叠层芯片封装可靠性分析与结构参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子封装微型化、多功能化的发展,三维封装已成为封装技术的发展方向,叠层CSP封装具有封装密度高、信号延迟短、互连性能好等特性,是实现三维封装的重要技术。目前,国外对叠层芯片封装技术研究比较成熟,已开发出八层芯片的层叠封装,但国内大多是以单个芯片封装为研究对象,对叠层CSP封装可靠性的研究却很少。本文采用ANSYS有限元分析方法模拟三层芯片叠层封装工艺流程,分析封装失效机理,通过有限元法预测焊点热循环寿命,并在此基础上对叠层封装进行优化设计,以提高叠层封装可靠性。因此,本研究内容具有重要的理论意义和实际应用前景。
     本文首先根据封装固化工艺设计三个三维实体模型,通过ANSYS有限元软件模拟分析高温过程三步主要固化工艺,结果表明,在三步主要固化工艺中,最大应力都出现在最底层芯片连接处,底层芯片首先出现开裂和分层现象;比较上述三步固化工艺对叠层CSP封装可靠性的影响,发现第二步固化工艺后,芯片所受应力最大,芯片开裂几率最高,分层现象最明显。
     基于统一性Anand本构方程,采用非线性有限元方法分析复合SnPb钎料焊点在热循环条件下的应力应变特性,模拟结果显示:高应力和应变区域集中在内侧焊点的角部,这些高应力区域将是裂纹萌生的可能位置。
     基于上述复合SnPb钎料焊点的应力应变分布的分析,以能量法进行热循环寿命评估,在热循环条件(-55℃~125℃)下,63Sn37Pb钎料焊点热疲劳寿命为685周左右;焊点钎料量相同时,随比值R/r减小,焊点热循环寿命增加,并且随焊点间隙增大,焊点热循环寿命变大。
     本文采用有限元方法分析SCSP器件的设计参数对封装热应力的影响。模拟结果表明:掺入一定量Cu、Bi或In等金属,无铅材料SnAg系列焊点的可靠性达到SnPb钎料的水平,可以代替含铅材料;芯片所受应力与芯片厚度成反比,底层芯片厚度变化是影响封装体可靠性的主要因素;随着芯片层数增大,芯片所受应力相应增大,当芯片层数超过四层后,随着层数的增加,底层芯片上应力趋于恒定值。
With the increasing of multi-function and mini-sized packaging demand, the 3D packaging is becoming a development direction for packaging technology. As stacked chip scale packaging (SCSP) has many good properties, such as higher packaging density, smaller signal delaying and better interconnection, it is one important technique of realizing 3D packaging. At present, the technology of the stacked CSP has become quite mature at abroad, and the 8-dies stacked package has been developed. But in domestic, most of them were mainly concerned about single chip package, and the reliability of the stacked die package was hardly discussed. In this paper, packaging process for a typical stacked three-chip packaging has been simulated to analyse invalidation mechanism by ANSYS finite element analysis (FEA) method. Thermal fatigue character of the solder ball has been studied, and combining FEA results, the stacked package has been optimized. Therefore, it has an important theoretic significance and practical future to study the reliability of stacked die package.
     Firstly, this paper has designed three 3-dimension curing finite element models to simulate and analyze three major curing processes undergoing high temperature change. The results show that during the each curing process maximum stress occurs in the joints of die the bottom layer, and this may result in die crack and delamination in the bottom layer. By comparing the influence of the curing process on the reliability of the stacked package, it is found that die stress is largest after cureII, and the die is subjected to the highest risk of crack failure and delamination issue is mostly occurred.
     Based on the unified viscoplastic constitutive Anand equation, nonlinear finite element modeling is used to analyze stress-strain response of 63Sn37Pb solder joint under thermal cycle conditions. The simulation shows that high stress-strain focus in the corner of the inter solder, and crack may begin to grow along the high-stress area.
     Based on the above stress-strain analysis of the SnPb solder, thermal cycle life was evaluated by the energy. Under the thermal cycle conditions (-40℃~ 125℃), the thermal cycle life of the SnPb solder is about 685 cycles. When solder volumes are same, the thermal cycle life of the SnPb solder increase with the R/r decreasing and solder distance increasing.
     In this paper, finite element method is applied to analyse the influence of the SCSP device design parameter on the stress of the package. The simulation results show that the reliability of the free-lead SnAg solder adulterated some metals such as Cu, Bi or In etc, is nearly identical to that of the SnPb solder, so free-lead solder can replace the SnPb solder. The stress on dies is negatively proportional to the thickness of die. The thickness change in the bottom layer die is the main factor of the effect on the package reliability. With die-layer number increasing, stress on the dies increase, but the stress in the bottom layer die approximates to constant while using more than four layers in a stacked structure.
引文
1 林晶.电子封装材料与工艺(讲义).复旦大学材料系,2004:6~10
    2 电子封装技术丛书编委会.集成电路封装试验手册.电子工业出版社,1998:4~16
    3 况延香, 朱颂春.微电子封装技术.中国科技大学出版社,2003:2~10
    4 田民波.电子封装工程.清华大学出版社,2003:3~15
    5 Weiping Li, Chris Scanlan, Akito Yoshida. System-in-Package and 3D Packaging for Mobile Applications. Equipment for Electronic Products Manufacturing, 2004, (114): 0~15
    6 于炎康.封装业欲做中国半导体产业之巨人.半导体技术,2004,29(9):8~11
    7 李牧.微电子封装技术的发展与展望.电子工艺技术,2001,22(3):15~18
    8 况延香,马莒生.迈向新世纪的微电子封装技术,电子工艺技术,2000,21(1):3~10
    9 谢劲松,钟家骐,李川.CSP 芯片热应力分析.电子工业专用设备,2005,(123):32~34
    10 高尚通,毕克允.现代电子封装技术.半导体情报,1998,35(2):9~13
    11 Rao R. Tummala.中国电子学会电子封装专业委员会组织译校.微电子封装手册.电子工业出版社,2001:23~30
    12 郭以嵩,俞宏坤.3D 封装技术.集成电路应用,2003, (4):33~38
    13 E.Jan Vardaman Presiden.Demand Drivers and Market Trends in Advanced Packaging. 2005 Technology search International Conference, 2005: 3~7
    14 Fujitsu. Stacked MCP Structure. Advanced Packaging Services, 2006: 10~12
    15 Chong C M, Cheung Y M. Finite Element stress Analysis of thin Die Detachment Process. Proceeding of 5th Int Conf on Electronic Packaging Technology. China: Shanghai, 2003: 44~51
    16 Bob Chylak, Ivg Wei Qin. Packaging Challenges and Solutions for Multi-Stack Die Applications. Equipment for Electronic Products Manufacturing, 2004, (110): 35~37
    17 Alex Wei. Amkor Advance Technology in 3D Package. CSIA 2004 Packaging Technology & info Exchange Conference, 2004: 8~12
    18 赵保经.中国集成电路大全-集成电路封装.国防工业出版社,1996:7
    19 史保华,贾新章,张德胜.微电子器件可靠性.西安电子科技大学出版社,1999:5~12
    20 J. Suber. Fracture Properties of Molding Compound Materials for IC Plastic Packaging.Microelectronics and Reliability, 1996, 36(3): 46~58
    21 Nagaraj B, Mahalingam M. Packaging-to-Board Attach Reliability-Methodology and Case Study on OMPAC Package. Transactions of the ASME, Journal of electronic Package, 1998, (120): 290~295
    22 Wu Sx, Chin J, Grigorich T, Wu X. Mui G, Yeh C. Reliability Analysis for Fine Pitch BGA Package. Proceedings of Electronic Components and Technology Conference, 1998: 737~741
    23 Tsai.D.Y, Shen.G.S. On-Board Reliability of SOC-BGA Package. SEMICON 2000 Technical Symposium, China, 1999: 2~6
    24 王 谦 . 电 子 封 装 中 的 焊 点 及 其 可 靠 性 .Electronic Components & Materials,1999,19(2):24~26
    25 Lee Teck Kheng, Teo Yong Chua, Lim Thiam Beng.Reliability Assessment of Transfer Mold CSP. Proceedings of IEEE/CPMP Electronic Packaging Technology Conference,1998:274~278
    26 刘常康,周德俭.PBGA 焊点热疲劳寿命的正交试验及回归分析.电子工艺技术,1999 , 20 ( 3 ) :90~93
    27 黄春跃,周德检,李春泉.CCGA 焊点热循环加载条件下应力应变有限元分析.桂林电于工业学院学报,2001,21 (3) :22~28
    28 Barrett J. Electronic Systems Package Future Reliability Challenges. Microelectronics Reliability, 1998 (38): 1277~1286
    29 Cemal Basaran, Rumpa Chandaroy. Using Finite Element Analysis for Simulation of Reliability Tests on Solders Joints in Microelectronic Package. Computer and Structures, 2000: (74)
    30 Stone B, Czarnowski J M, Gua jardo J R. High Performance Flip Chip PBGA development. IEEE ECTC, 2001: 997~999
    31 Cemal Basaran, Rumpa Chandaroy. Using Finite Element Analysis for Simulation of Reliability Tests on Solder Joints in Microelectronic Package. Computer and Structures, 2000, (74): 459~468
    32 Amagai M. Chip Scale Package (CSP) Solder Joint Reliability and Modeling.Microelectronics Reliability, 2002, (39): 463~477
    33 Chang-Chun Lee,Hsin-Chih Liu,Ming-Chih Yew,Kuo-Ning Chiang. 3D Structure Design and Reliability Analysis of Wafer Level Package with Bubble-Like Stress Buffer Layer.2004 Inter Society Conference on Thermal Phenomena. 2004: 317~325
    34 Jani Miettinen, Matti Mantysalo, Kimmo Kaija. System Design Issues for 3D System-in-Package. 2004 Electronic Components and Technology Conference. 2004: 610~616
    35 顾靖, 王珺,陆震,俞宏坤. 芯片叠层封装的失效分析和热应力模拟.半导体学报,2005,26(6),1273~1278
    36 陈宏涛.印刷电路板可靠性评估.哈尔滨工业大学硕士学位论文,2003:30~45
    37 徐步陆,称姚年.电子封装可靠性研究.中国科学院上海微系统与信息技术研究所博士论文,2002:78~92
    38 杨邦朝,张琴.多热源耦合场下多芯片组件的热分析研究.电子科技大学硕士论文,2004:2~5
    39 M. Rencz, G. Faras, V. Szekely.Thermal Qualification of 3D Stacked Die Packages. IEEE Electronics Packaging Technology Conference, 2004: 30~36
    40 Bob Chylakand,Ivy Wei Qin.Packaging Challenges and Solutions for Multi-Stack Die Applications.Semiconductor technolgogy,2003,28(6):11~20
    41 Jin Wei, Sang Wenbin, Zhang Qi. Investigation of Adhesive Fillet Height in SCSP by Finite Element Methods. Chinese Journal of Semiconductorsl, 2004, 25(2): 232
    42 Liu Biao, Wang Ming-xiang, Lin Tian-huei. Finite Element Stess Analysis by Packaging Process Simulation in a Stacked Chip Scale Package. Equipment for Electronic Products Manufactuing, 2005, (130): 49~54
    43 Fuhong Huang,Yubing, Gong,Quanyong Li.The Application of RSM in Optimization of the Curing Profile for Electronic Packaging Polymers.2005 6th International Conference on Eletronic Packaging Technology, 2005: 30~35
    44 Jani Miettinen, Matti Mantysalo, Kimmo Kaija. System Design Issues for 3D System-in-Package. IEEE Electronic Components and Technology Conference,2004: 610~613
    45 J Suber. Fracture Properties of Molding Compound Materials for IC PlasticPackaging. Microeletronics and Reliability, 1996, 36(3)
    46 Nagaraj B.Mahalingam M.Packaging-to-Board Attach Reliability-Methodology and Case Study on OMPAC Package .Transactions of the ASME, Journal of electronic Package, 1998, (120) : 290~295
    47 王洪纲.热弹性力学概论.第 1 版.清华大学出版社,1989:38~54
    48 Bryan Rodgers, Ben Flood. Experimental Determination and Finite Element Model Validation of the Anand Viscoplasticity Model Constants for SnAgCu.6International Conference on Thermal. Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-systems, EuroSimE2005, 2005: 488~496
    49 Lee Teck Kheng, Teo Yong Chua, Lim Thiam Beng.Reliability Assessment of Transfer Mold CSP. Proceedings of IEEE/CPMP Electronic Packaging Technology Conference,1998: 274~278
    50 刘常康,周德俭.PBGA 焊点热疲劳寿命的正交试验及回归分析.电子工艺技术,1999 20 ( 3 ):90-93
    51 Amagai M. Chip Scale Package (CSP) Solder Joint Reliability and Modeling. Microelectronics Reliability, 1999(39): 463~477
    52 Cemal Basaran, Rumpa Chandaroy. Using Finite Element Analysis for Simulation of Reliability Tests on Solder Joints in Microelectronic Package. Computer and Structures, 2000, (74): 35~42
    53 余丹铭.CSP 功率循环模拟及焊点的寿命预测分析.浙江工业大学硕士学位论文,2004:41~45
    54 Liang J,Gollhardt N,lee PS,Heinrick S,Schroeder S. An integrated fatigue life predition methodology for optimum design and reliability assessment of solder interconnections. Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photon Packaging Conference INITER pack. 1997, (2): 1583~1592
    55 Darveaux R. Effect of simulation methodology on solder joint crak growth correlations. Proceedings of 50 Electronic Components & Technology Conference, 2000: 1048~1053
    56 陈精一,蔡国忠.电脑辅助土程分析 ANSYS 使用指南.中国铁道出版社,2001:22~55
    57 王国强.实用土程数值模拟技术及其在 ANSYS 上的实践.西北土业大学出版社,2000:12~47
    58 Stone B, Czarnowski JM,Guajardo JR. High performance flip chip PBGA development. IEEE ECTC, 2001: 997
    59 陈柳,张群,王国忠等.倒装焊 SnPb 焊点热循环失效和底充胶的影响.半导体学报,2001,22(1):107
    60 腾建勇,金祎,张奇,桑文斌.芯片尺寸封装中焊线的应力分析研究.功能材料与器件学报.2003, 9(2): 185~190
    61 John H. l. Pang, D. Y R.Chong. Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability.IEEE Transactions on components and packaging technologies, 2001, (24)4: 705~710
    62 Darveaux R. Crack Initiation and Growth in Surface Mount Solder Joints. ISHM International Symposium on Microelectronics, 1993: 86~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700