Fluorescent Sensing ofFluoride[J]. Angew. Chem. Int. Ed.,2006,45:5475-5478.
    [21] H. Dato, P. Ali, P. E. Kruger, and T. Gunnlaugsson. Colorimetric‘naked-eye’ and fluorescent sensors for anions based on amidoureafunctionalised1,8-naphthalimide structures: anion recognition viaeither deprotonation or hydrogen bonding in DMSO[J]. New J. Chem,2008,32:1153-1161.
    [22] J. Yoo, M. Kim, S-J. Hong, J. L. Sessler, and C-H Lee. Selective Sensingof Anions with Calix[4]pyrroles Strapped with ChromogenicDipyrrolylquinoxalines[J]. J. Org. Chem.,2009,74:1065-1069.
    [23] W-X Liu, R. Yang, A-F. Li, Z. Li, Y-F Gao, X-X. Luo, Y-B. Ruana andY-B. Jiang. N-(Acetamido)thiourea based simple neutralhydrogen-bonding receptors for anions[J]. Org. Biomol. Chem.,2009,7:4021-4028.
    [24]J. Li, H. Lin, Z. Cai, H. Lin. A high selective anion colorimetric sensorbased on salicylaldehyde for fluoride in aqueous media[J]. Spectrochim.Acta, Part A.,2009,72:1062-1065.
    [25] H. E. Smith, S. L Cook, M. E. Warren. Optically Active Amines. II.The Optical Rotatory Dispersion Curves of the N-Benzylidene andSubstituted N-Benzylidene Derivatives of Some Open-Chain PrimaryAmines[J]. J. Org. Chem.,1964,29:2265-2272.
    [26] N. Noriyuki, K. Toshio, Y. Tsuguchika, U. Atsuhiro, N. Chie.1-Pyrenyldiazomethane as a fluorescent labeling reagent for liquidchromatographic determination of carboxylic acids[J]. Anal. Chem.,1988,60:2067-2070.
    [27] Q. Chu, D. A. Medvetz, and Y. Pang. A Polymeric Colorimetric Sensorwith Excited-State Intramolecular Proton Transfer for AnionicSpecies[J]. Chem. Mater.,2007,19:6421-6429.
    [1] A. Bianchi, K. Bowman-James, E. Garcia-Espana, SupramolecularChemistry of Anions[M]. Wiley-VCH: New York, NY,1997.
    [2] J. L. Sessler, P. A. Gale, W. S. Cho, In Anion Receptor Chemistry;Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry[M]. RSC:Cambridge, UK,2006.
    [3] Z. Xu, S. K. Kim, J. Yoon, Revisit to imidazolium receptors for therecognition of anions: highlighted research during2006–2009[J].Chem. Soc. Rev.,2010,39:1457-1466.
    [4] R. M. Má ez and F. Sancenón. Fluorogenic and Chromogenic Chemosensorsand Reagents for Anions[J]. Chem. Rev.,2003,103:4419-4476.
    [5] H. Komatsu, T. Miki, D. Citterio, T. Kubota, Y. Shindo, Y. Kitamura,K. Oka, K. Suzuki. Single Molecular Multianalyte (Ca2+, Mg2+)Fluorescent Probe and Applications to Bioimaging[J]. J. Am. Chem.Soc.,2005,127:10798-10799.
    [6] N. Kaur, S. Kumar, Single molecular colorimetric probe for simultaneousestimation of Cu2+and Ni2+[J]. Chem. Commun.,2007,3069-3070.
    [7] M. Schmittel, H. W. Lin, Quadruple-Channel Sensing: A Molecular Sensorwith a Single Type of Receptor Site for Selective and QuantitativeMulti-Ion Analysis[J]. Angew. Chem. Int. Ed.,2007,46:893-896.
    [8] D. Y. Lee, N. Singh, D. O. Jang, A benzimidazole-based single molecularmultianalyte fluorescent probe for the simultaneous analysis ofCu2+and Fe3+. Tetrahedron Lett.2010,51,1103-1106.
    [9] M. Yuan, W. Zhou, X. Liu, M. Zhu, J. Li, X. Yin, H. Zheng, Z. Zuo, C.Ouyang, H. Liu, Y. Li, D. Zhu. A Multianalyte Chemosensor on a SingleMolecule: Promising Structure for an Integrated Logic Gate[J]. J. Org.Chem.,2008,73:5008-5014.
    [10] S. Wang, G. Men, L. Zhao, Q. Hou, S. Jiang. Binaphthyl-derivedsalicylidene Schiff base for dual-channel sensing of Cu, Zn cationsand integrated molecular logic gates[J]. Sens. Actuators, B.,2010,145:826-831.
    [11] K. L. Kirk, Biochemistry of the Halogens and Inorganic Halides[M].Plenum: New York, NY,1991; p58.
    [12] B. L. Riggs, Bone and Mineral Research[M]. Annual2; Elsevier:Amsterdam,1984, pp366-393.
    [13] Ullmann’s Encyclopedia of Industrial Chemistry[M].6th ed.;Wiley-VCH: New York, NY,1999;
    [14] G. C. Miller, C. A. Pritsos, Cyanide: Soc., Ind., Econ. Aspects, Proc.Symp. Annu. Meet.[C],2001,73.
    [15] S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee, J. S. Kim, AFluoride-Selective PCT Chemosensor Based on Formation of a StaticPyrene Excimer[J]. Org. Lett.,2005,7:4839-4842.
    [16] D. Saravanakumar, S. Devaraj, S. Iyyampillai, K. Mohandoss, M.Kandaswamy. Schiff’s base phenol–hydrazone derivatives ascolorimetric chemosensors for fluoride ions[J]. Tetrahedron Lett.,2008,49:127-132.
    [17] Y. Wu, X. Peng, J. Fan, S. Gao, M. Tian, J. Zhao, S. Sun. FluorescenceSensing of Anions Based on Inhibition of Excited-State IntramolecularProton Transfer[J]. J. Org. Chem.,2006,72:62-70.
    [18] P. Ashokkumar, V. T. Ramakrishnan, P. Ramamurthy. FluorescenceSpectroscopic Evidence for Hydrogen Bonding and DeprotonationEquilibrium between Fluoride and a Thiourea Derivative[J]. Chem.Eur.J.,2010,16:13271-13277.
    [19] J. L. Sessler, D.-G. Cho. The Benzil Rearrangement Reaction: Trappingof a Hitherto Minor Product and Its Application to the Development ofa Selective Cyanide Anion Indicator[J]. Org. Lett.,2007,10:73-75.
    [20] Y. Sun, Y. Liu, W. Guo. Fluorescent and chromogenic probes bearingsalicylaldehyde hydrazone functionality for cyanide detection inaqueous solution[J]. Sens. Actuators, B.,2009,143:171-176.
    [21] Y. Shiraishi, K. Adachi, M. Itoh, T. Hirai. Spiropyran as a Selective,Sensitive, and Reproducible Cyanide Anion Receptor[J]. Org. Lett.,2009,11:3482-3485.
    [22] S.-H. Kim, S.-J. Hong, J. Yoo, S. K. Kim, J. L. Sessler, C.-H. Lee.Strapped Calix[4]pyrroles Bearing a1,3-Indanedione at a β-PyrrolicPosition: Chemodosimeters for the Cyanide Anion. Org. Lett.,2009,11:3626-3629.
    [23] S. Park, H.-J. Kim. Highly activated Michael acceptor by anintramolecular hydrogen bond as a fluorescence turn-onprobe for cyanide[J]. Chem. Commun.,2010,9197-9199.
    [24] Y.-K. Yang, J. Tae. Acridinium Salt Based Fluorescent and ColorimetricChemosensor for the Detection of Cyanide in Water[J]. Org. Lett.,2006,8:5721-5723.
    [25] F. Garcia, J. M. Garcia, B. Garcia-Acosta, R. Martinez-Manez, F.Sancenon, J. Soto. Pyrylium-containing polymers as sensory materialsfor the colorimetric sensing of cyanide in water[J]. Chem. Commun.,2005,2790-2792.
    [26] K. P. Divya, S. Sreejith, B. Balakrishna, P. Jayamurthy, P. Anees,A. Ajayaghosh. A Zn2+-specific fluorescent molecular probe for theselective detection of endogenous cyanide in biorelevant samples[J].Chem. Commun.,2010,6069-6071.
    [27] X. Lou, L. Zhang, J. Qin, Z. Li. An alternative approach to developa highly sensitive and selective chemosensor for the colorimetricsensing of cyanide in water[J]. Chem. Commun.,2008,5848-5850.
    [28] Z. Li, X. Lou, H. Yu, Z. Li, J. Qin. An Imidazole-FunctionalizedPolyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ionsand Cyanide[J]. Macromolecules,2008,41:7433-7439.
    [29] Y. M. Chung, B. Raman, D.-S. Kim, K. H. Ahn. Fluorescence modulationin anion sensing by introducing intramolecular H-bonding interactionsin host–guest adducts[J]. Chem. Commun.,2006,186-188.
    [30] P. Anzenbacher, D. S. Tyson, K. Jursíkova, F. N. Castellano.Luminescence Lifetime-Based Sensor for Cyanide and Related Anions[J].J. Am. Chem. Soc.,2002,124:6232-6233.
    [31] S. Saha, A. Ghosh, P. Mahato, S. Mishra, S. K. Mishra, E. Suresh, S.Das, A. Das. Specific Recognition and Sensing of CN in Sodium CyanideSolution[J]. Org. Lett.,2010,12:3406-3409.
    [32] Z. Xu, X. Chen, H. N. Kim, J. Yoon. Sensors for the optical detectionof cyanide ion[J]. Chem. Soc. Rev.2010,39:127-137.
    [33] M. Cametti, K. Rissanen. Recognition and sensing of fluoride anion[J].Chem. Commun.,2009,2809-2829.
    [34] J. Ma, P. K. Dasgupta, Recent developments in cyanide detection: Areview[J]. Anal. Chim. Acta.,2010,673:117-125.
    [35] P. A. Gale. Anion receptor chemistry: highlights from2008and2009[J].Chem. Soc. Rev.,2010,39:3746-3771.
    [36] Q.-S. Lu, L. Dong, J. Zhang, J. Li, L. Jiang, Y. Huang, S. Qin, C.-W.Hu, X.-Q. Yu. Imidazolium-Functionalized BINOL as a MultifunctionalReceptor for Chromogenic and Chiral Anion Recognition[J]. Org. Lett.,2009,11:669-672.
    [37] H. Miyaji, J. L. Sessler. Off-the-Shelf Colorimetric Anion Sensors[J].Angew. Chem. Int. Ed.,2001,40:154-157.
    [38] C.-Y. Chen, T.-P. Lin, C.-K. Chen, S.-C. Lin, M.-C. Tseng, Y.-S. Wen,S.-S. Sun. New Chromogenic and Fluorescent Probes for AnionDetection: Formation of a [2+2] Supramolecular Complex on Additionof Fluoride with Positive Homotropic Cooperativity[J]. J. Org. Chem.,2008,73:900-911.
    [39] L. M. Z-Dimer, D. C. Reis, C. Machado, V. G. Machado, Chromogenicanionic chemosensors based on protonated merocyanine solvatochromicdyes in trichloromethane and in trichloromethane–water biphasicsystem[J]. Tetrahedron,2009,65:4239-4248.
    [40] D.-S. Kim, Y.-M. Chung, M. Jun, K. H. Ahn. Selective ColorimetricSensing of Anions in Aqueous Media through Reversible Covalent Bonding[J]. J. Org. Chem.,2009,74:4849-4854.
    [41] X. He, S. Hu, K. Liu, Y. Guo, J. Xu, S. Shao. OxidizedBis(indolyl)methane: A Simple and Efficient Chromogenic-SensingMolecule Based on the Proton Transfer Signaling Mode[J]. Org. Lett.,2006,8:333-336.
    [42] P. Bose, B. N. Ahamed, P. Ghosh. Functionalized guanidinium chloridebased colourimetric sensors for fluoride and acetate: single crystalX-ray structural evidence of-NH deprotonation and complexation[J].Org. Biomol. Chem.,2011,9:1972-1979.
    [43] T. Abalos, D. Jimenez, R. Martínez-Manez, J. V. Ros-Lis, S. Royo, F.Sancenon, J. Soto, A. M. Costero, S. Gil, M. Parra. Hg2+and Cu2+selective detection using a dual channel receptor based onthiopyrylium scaffoldings[J]. Tetrahedron Lett.,2009,50:3885-3888.
    [44] H. J. Jung, N. Singh, D. Y. Lee, D. O. Jang. Single sensor for multipleanalytes: chromogenic detection of I and fluorescent detection ofFe3+[J]. Tetrahedron Lett.,2010,51:3962-3965.
    [45] N. Singh, N. Kaur, C. N. Choitir, J. F. Callan. A dual detectingpolymeric sensor: chromogenic naked eye detection of silver andratiometric fluorescent detection of manganese[J]. Tetrahedron Lett.,2009,50:4201-4204.
    [46] T. Abalos, D. Jimenez, M. Moragues, S. Royo, R. Martínez-Manez, F.Sancenon, J. Soto, A. M. Costero, M. Parra, S. Gila. Multi-channelreceptors based on thiopyrylium functionalised with macrocyclicreceptors for the recognition of transition metal cations andanions[J]. Dalton Trans.,2010,39:3449-3459.
    [47] H. E. Smith, S. L Cook, M. E. Warren. Optically Active Amines. II.The Optical Rotatory Dispersion Curves of the N-Benzylidene andSubstituted N-Benzylidene Derivatives of Some Open-Chain PrimaryAmines[J]. J. Org. Chem.,1964,29:2265-2272.
    [48] L. Zhao, D. Sui, J. Chai, Y. Wang, S. Jiang. Digital Logic CircuitBased on a Single Molecular System of Salicylidene Schiff Base[J]. J.Phys. Chem. B.,2006,110:24299-24304.
    [49] Q. Wang, Y. Xie, Y. Ding, X. Li, W. Zhu. Colorimetric fluoride sensorsbased on deprotonation of pyrrole–hemiquinone compounds[J]. Chem.Commun.,2010,3669-3671.
    [50] I. G. Shenderovich, P. M. Tolstoy, N. S. Golubev, S. N. Smirnov, G.S. Denisov, H.-H. Limbach. Low-Temperature NMR Studies of theStructure and Dynamics of a Novel Series of Acid Base Complexes of HFwith Collidine Exhibiting Scalar Couplings Across Hydrogen Bonds[J].J. Am. Chem. Soc.,2003,125:11710-11720.
    [51] I. G. Shenderovich, H.-H. Limbach, S. N. Smirnov, P. M. Tolstoy, G.S. Denisov, N. S. Golubev. H/D isotope effects on the low-temperatureNMR parameters and hydrogen bond geometries of (FH)2F and (FH)3Fdissolved in CDF3/CDF2Cl[J]. Phys. Chem. Chem. Phys.,2002,4:5488-5497.
    [52] M. R. DeLuca, S. M. Kerwin. The Total Synthesis of UK-1[J]. TetrahedronLett.,1997,38:199-202.
    [53] Y. Sato, M. Yamada, S. Yoshida, T. Soneda, M. Ishikawa, T. Nizato,K. Suzuki, F. Konno. Benzoxazole Derivatives as Novel5-HT3ReceptorPartial Agonists in the Gut[J]. J. Med. Chem.,1998,41:3015-3021.
    [54] A. C. Giddens, H. I. M. Boshoff, S. G. Franzblau, C. E. Barry Iii,B. R. Copp. Antimycobacterial natural products: synthesis andpreliminary biological evaluation of the oxazole-containing alkaloidtexaline[J]. Tetrahedron Lett.,2005,46:7355-7357.
    [55] K. Guzow, K. Mazurkiewicz, M. Szabelski, R. Ganzynkowicz, J. Karolczak,W. Wiczk. Influence of an aromatic substituent in position2onphotophysical properties of benzoxazol-5-yl-alanine derivatives[J].Chem. Phys.,2003,295:119-130.
    [56] J. Chang, K. Zhao, S. Pan. Synthesis of2-arylbenzoxazoles via DDQpromoted oxidative cyclization of phenolic Schiff bases—asolution-phase strategy for library synthesis[J]. Tetrahedron Lett.,2002,43:951-954.
    [57] R. S. Varma, R. K. Saini, O. Prakash. Hypervalent Iodine Oxidationof Phenolic Schiff's Bases: Synthesis of2-Arylbenzoxazoles[J].Tetrahedron Lett.,1997,38:2621-2622.
    [58] K. H. Park, K. Jun, S. R. Shin, S. W. Oh.2-Arylbenzoxazoles fromPhenolic Schiff’s Bases by Thianthrene Cation Radical[J].Tetrahedron Lett.,1996,37:8869-8870.
    [59] C. Praveen, K. H. Kumar, D. Muralidharan, P. T. Perumal. Oxidativecyclization of thiophenolic and phenolic Schiff’s bases promoted byPCC: a new oxidant for2-substituted benzothiazoles andbenzoxazoles[J]. Tetrahedron,2008,64:2369-2374.
    [60] Y. Chen, D. X. Zeng. Study on Photochromic Diarylethene with PhenolicSchiff Base: Preparation and Photochromism of Diarylethene withBenzoxazole[J]. J. Org. Chem.,2004,69:5037-5040.
    [1] A. J. Kettle, C. C. Winterbourn. Myeloperoxidase: a key regulator ofneutrophil oxidant production[J]. Redox Rep,1997,3:3-15.
    [2] D. I. Pattison, M. J. Davies. Absolute rate constants for the reactionof hypochlorous acid with protein side chains and peptide bonds[J].Chem. Res. Toxicol,2001,14:1453-1464.
    [3] T. Aokl, M. Munemorl. Continuous flow determination of free chlorinein water[J]. Anal. Chem.,1983,55:209-212.
    [4] S. Sugiyama, Y. Okada, G. K. Sukhova, R. Virmani, J. W. Heinecke, P.Libby. Macrophage myeloperoxidase regulation by granulocytemacrophage colonystimulating factor in human atherosclerosis andimplications in acute coronary syndromes, Am. J. Pathol[J].2001,158:879-891.
    [5] M. J. Steinbeck, L. J. Nesti, P. F. Sharkey, J. Parvizi. Myeloperoxidaseand chlorinated peptides in osteoarthritis: potential biomarkers ofthe disease[J]. J. Orthop. Res.,2007,25:1128-1135.
    [6] S. A. Weitzman, L. I. Gordon. Inflammation and cancer: role ofphagocytegenerated oxidants in carcinogenesis. Blood[J].1990,76:655-663.
    [7] D. Zhang. Highly selective and sensitive colorimetric probes forhypochlorite anion based on azo derivatives[J]. Spectrochim. Acta. A.2010,77:397-401.
    [8] K. Cui, D. Zhang, G. Zhang, D. Zhu. A highly selective naked-eye probefor hypochlorite with the p-methoxyphenol-substituted anilinecompound[J]. Tetrahedron Lett.,2010,51:6052-6055.
    [9] X. Lou, Y. Zhang, Q, Li,J. Qin, Z. Li. A highly specific rhodamine-basedcolorimetric probe for hypochlorites: a new sensing strategy and realapplication in tap water[J]. Chem. Commun.,2011,47:3189-3191.
    [10] F. J. Huo, J. J. Zhang, Y. T. Yang, J. B. Chao, C. X. Yin, Y. B. Zhang,T. G. Chen. A fluorescein-based highly specific colorimetric andfluorescent probe for hypochlorites in aqueous solution and itsapplication in tap water[J]. Sens. Act. B.,2012,166:44-49.
    [11] X. Lou, Y. Zhang, J. Qin, Z. Li. Colorimetric hypochlorite detectionusing an azobenzene acid in pure aqueous solutions and real applicationin tap water[J]. Sens. Act. B.,2012,161:229-234.
    [12] X. Chen, X. Tian, I. Shin and J. Yoon. Fluorescent and luminescentprobes for detection of reactive oxygen and nitrogen species[J]. Chem.Soc. Rev.,2011,40:4783-4804.
    [13] S. Chen, J. Lu, C. Sun, H. Ma. A highly specific ferrocene-basedfluorescent probe for hypochlorous acid and its application to cellimaging [J]. Analyst,2010,135:577-582.
    [14] A. P. Soldatkin, D. V. Gorchkov, C. Martelet and N. Jaffrezic-Renault.New enzyme potentiometric sensor for hypochlorite pecies detection[J].Sens. Act. B.,1997,43:99-104.
    [15] T. Watanabe, T. Idehara, Y. Yoshimura and H. Nakazawa. J. Chromatogr.,A.1998.796.397-400.
    [16] K. Kundu, S. F. Knight, N. Willett, S. Lee, W. R. Taylor, and N. Murthy.Hydrocyanines: A Class of Fluorescent Sensors That Can Image ReactiveOxygen Species in Cell Culture, Tissue, and In Vivo[J]. Angew. Chem.Int. Ed.,2009,48:299-303.
    [17] Y. Koide, Y. Urano, K. Hanaoka, T. Terai, and T. Nagano. Developmentof an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence ProbeSelective for Hypochlorous Acid and Its Applications for BiologicalImaging[J]. J. Am. Chem. Soc,2011,133:5680-5682.
    [18] P. Panizzi, M. Nahrendorf, M. Wildgruber, P. Waterman, J-L. Figueiredo,E. Aikawa, J. McCarthy, R. Weissleder, S. A. Hilderbrand. OxazineConjugated Nanoparticle Detects in Vivo Hypochlorous Acid andPeroxynitrite Generation[J]. J. Am. Chem. Soc.,2009,131:15739-15744.
    [19] Y. Yan, S. Wang, Z. Liu, H. Wang, D. Huang, CdSe-ZnS Quantum Dots forSelective and Sensitive Detection and Quantification of Hypochlorite[J]. Anal. Chem.,2010,82:9775-9781.
    [20] S. Kenmoku, Y. Urano, H. Kojima, T. Nagano. Development of a highlyspecific rhodamine-based fluorescence probe for hypochlorous acid andits application to real-time imaging of phagocytosis[J]. J. Am. Chem.Soc.2007,129:7313-7318.
    [21] Koide, Y. Urano, K. Hanaoka, T. Terai, T. Nagano. Development of anSi-Rhodamine-Based Far-Red to Near-Infrared Fluorescence ProbeSelective for Hypochlorous Acid and Its Applications for BiologicalImaging[J]. J. Am. Chem. Soc.,2011,133:5680-5682.
    [22] J. Shepherd, S. A. Hilderbrand, P. Waternan, J. W. Heinecke, R.Weissleder, P. Libby. A fluorescent probe for the detection ofmyeloperoxidase activity in atherosclerosis-associatedmacrophages[J]. Chem. Biol.,2007,14:1221-1231.
    [23] X. Chen, K. A. Lee, E. M. Ha, K. M. Lee, Y. Y. Seo, H. K. Choi, H.N. Kim, M. J. Kim, C. S Cho, S. Y. Lee, W. J Lee, J. Yoon. A specificand sensitive method for detection of hypochlorous acid for the imagingof microbe-induced HOCl production[J]. Chem. Commun.,2011,47:4373-4375.
    [24] Y. K. Yang, H. J. Cho, J. Lee, I. Shin, J. Tae. A rhodamine hydroxamicacid-based fluorescent probe for hypochlorous acid and itsapplications to biological imagings[J]. Org. Lett.,2009,11:859-861.
    [25] X-Q. Zhan, J-H. Yan, J-H. Su, Y-C. Wang, J. He, S-Y. Wang, H. Zheng,J-G. Xu. Thiospirolactone as a recognition site: Rhodamine B-basedfluorescent probe for imaging hypochlorous acid generated in humanneutrophil cells[J]. Sens. Act. B.,2010,150,774-780.
    [26] X. Q. Chen, X. C. Wang, S. J. Wang, W. Shi, K. Wang, H. M. Ma. A highlyselective and sensitive fluorescence probe for the hypochloriteanion[J]. Chem. Eur. J.,2008,14:4719-4724.
    [27] Z. N. Sun, F. Q. Liu, Y. Chen, P. K. H. Tam, D. Yang. A highly specificbodipy-based fluorescent probe for the detection of hypochlorousacid[J]. Org. Lett.,2008,10:2171-2174.
    [28] T. Kim, S. Park, Y. Choi, and Y. Kim. A BODIPY-Based Probe for theSelective Detection of Hypochlorous Acid in Living Cells[J]. Chem.Asian J.,2011,6:1358-1361.
    [29] W. Lin, L. Long, B. Chen, W. Tan. A ratiometric fluorescent probe forhypochlorite based on a deoximation reaction[J]. Chem. Eur. J.,2009,15:2305-2309.
    [30] L.Yuan, W. Lin, J. Song and Y. Yang. Development of an ICT-basedratiometric fluorescent hypochlorite probe suitable for living cellimaging[J]. Chem. Commun.,2011.47:12691-12693.
    [31] L. Yuan, W. Lin, Y. Xie, B. Chen, and J. Song. Fluorescent Detectionof Hypochlorous Acid from Turn-On to FRET-Based Ratiometry by aHOCl-Mediated Cyclization Reaction[J]. Chem. Eur. J.,2012,18:2700-2706.
    [32] J. Shi, Q. Li, X. Zhang, M. Peng, J. Qin, Z. Li. Simpletriphenylamine-based luminophore as a hypochlorite chemosensor[J].Sens. Act. B.,2010,145:583-587.
    [33] X. Cheng, H. Jia, T. Long, J. Feng, J. Qin and Z. Li. A “turn-on”fluorescent probe for hypochlorous acid: convenient synthesis, goodsensing performance, and a new design strategy by the removal of CQNisomerization[J]. Chem. Commun.,2011,47:11978-11980.
    [34] L. Zhao, D. Sui, J. Chai, Y. Wang, S. Jiang. Digital logic circuitbased on a single molecular system of salicylidene schiff base[J]. J.Phys. Chem. B.,2006,110:24299-24304.
    [1] Y. C. Lin and R. G. Weiss. A Novel Gelator of Organic Liquids and theProperties of Its Gels[J]. Macromolecules,1987,20:414-417.
    [2] P. Terech, R. G. Weiss. Low Molecular Mass Gelators of Organic Liquidsand the Properties of Their Gels[J]. Chem. Rev.,1997,97:3133-3160.
    [3] M. George, R. G. Weiss. Molecular Organogels. Soft Matter Comprisedof Low-Molecular-Mass Organic Gelators and Organic Liquids[J]. Acc.Chem. Res.,2006,39:489-497.
    [4] L. A. Estroff, A. D. Hamilton. Water Gelation by Small OrganicMolecules[J]. Chem. Rev.,2004,104:1201-1217.
    [5] F. Fages. Low Molecular Mass Gelators: Design, Self-Assembly,Function[J]. Top. Curr. Chem.,2005,256:1-273.
    [6] N. M. Sangeetha, U. Maitra. Supramolecular gels: Functions and uses[J].Chem. Soc. Rev.,2005,34:821-836.
    [7] K. Sada, M. Takeuchi, N. Fujita, M. Numata, S. Shinkai.Post-polymerization of preorganized assemblies for creatingshapecontrolled functional materials[J]. Chem. Soc. Rev.,2007,36:415-435.
    [8] P. Dastidar. Supramolecular gelling agents: can they be designed?[J].Chem. Soc. Rev.,2008,37:2699-2715.
    [9] M. Suzuki and K. Hanabusa. L-Lysine-based low-molecular-weightgelators[J]. Chem. Soc. Rev.,2009,38:967-975.
    [10] K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komri, F.Olrseto, K. Ueda, and S. Shinkai. Thermal and Light Control of theSol-Gel Phase Transition in Cholesterol-Based Organic Gels. NovelHelical Aggregation Modes As Detected by Circular Dichroism andElectron Microscopic Observation[J]. J. Am. Chem. Soc.,1994,116:6664-6676.
    [11] H. Tian and S. Wang. Photochromic bisthienylethene as multi-functionswitches[J]. Chem. Commun.,2007,781-792.
    [12] I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida, and I.Hamachi. Molecular Recognition in a Supramolecular Hydrogel to Afforda Semi-Wet Sensor Chip[J]. J. Am. Chem. Soc.,2004,126:12204-12205.
    [13] S. Bhuniya and B. H. Kim. An insulin-sensing sugar-based fluorescenthydrogel[J]. Chem. Commun.,2006,1842-1844.
    [14] X. Zhang, X. Liu, R. Lu, H. Zhang and P. Gong. Fast detection of organicamine vapors based on fluorescent nanofibrils fabricated fromtriphenylamine functionalized b-diketone-boron difluoride[J]. J.Mater. Chem.,2012,22:1167-1172.
    [15] P. Xue, R. Lu, J. Jia, M. Takafuji and H. Ihara. A Smart Gelator asa Chemosensor: Application to Integrated Logic Gates in Solution, Gel,and Film[J]. Chem. Eur. J.,2012,18:3549-3558.
    [16] H. Komatsu, S. Matsumoto, S. Tamaru, K. Kaneko, M. Ikeda, I. Hamachi.Supramolecular Hydrogel Exhibiting Four Basic Logic Gate Functions ToFine-Tune Substance Release[J]. J. Am. Chem. Soc.,2009,131:5580-5585.
    [17] J. W. Chung, S. J. Yoon, S. J. Lim, B. K. An, and S. Y. Park. Dual-ModeSwitching in Highly Fluorescent Organogels: Binary Logic Gates withOptical/Thermal Inputs[J]. Angew. Chem. Int. Ed.,2009,48:7030-7034.
    [18] Z. Qi, P. M. Molina, W. Jiang, Q. Wang, K. Nowosinski, A. Schulz, M.Gradzielski and C. A. Schalley. Systems chemistry: logic gates basedon the stimuli-responsive gel-sol transition of a crownether-functionalized bis(urea) gelator[J]. Chem. Sci.,2012,3:2073-2082.
    [19] A. Ajayaghosh, V. K. Praveen, C. Vijayakumar and S. J. George,Molecular Wire Encapsulated into p Organogels: EfficientSupramolecular Light-Harvesting Antennae with Color-TunableEmission[J]. Angew. Chem. Int. Ed.,2007,46:6260-6265.
    [20] A. Kishimura, T. Yamashita and T. Aida. Phosphorescent Organogels via“Metallophilic” Interactions for Reversible RGB-Color Switching[J].J. Am. Chem. Soc.,2005,127:179-183.
    [21] Z. Qiu, H. Yu, J. Li, Y. Wang and Y. Zhang. Spiropyran-linked dipeptideforms supramolecular hydrogel with dual responses to light and toligand–receptor interaction[J]. Chem. Commun.,2009,3342-3344.
    [22] F. Delbecq, N. Kaneko, H. Endo, T. Kawai. Solvation effects with aphotoresponsive two-component12-hydroxystearic acid-azobenzeneadditive organogel[J]. J. Colloid Interface Sci.,2012,384:94-98.
    [23] O. Simalou, X. Zhao, R. Lu, P. Xue, X. Yang and X. Zhang. Strategyto Control the Chromism and Fluorescence Emission of a Perylene Dyein Composite Organogel Phases[J]. Langmuir,2009,25:11255-11260.
    [24] T. Naota and H. Koori. Molecules That Assemble by Sound: An Applicationto the Instant Gelation of Stable Organic Fluids[J]. J. Am. Chem. Soc.,2005,127:9324-9325.
    [25] G. Cravotto and P. Cintas. Molecular self-assembly and patterninginduced by sound waves. The case of gelation[J]. Chem. Soc. Rev.,2009,38:2684-2697.
    [26] J. B. Beck and S. J. Rowan. Multistimuli, MultiresponsiveMetallo-Supramolecular Polymers[J]. J. Am. Chem. Soc.,2003,125:13922-13923.
    [27] H. Maeda, Y. Haketa and T. Nakanishi. Aryl-Substituted C3-BridgedOligopyrroles as Anion Receptors for Formation of SupramolecularOrganogels[J]. J. Am. Chem. Soc.,2007,129:13661-13674.
    [28] H. Yang, T. Yi, Z. Zhou, Y. Zhou, J. Wu, M. Xu, F. Li and C. Huang,Switchable Fluorescent Organogels and Mesomorphic SuperstructureBased on Naphthalene Derivatives[J]. Langmuir,2007,23:8224-8230.
    [29] P. Rajamalli and E. Prasad, Low Molecular Weight Fluorescent Organogelfor Fluoride Ion Detection[J]. Org. Lett.,2011,13:3714-3717.
    [30] X. Wang, L. Zhou, H. Wang, Q. Luo, J. Xu, J. Liu. Reversible organogelstriggered by dynamic K+binding and release[J]. J. Colloid InterfaceSci.,2011,353:412-419.
    [31] M. O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed. Metal-and Anion-Binding Supramolecular Gels[J]. Chem. Rev.,2010,110:1960-2004.
    [32] S. I. Kawano, N. Fujita, and S. Shinkai. A Coordination Gelator ThatShows a Reversible Chromatic Change and Sol Gel Phase-TransitionBehavior upon Oxidative/Reductive Stimuli[J]. J. Am. Chem. Soc.,2004,126:8592-8593.
    [33] J. Liu, J. Yan, X. Yuan, K. Liu, J. Peng, Y. Fang. A novellow-molecular-mass gelator with a redox active ferrocenyl group:Tuning gel formation by oxidation[J]. J. Colloid Interface Sci.,2008,318:397-404.
    [34] H. Svobodová, Nonappa, Z. Wimmer, E. Kolehmainen. Design, synthesisand stimuli responsive gelation of novel stigmasterol-amino acidconjugates[J]. J. Colloid Interface Sci.,2011,361:587-593.
    [35] N. Shi, H. Dong, G. Yin, Z. Xu and S. Li. A Smart Supramolecular HydrogelExhibiting pH-Modulated Viscoelastic Properties[J]. Adv. Funct.Mater.,2007,17:1837-1843.
    [36] K. Liu, N. Yan, J. Peng, J. Liu, Q. Zhang, Y. Fang. Supramoleculargels based on organic diacid monoamides of cholesteryl glycinate[J].J. Colloid Interface Sci.,2008,327:233-242.
    [37] S. Wang, W. Shen, Y. Feng and H. Tian. A multiple switchingbisthienylethene and its photochromic fluorescent organogelator[J].Chem. Commun.,2006,1497-1499.
    [38] J. Liu, P. He, J.Yan, X. Fang, J. Peng, K. Liu and Yu Fang. AnOrganometallic Super-Gelator with Multiple-Stimulus ResponsiveProperties[J]. Adv. Mater.,2008,20:2508-2511.
    [39] C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, Y. Huang, R. Zhao andD. Zhu. Multistimuli Responsive Organogels Based on a New GelatorFeaturing Tetrathiafulvalene and Azobenzene Groups: Reversible Tuningof the Gel-Sol Transition by Redox Reactions and Light Irradiation[J].J. Am. Chem. Soc.,2010,132:3092-3096.
    [40] L. Zhao, D. Sui, J. Chai, Y. Wang and S. Jiang. Digital Logic CircuitBased on a Single Molecular System of Salicylidene Schiff Base[J]. J.Phys. Chem. B.,2006,110:24299-24304.
    [41] L. Zhao, S. Wang, Y. Wu, Q. Hou, Y. Wang and S. Jiang. SalicylideneSchiff Base Assembled with Mesoporous Silica SBA-15as HybridMaterials for Molecular Logic Function[J]. J. Phys. Chem. C.,2007,111:18387-18391.
    [42] S. Wang, G. Men, L. Zhao, Q. Hou, S. Jiang. Binaphthyl-derivedsalicylidene Schiff base for dual-channel sensing of Cu, Zn cationsand integrated molecular logic gates[J]. Sens. Act. B.,2010,145:826-831.
    [43] P. Chen, R. Lu, P. Xue, T. Xu, G. Chen, and Y. Zhao. Emission Enhancementand Chromism in a Salen-Based Gel System[J].Langmuir,2009,25:8395-8399.
    [44] P. Xue, R. Lu, G. Chen, Y. Zhang, H. Nomoto, M. Takafuji and H. Ihara.Functional Organogel Based on a Salicylideneaniline Derivative withEnhanced Fluorescence Emission and Photochromism[J]. Chem. Eur. J.,2007,13:8231-8239.
    [45] S. Dattaa and S. Bhattacharya. Evidence of aggregation inducedemission enhancement and keto-enol-tautomerism in a gallic acidderived salicylideneaniline gel[J]. Chem. Commun.,2012,48:877-879.
    [46] Q. Jin, L. Zhang, X. Zhu, P. Duan and M. Liu. Amphiphilic Schiff BaseOrganogels: Metal-Ion-Mediated Chiral Twists and Chiral Recognition[J]. Chem. Eur. J.,2012,18:4916-4922.
    [47] P. Brough, C. Klumpp, A. Bianco, S. Campidelli and M. Prato.
    [60]Fullerene Pyrrolidine-N-oxides[J].J. Org. Chem.,2006,71:2014-2020.
    [48] Y. Li, K. Liu, J. Liu, J. Peng, X. Feng and Y. Fang. Amino AcidDerivatives of Cholesterol as “Latent” Organogelators with HydrogenChloride as a Protonation Reagent[J].Langmuir,2006,22:7016-7020.
    [49] Q. Hou, S. Wang, L. Zang, X. Wang, S. Jiang. Hydrogen-bondingA(LS)2-type low-molecular-mass gelator and its thermotropicmesomorphic behavior[J]. J. Colloid Interface Sci.,2009,338:463-467.
    [50] P. Xue, Y. Zhang, J. Jia, D. Xu, X. Zhang, X. Liu, H. Zhou, P. Zhang,R. Lu, M. Takafujic and H. Ihara. Solvent-dependent photophysical andanion responsive properties of one glutamide gelator[J]. Soft Matter.,2011,7:8296-8304.
    [51] J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu, Y. Zhou, H. Zhang, J.Han, F. Li and C. Huang. Ultrasound Switch and Thermal Self-Repair ofMorphology and Surface Wettability in a Cholesterol-BasedSelf-Assembly System[J]. Angew. Chem. Int. Ed.,2008,47:1063-1067.
    [52] M. D. Cohen, G. M. J. Schmidt. PHOTOCHROMY AND THERMOCHROMY OF ANILS[J].J. Phys. Chem.1962,66:2442-2446.
    [53] J. Harada, H. Uekusa and Y. Ohashi. X-ray Analysis of StructuralChanges in Photochromic Salicylideneaniline Crystals. Solid-StateReaction Induced by Two-Photon Excitation[J]. J. Am. Chem. Soc.,1999,121:5809-5810.
    [54] E. Hadjoudis and I. M. Mavridis. Photochromism and thermochromism ofSchiff bases in the solid state: structural aspects[J].Chem. Sov.Rev.,2004,33:579-588.
    [55] K. Ogawa, J. Harada. Aggregation controlled proton tautomerizationin salicylideneanilines[J]. J. Mol. Struct.,2003,647:211-216.
    [56] T. Fujiwara, J. Harada and K. Ogawa. Hydrogen-Bonded Cyclic DimerFormation in Temperature-Induced Reversal of Tautomerism ofSalicylideneanilines[J]. J. Phys. Chem. A,2009,113:1822-1826.
    [57] S. Yagai, M. Higashi, T. Karatsu, A. Kitamura. Dye-Assisted StructuralModulation of Hydrogen-Bonded Binary Supramolecular Polymers[J]. Chem.Mater.,2005,17:4392-4398.
    [58] E. Hadjoudis, M. Vittorakis and I. M. Mavridls, PHOTOCHROMISM ANDTHERMOCHROMISM OF SCHIFF BASES IN THE SOLID STATE AND IN RIGIDGLASSES[J]. Tetrahedron,1987,43:1345-1360.
    [59] H. Fukuda, K. Amimoto, H. Koyama and T. Kawato. Crystallinephotochromism of N-salicylidene-2,6-dialkylanilines: advantage of2,6-dialkyl substituents of aniline for preparation of photochromicSchiff base crystals[J]. Org. Biomol. Chem.,2003,1:1578-1583.
    [60] T. Fujiwara, J. Harada and K. Ogawa. Solid-State ThermochromismStudied by Variable-Temperature Diffuse Reflectance Spectroscopy. ANew Perspective on the Chromism of Salicylideneanilines[J]. J. Phys.Chem. B.,2004,108:4035-4038.
    [61] S. B. Ralph, W. F. Richey. Photochromic Anils. Mechanisms and Productsof Photoreactions and Thermal Reactions[J]. J. Am. Chem. Soc.,1967,89:1298-1302.
    [62] Y. Hong, J. W. Y. Lam and B. Z. Tang. Aggregation-induced emission:phenomenon, mechanism and applications[J].Chem. Commun.,2009,4332-4353.
    [63] C. M. Che and J. S. Huang. Metal complexes of chiral binaphthylSchiff-base ligands and their application in stereoselective organictransformations[J]. Coord. Chem. Rev.,2003,42:97-113.
    [64] K. C. Gupta and A. K. Sutar, Catalytic activities of Schiff basetransition metal complexes[J]. Coord. Chem. Rev.,2008,252:1420-1450.
    [65] J. K. H. Hui, Z. Yu, and M. J. MacLachlan. Supramolecular Assemblyof Zinc Salphen Complexes: Access to Metal-Containing Gels andNanofibers[J]. Angew. Chem. Int. Ed.,2007,46:7980-7983.
    [66] Q. Chu, D. A. Medvetz, and Y. Pang. A Polymeric Colorimetric Sensorwith Exited-State Intramolecular Proton Transfer for AnionicSpecies[J]. Chem. Mater.,2007,19:6421-6429.
    [67] Z. Xu, K. H. Baek, H. N. Kim, J. Cui, X. Qian, D. R. Spring, I. Shinand J. Yoon. Zn2+-Triggered Amide Tautomerization Produces a HighlyZn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor[J].J. Am. Chem. Soc.,2010,132:601-610.
    [68] L. Zang, D. Wei, S. Wang and S. Jiang. A phenolic Schiff base for highlyselective sensing of fluoride and cyanide via different channels[J].Tetrahedron,2012,68:636-641.
    [69] D. Saravanakumar, S. Devaraj, S. Iyyampillai, K. Mohandoss and M.Kandaswamy. Schiff’ s base phenol–hydrazone derivatives ascolorimetric chemosensors for fluoride ions[J]. Tetrahedron Lett.,2008,49:127-132.
    [70] Y. M. Hijji, B. Barare, A. P. Kennedy and R. Butcher. Synthesis andphotophysical characterization of a Schiff base as anion sensor[J].Sens. Act. B.,2009,136:297-302.
    [71] Y Wu, X Peng, J Fan, S Gao, M Tian, J Zhao, and S Sun. FluorescenceSensing of Anions Based on Inhibition of Excited-State IntramolecularProton Transfer[J]. J. Org. Chem.,2006,72:62-70.
    [72] Z. Dzolic, M. Cametti, A. D. Cort, L. Mandolini and M. Zinic.Fluoride-responsive organogelator based on oxalamide-derivedanthraquinone[J]. Chem. Commun.,2007,3535-3537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700