CYP3A5和MDR1与肾移植术后受者CNI剂量及浓度关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     钙调神经蛋白抑制剂(CNI)的应用使肾移植临床疗效发生了根本改善,但其较窄的治疗指数和不同个体间高度差异一直困扰着临床医师。国内外学者做了大量研究,认为与细胞色素酶P450-3A4(CYP3A4)、细胞色素酶P450-3A5(CYP3A5)和多药耐药基因1(MDR1)基因多态性关系密切,CNI所需剂量突变型纯合子<杂合子<野生型纯合子,其中MDR1通过编码药物转运体P-糖蛋白(P-gp)发挥作用,而P-gp又与细胞色素酶P450-3A(CYP3A)具有协同和相互调节作用。明确肾移植受者CYP3A和MDR1的基因多态性进而了解影响肾移植术后受者CNI剂量和浓度个体差异的原因,指导肾移植术后CNI用药具有重要的临床意义。研究表明中国人中CYP3A4基因变异率非常低(0.5%~2%),对其进行分析意义有限,故我们未将CYP3A4不同基因型纳入试验研究。
     本研究结合中国汉族人群的基因特点全面考虑了影响肾移植术后受者CNI吸收和代谢的药物基因组学及非药物基因组学因素,通过自行设计引物采用PCR法一次性扩增目的DNA,变性高效液相色谱技术检测来自中国大陆12个省份的274例肾移植受者CYP3A5和MDR1 3435、2677、1236基因多态性,并对其分布情况进行研究,然后紧密结合肾移植术后不同时期的临床特点,采用多元线性回归分析方法研究肾移植术后不同时期他克莫司(TAC)及环孢素A(CsA)剂量及浓度个体差异影响因素及其变化规律,以探讨肾移植术后不同时期CNI剂量及浓度个体差异的原因。
     方法:
     1.自行设计引物,采用PCR法一次性扩增目的DNA,变性高效液相色谱技术检测分型。
     2.对在我中心行肾移植手术及复诊的274例来自中国大陆12个省份的汉族肾移植受者CYP3A5和MDR1 3435、2677、1236基因多态性及分布情况进行分析,并观察是否存在省份差异,统计学方法采用多个独立样本比较的χ~2检验。
     3.对118例肾移植术后早期采用TAC、霉酚酸酯(MMF)及强的松(Pred)三联免疫抑制抗排斥的受者,按术后3、7、14、30天分别记录性别、年龄、身高、体质量、TAC剂量、Pred剂量、腹泻、血脂、肝功、肾功、白蛋白、血细胞比容,测定每个受者CYP3A5和MDR1 3435、2677、1236位点基因多态性及不同时期TAC全血谷浓度,然后以TAC谷浓度/(剂量×体表面积)为因变量分别进行多元线性回归分析,探讨肾移植术后早期受者TAC剂量及浓度个体差异的原因。
     4.对137例肾移植术后稳定期(≥1年)常规口服TAC、MMF及Pred三联免疫抑制抗排斥的受者,记录性别、年龄、身高、体质量、TAC剂量、Pred剂量、血脂、肝功、肾功、白蛋白、血细胞比容,测定每个受者CYP3A5和MDR13435、2677、1236位点基因多态性及TAC全血谷浓度,然后以TAC谷浓度/(剂量×体表面积)为因变量进行多元线性回归分析,探讨肾移植术后稳定期受者TAC剂量及浓度个体差异的原因。
     5.对118例早期(3天、7天、14天、30天)、103例3月、75例6月、137例稳定期(≥1年)口服TAC、MMF及Pred三联免疫抑制抗排斥的受者,记录性别、年龄、身高、体质量、TAC剂量、Pred剂量、血脂、肝功、肾功、白蛋白、血细胞比容,测定每个受者CYP3A5和MDR1 3435、2677、1236位点基因多态性及不同时期TAC全血谷浓度,然后以TAC谷浓度/(剂量×体表面积)为因变量分别进行多元线性回归分析,探讨肾移植受者TAC剂量及浓度个体差异影响因素及其变化规律。
     6.对117例肾移植术后稳定期(≥1年)常规口服新山地明(CsA)、MMF及Pred三联免疫抑制抗排斥的受者,记录性别、年龄、身高、体质量、CsA剂量、Pred剂量、血脂、肝功、肾功、白蛋白、血细胞比容、白细胞、中性粒细胞、淋巴细胞,测定每个受者CYP3A5和MDR1 3435、2677、1236位点基因多态性及CsA全血谷浓度,CYP3A5和MDR1 3435、2677、1236位点基因多态性,然后以CsA谷浓度/(剂量×体表面积)为因变量进行多元线性回归分析,探讨肾移植术后稳定期受者CsA剂量及浓度个体差异原因。
     结果:
     1.中国大陆汉族肾移植受者存在CYP3A5~*3、MDR1 3435C>T、MDR12677G>T/A、MDR1 1236C>T基因变异,其变异频率分别为74.1%、49.5%、39.9%/13.7%、72.1%,不同省份间无统计学差异。
     2.肾移植术后早期服用TAC受者多元线性回归模型的拟合度偏低,Adjusted R~2值在术后3、7、14、30天分别为0.284、0.267、0.417、0.324。药物基因组学因素有MDR1 2677、MDR1 1236、MDR1 3435且变化剧烈,不同个体达到相同TAC浓度所需剂量突变型纯合子<杂合子<野生型纯合子。非药物基因组学因素在术后3天有年龄、白蛋白和高密度脂蛋白胆固醇,7天有白蛋白、年龄和血清肌酐,14天有Pred剂量和谷草转氨酶,上述影响因素均与TAC谷浓度/(剂量×体表面积)呈正相关。
     3.肾移植术后稳定期服用TAC受者多元线性回归模型的拟合度好,Adjusted R~2值=0.739。6个自变量对因变量的影响从大到小依次为MDR1 3435_((1))、MDR1 1236_((1))、MDR1 2677_((1))、MDR1 1236_((2))、Age和AST。对方程内各自变量单独检验MDR1 3435_((1))、MDR1 1236_((1))、年龄、MDR1 1236_((2))、MDR12677_((1))对因变量有显著性影响,P值分别为0.000、0.000、0.022、0.028和0.029。
     4.肾移植受者TAC剂量及浓度个体差异影响因素及其变化规律:1)多元线性回归模型拟合度肾移植术后早期偏低,术后3月明显增高,术后6月进一步增高并逐渐趋于稳定;影响TAC剂量及浓度的因素在术后早期较多且变化剧烈,术后3月以后逐渐趋于稳定。2)从药物基因组学角度来看,影响TAC剂量及浓度的主要因素是MDR1 3435、MDR1 2677、MDR1 1236且术后早期变化剧烈,CYP3A5作用相对较弱且仅在稳定期入选,稳定期影响TAC代谢的主要因素是MDR1 3435。3)除药物基因组学因素外,年龄、肝功值、白蛋白和血细胞比容与TAC浓度/(剂量×体表面积)呈正相关,是个体差异的重要原因。
     5.肾移植术后稳定期服用CsA受者多元线性回归模型的拟合度好,AdjustedR~2值=0.824。自变量对因变量的影响从大到小依次为MDR1 3435_((1))、MDR11236_((1))、CYP3A5_((2))、低密度脂蛋白胆固醇、直接胆红素、年龄、总胆固醇、高密度脂蛋白胆固醇、淋巴细胞。单独检验有统计学意义的自变量有MDR1 3435_((1))、MDR1 1236_((1))、CYP3A5_((2))、直接胆红素、年龄、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇,P值分别为0.000、0.000、0.000、0.000、0.002、0.014和0.035。
     结论:
     1.中国大陆汉族肾移植受者普遍存在CYP3A5*3、MDR1 3435C>T、MDR12677G>T/A、MDR1 1236C>T基因变异,不同省份间无明显差异。
     2.肾移植术后早期受者TAC剂量及浓度个体差异的原因主要是术后用药和受者剧烈的内环境变化,还与受者MDR1基因多态性、年龄、白蛋白、移植肾功能恢复情况、血脂和肝功能有关,术前应当充分透析尽可能改善患者一般情况,术后用药应当尽量避免对TAC吸收和代谢干扰大的药物。
     3.影响肾移植术后稳定期受者TAC剂量及浓度的主要因素有MDR1 3435、MDR1 1236、年龄、MDR1 2677和肝功,且其影响程度依次递减。
     4.肾移植术后TAC剂量及浓度影响因素的变化规律与肾移植临床特点相吻合,不同时期TAC剂量及浓度个体差异的影响因素不同;药物基因组学是影响TAC剂量及浓度个体差异的重要因素,临床用药应尽量避免对TAC代谢干扰大的药物;除药物基因组学因素外,年龄、肝功、白蛋白、血细胞比容和Pred剂量也是TAC剂量及浓度个体差异的重要原因。
     5.影响肾移植术后稳定期受者CsA剂量及浓度个体差异的主要因素有MDR1 3435、MDR1 1236、CYP3A5、直接胆红素、年龄和血脂,且其影响程度依次递减。
Objectives
     Calcineurin inhibitor (CNI) does much good to renal transplantation, but its narrow therapeutic windows and differences between individuals puzzled clinicians all the time. Research from home and aboard indicated that CNI's differences between individuals had close relationships with cytochrome P3A4 (CYP3A4), cytochrome P3A5 (CYP3A5) and Multi-drug resistance gene 1 (MDR1), the dosage of CNI for the same concentration decreased as follows: mutant homozygote, heterozygote and wild-type homozygote. MDR1 encoded P-glycoprotein (P-gp), while P-gp cooperated and adjusted with cytochrome P3A (CYP3A). As a conclusion, the detections of CYP3A and MDR1 polymorphisms in renal transplant recipients play an important role. Research from home showed that the genovariation rates of CYP3A4 were very low (0.5%~2%), in view of their limited significance, we didn't internalize CYP3A4 into our research.
     In light of the genic features of the Hans in China, we took pharmacogenomics and un-pharmacogenomics factors into consideration that influenced the absorption and metabolism of CNI in renal transplant recipients. We designed the primers and amplified the objective DNA by PCR in one time, then detected the gene polymorphisms of CYP3A5 and MDR1 ( 3435, 2677 and 1236 ) with DHPLC, the clinical data consisted of 274 Hans kidney recipients from 12 provinces in China, whose distributions of CYP3A5 and MDR1 ( 3435, 2677 and 1236 ) were analyzed. Combined with the different features of postoperative stages of renal transplantation, we used multiple linear regression to identify the factors responsible for the inter-individual variations in dosage and concentration of CNI (tacrolimus (TAC) and Cyclosporine A (CsA)) in renal transplant recipients.
     Methods
     1. Designed the primers and amplified the objective DNA by PCR in one time, then detected the gene polymorphisms of CYP3A5 and MDR1 ( 3435, 2677 and 1236) with DHPLC.
     2. Analyzed the distributions of CYP3A5 and MDR1 ( 3435,2677 and 1236 ) of 274 Hans kidney recipients from 12 provinces in China.
     3. In accordance with 118 recipients in morning periods after renal transplantation, whose immune suppressions were TAC, mycophenolate (MMF) and Prednisone (Pred), at 3,7,14 and 30 days after operation, we respectively recorded their gender, age, height, weight, dosage of TAC, dosage of Pred, diarrhea, blood fat, liver function, renal function, albumn and erythrocrit, and at the same time detected their concentrations of TAC and genetic polymorphisms of CYP3A5, MDR1 ( 3435, 2677 and 1236). Multiple linear regressions were used for analysis.
     4. In accordance with 137 recipients in stable phases (≥1year) after renal transplantation, whose immune suppressions were TAC, MMF and Pred, we respectively recorded their gender, age, height, weight, dosage of TAC, dosage of Pred, blood fat, liver function, renal function, albumn, erythrocrit, and at the same time detected their concentrations of TAC and genetic polymorphisms of CYP3A5, MDR1 (3435,2677 and 1236). Multiple linear regressions were used for analysis.
     5. In accordance with 118 recipients in morning periods, 103 recipients 3 months, 75 recipients 6 months, 137 recipients in stable phases (≥1year) after renal transplantation, whose immune suppressions were TAC, MMF and Pred, we respectively recorded their gender, age, height, weight, dosage of TAC, dosage of Pred, blood fat, liver function, renal function, albumn, erythrocrit, and at the same time detected their concentrations of TAC and genetic polymorphisms of CYP3A5, MDR1 ( 3435,2677 and 1236). Multiple linear regressions were used for analysis.
     6. In accordance with 117 recipients in stable phases (≥1year) after renal transplantation, whose immune suppressions were CsA, MMF and Pred, we respectively recorded their gender, age, height, weight, dosage of CsA, dosage of Pred, blood fat, liver function, renal function, albumn, erythrocrit, leucocyte, neutrophilic leukocyte and lympholeukocyte, and at the same time detected their concentrations of CsA and genetic polymorphisms of CYP3A5, MDR1 ( 3435, 2677 and 1236). Multiple linear regressions were used for analysis.
     Results
     1. The genic mutations of CYP3A5*3, MDR14 3435C>T, MDR1 2677G>T/A and MDR1 1236C>T existed in Hans kidney recipients in China, whose frequencies were as follows 74.1%, 49.5%, 39.9% / 13.7% and 72.1% , and their distributions between different provinces had no statistical distinctions.
     2. The fitting degrees of stepwise regression equations in recipients with TAC in morning periods after renal transplantation were low, at 3, 7, 14 and 30 days after operation, the adjusted R~2 was 0.284, 0.267, 0.417 and 0.324 respectively. From the aspect of pharmacogenomics, the main factors included MDR1 2677, MDR1 1236 and MDR1 3435, which varied intensively. Age, albumn, renal function, blood fat and liver function were important factors too.
     3. The fitting degrees of stepwise regression equations in recipients with TAC in stable phases after renal transplantation were high, adjusted R~2 = 0.739. The influence of the 6 independent variables on the dependent variable decreased as follows: MDR1 3435 (1), MDR1 1236 (1), MDR1 2677 (1), MDR1 1236 (2), age and AST. In the solitude analysis, MDR1 3435 (1), MDR1 1236 (1), age, MDR1 1236 (2) and MDR1 2677 (1) showed statistical significance.
     4. Factors responsible for inter-individual variations in dosage and concentration of TAC in renal transplant recipients: 1) Patients in early stage following renal transplantation showed rather poor fitting of the stepwise regression model, which increased obviously 3 months after the operation and further increased till reaching a stable level at 6 months. Multiple factors were found to affect TAC dosage and concentration in the early postoperative stage, during which period these factors underwent drastic variations and became stable 3 months later. 2) In terms of pharmacogenomics, the major factors affecting TAC dosage and concentration included MDR1 3435, MDR1 2677 and MDR1 1236 polymorphisms, which vastly varied between the patients early after the operation. Of these polymorphic sites, CYP3A5 produced only minor effects on TAC dosage and concentration, and was not included as an active factor until the stable phases ( over 1 year ) following the transplantation; MDR1 3435 was found to be the predominant factor affecting TAC metabolism in the stable phase. 3) Age, liver function, albumin and hematocrit were found to be positively correlated to the independent variable TAC concentration / (dosage * body surface area), and identified as important factors responsible for the intra-individual variation of TAC dosage and concentration.
     5. The fitting degrees of stepwise regression equations in recipients with CsA in stable phases after renal transplantation were high, adjusted R~2 = 0.824. The influence of the independent variables on the dependent variable decreased as follows: MDR1 3435 (1), MDR1 1236 (1) , CYP3A5 (2), LDL, DBIL, Age, TC, HDL and L. In the solitude analysis, MDR1 3435 (1), MDR1 1236(1), CYP3A5 (2), DBIL, Age, LDL and HDL showed statistical significance.
     Conclusions
     1. The genic mutations of CYP3A5*3, MDR1 3435C>T, MDR1 2677G>T/A and MDR1 1236OT generally exist in Hans kidney recipients in China, and their distributions have no differences between different provinces.
     2. The main reasons for the differences of TAC dosage and concentration between individuals in morning periods after renal transplantation are medicines and changes of internal environment after operation. The genetic polymorphisms of MDR1, age, albumn, renal function, blood fat and liver function are important factors too.
     3. The main reasons for the differences of TAC dosage and concentration between individuals in stable phases after renal transplantation are MDR1 3435, MDR1 1236, age, MDR1 2677 and liver function, and the extents of their influences decrease in order.
     4. The variations in the factors affecting TAC dosage and concentration after renal transplantation are consistent with the clinical features of the renal transplantation, and these factors vary with the postoperative stages. Pharmacogenomic factors produce the most conspicuous effect on TAC dosage and concentration differences, and agent that may interfere with TAC absorption and metabolism should be avoided after the operation. Age, liver function, albumin and hematocrit are also important factors responsible for the inter-individual variations in dosage and concentration of TAC in renal transplant recipients.
     5. The main reasons for the differences of CsA dosage and concentration between individuals in stable phases after renal transplantation are MDR1 3435, MDR1 1236, CYP3A5, DBIL, age and blood fat, and their influences decrease in order.
引文
[1]Rendic S,Di Carlo FJ.Human cytochrome P450 Enzymes:A status report summarizing their reactions,substrates,inducers and inhibitors[J].Drug Metab Rev,1997,29(1&2):413-580.
    [2]Zhu B,Liu ZQ,Chen GL,et al.The distribution and gender difference of CYP3A activity in Chinese subjects[J].Br J Clin Pharmacol,2003,55(3):264-269.
    [3]Kuehl P,Zhang J,Lin Y,et al.Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression[J].Nat Genet,2001,27(4):383-391.
    [4]HashimotoH,Toide K,Kitamura R,et al.Gene structure of CYP3A4,an adult-specific form of cytochrome P450 in human livers,and its transcriptional control[J].Eur J Biochem,1993,218(2):585-595.
    [5]Eiselt R,Domanski TL,Zibat A,et al.Identification and functional characterizations of eight CYP3A4 protein variants[J].Pharmagenetics,2001,11(5):447-458.
    [6]Rebbeek TR,Jaffc JM,Walker AH,et al.Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4[J].J Natl Cancer Inst,1998,90(16):1125-1229.
    [7]Westlind A,Lofberg L,Tindberg N,et al.Interindividual differences in hepatic expression of CYP3A4:relationship to genetic polymorphism in the 5'-up-stream regulatory region[J].Biochem Biophys Res Commen,1999,259(1):201-205.
    [8]Sata F,Sapone A,Elizondo G,et al.CYP3A4 allelic variantswith amino acid substitution in exons 7 and 12:evidence for an allelic variant with altered catalytic activity[J].Clin pharmacol Ther,2000,67(1):48-56.
    [9]Lamba JK,Lin YS,Thummel K,et al.Common allelic variants of cytochrome P4503A4 and their prevalence in different populations[J].Pharmacogenetics,2002,12(2):121-132.
    [10]Hsieh KP,Lin YY,Cheng CL,et al.Novelmutations of CYP3A4 in Chinese[J].Drug Metab Dispos,2001,29(3):268-273.
    [11]黄敏,汪晖,平洁,等.中国大陆汉族人群CYP3A4基因变异分析[J].中国临床药理学与治疗学,2006,11(3):300-304.
    [12]Lamba JK,Lin YS,Schuetz EG,et al.Genetic contribution to variable human CYP3A-mediated metabolism[J].Adv Drug Deliv Rev,2002,54(10):1271-1294.
    [13]Paulussen A,Lavrijsen K,Bohets H,et al.Two linked mutations in transcriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans[J].Pharmacogenetics,2000,10(5):415-424.
    [14]Zhu B,Chen GL,Chen XP,et al.Genotype of CYP3AP1 associated with CYP3A activity in Chinese Han population[J].Acta Pharmacol Sin,2002,23(6):567-571.
    [15]Fukushima-U esaka H,Saito Y,Watanabe H,et al.Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population[J].Hum Mutat,2004,23(1):100-108.
    [16]Xie HG,Wood AJ,Kim RB,et al.Genetic variability in CYP3A5 and its possible consequences[J].Pharmacogenomics,2004,5(3):243-272.
    [17]Kim RB,Leake BF,Choo EF,et al.Identification of functionally variant MDR1alleles among European Americans and African Americans[J].Clin Pharmacol Ther,2001,70(2):189-199.
    [18]Goto M,Masuda S,Saito H,et al.C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in recipients of living-donor liver transplantation[J].Pharmacogenetics,2002,12(6):451-457.
    [19]Zhang Y,Benet LZ.The gut as a barrier to drug absorption:combined role of cytochrome P450 3A and P-glycoprotein[J].Clin Pharmacokinet,2001,40(3):159-168.
    [20]胡永芳,周宏灏.CYP3A4,CYP3A5和MDR1基因多态性对环孢素处置的影响[J].中国药理学通报,2005,21(3):257-261.
    [21]Utecht KN,Hiles JJ,Kolesar J.Effects of genetic polymorphisms on the pharmacokinetics of calcineufin inhibitors[J].Am J Health Syst Pharm.2006,63(23):2340-2348.
    [22]Macphee IA,Fredericks S,Tai T,et al.Tacrolimus pharmacogenetics:polymorphisms associated with expression of cytochrome p4503A5 and p-glycoprotein correlate with dose requirement[J].Transplantation,2002, 74(11):1486-1489.
    [23]MacPhee IA,Fredericks S,Tai T,et al.The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation [J].Am J Transplant,2004,4(6):914-919.
    [24]Macphee IA,Fredericks S,Mohamed M,et al.Tacrolimus pharmacogenetics:the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians [J].Transplantation,2005,79(4):499-502.
    [25]Lemire J,Capparelli EV,Benador N,et al.Neoral pharmacokinetics in Latino and Caucasian pediatric renal transplant recipients [J].Pediatr Nephrol,2001,16(4):311-314.
    [26]Eng HS,Mohamed Z,Calne R,et al.The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients [J].Kidney Int,2006,69(10):1858-1864.
    [27]Min DI,Ellingrod VL.Association of the CYP3A4* IB 5 '-flanking region polymorphism with cyclosporine pharmacokinetics in the healthy subjects [J].Ther Drug Monit,2003,25(3):305-309.
    [28]Min DI,Ellingrod VL.C3435Tmutation in exon 26 of the human MDRl gene and cyclosporine pharmacokinetics in healthy subjects [J].Ther Drug Monit,2002,24(3):400-404.
    [29]Lown KS,MayoRR,Leichtman AB,et al.Role of intestinal P-glycoprotein in interpatient variation in the oral bioavailability of cyclpsporine [J].Clin Pharmacol Ther,1997,62(3):248-260.
    [30]Kuzuya T,Kobayashi T,Moriyama N,et al.Amlodipine,but not MDRl polymorphisms,alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients [J].Transplantation,2003,76(5):865-868.
    [31]El-Sankary W,Plant NJ,Gibson GG,et al.Regulation of the CYP3A4 gene by hydrocortisone and xenobiotics:role of the glucocorticoid and pregnane X receptors [J].Drug Metab Dispos,2000,28(5):493-496.
    [32]Anglicheau D,Flamant M,Schlageter MH,et al.Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation [J].Nephrology dialysis transplantation,2003,18(11):2409-2414.
    [33]Farrell RJ,Menconi MJ,KeatesAC,et al.P-Glycoprotein-170 inhibition significantly reduces Cortisol and ciclosporin efflux from human intestinal epithelial cells and T lymphocytes [J].Aliment Pharmacol Ther,2002,16(5):1021-1031.
    [34]von Ahsen N,Richter M,Grupp C,et al.No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele ) on dose-adjusted cyclosporine A trough concentration or rejection incidence in stable renal transplant recipients [J].Clin Chem,2001,47(6):1048-1052.
    [35]Haufroid V,Mourad M,van Kerckhove V,et al.The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients [J].Pharmacogenetics,2004,14(3):147-154.
    [36]Hesselink DA,van Schaik RH,van derHeiden IP,et al.Genetic polymorphisms of the CYP3A4,CYP3A5,andMDR-1 genes and pharmacokinetics of the calcineur ininhibitors cyclosporine and tacrolimus [J].Clin Pharmacol Ther,2003,74(3):245-254.
    [37]Yates CR,Zhang W,Song P,et al.The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients [J].J Clin Pharmacol,2003,43(6):555-564.
    [38]Chowbay B,Cumaraswamy S,Cheng YB,et al.Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the of MDR1 haplotypes on cyclosporine disposition in heart transplant recipients[J].Pharmacogenetics,2003,13(2):89-95.
    [39]Cheung CY,Op den Buijsch RA,Wong KM,et al.Influence of different allelic variants of the CYP3A and ABCB1 genes on the tacrolimus pharmacokinetic profile of Chinese renal transplant recipients[J].Pharmacogenomics,2006,7(4):563-574.
    [40]Hu YF,Qiu W,Liu ZQ,et al.Effects of genetic polymorphisms of CYP3A4,CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation[J].Clin Exp Pharmacol Physiol,2006,33(11):1093-1098.
    [41]张鑫,刘志红,郑敬民,等.普乐可复血药浓度与肝药酶P450 3AP1和多药耐药基因多态性的关系[J].肾脏病与透析肾移植杂志,2003,12(10):445-449.
    [42]张鑫,刘志红,郑敬民,等.细胞色素P450 3A5和多药耐药基因1基因多态性在肾移植患者他克莫司血药浓度监测中的应用[J].肾脏病与透析肾移植杂志,2004,13(4):313-317.
    [43]郑克立主编.临床肾移植学[M].2006,北京,科学技术文献出版社:151.
    [44]郑克立主编.临床肾移植学[M].2006,北京,科学技术文献出版社:145-147.
    [45]杨世杰主编.药理学[M].2001,北京,人民卫生出版社:37-41.
    [46]张咸宁,刘宇刚,帕孜来提,等.新疆维吾尔族、哈萨克族人群HLA-DQA1、-DQB1两基因座多态性的研究及与25个种族或民族的比较分析[J].遗传学报,1998,25(3):193-198.
    [47]程定珍,胡安华,王善征,等.新疆维吾尔族人群HLA多态性血清学的研究[J].新疆医学院学报,1994,17(3):194-198.
    [48]沈晶晶,谭毓绘,关晓蕾,等.新疆维族人群HLA-DR-DQ单倍型研究[J].中华医学遗传学杂志,1997,14(4):234-238.
    [49]赖淑苹,任惠民,胡海涛,等.中国西北地区汉、回、维、藏民族HLA-DRB 基因多态性的研究[J].遗传学报,1999,26(5):447-457.
    [50]肖毅,宋芳吉,贺为东,等.辽宁地区汉、蒙、鲜、回四个民族间HLA系统相关性研究[J].中国输血杂志,1997,10(4):206-207.
    [51]王琳琳,陈亭平,林伟雄,等.罗城汉族、壮族和仫佬族儿童HLA-DQA1多态性与幽门螺杆菌感染相关性的研究[J].广西医学,2004,26(6):778-782.
    [52]陈仁彪,叶根跃,庚镇城,等.我国大陆主要少数民族HLA多态性聚类分析和频率分布对中华民族起源的启示[J].遗传学报,1991,20(5):389-398.
    [53]Ferraresso M,Tirelli A,Ghio L,et al.Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients[J].Pediatr Transplant,2007,11(3):296-300.
    [54]Renders L,Frisman M,Ufer M,et al.CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients [J].Clin Pharmacol Ther,2007,81(2):228-234.
    [55]Roy JN,Barama A,Poirier C,et al.Cyp3A4,Cyp3A5,and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients[J].Pharmacogenet Genomics,2006,16(9):659-665.
    [56]郑克立主编.临床肾移植学[M].2006,北京,科学技术文献出版社:150.
    [57]Hesselink DA,van Schaik RH,van Agteren M,et al.CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients[J].Pharmacogenet Genomics,2008,18(4):189-199.
    [58]Kuypers DR,de Jonge H,Naesens M,et al.CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients[J].Clin Pharmaeol Ther,2007,82(6):711-725.
    [59]Fredericks S,Moreton M,Reboux S,et al.Multidrug resistance gene-1(MDR-1)haplotypes have a minor influence on tacrolimus dose requirements[J]. Transplantation,2006,82(5):705-708.
    [60]Mekki Q,Lee C,Aweeka F,et al.Pharmacokinetics of tacrolimus(FK 506) in kidney transplant patients[J].Clin Pharmacol Ther,I993,53(2):238.
    [61]Moller A,Iwasaki K,Kawamura A,et al.The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects [J].Drug Metab Dispos,1999,27(6):633-636.
    [62]Beysens AJ,Wijene RMH,Beuman GH,et al.FK 506:monitoring in plasma or whole blood?[J].Transplant Proc,1991,23(6):2745-2747.
    [63]Machida M,Takahara S,Ishibashi M,et al.Effect of temperature and hematocrit on plasma concentration of FK 506[J].Transplant Proc,1991,23(6):2753-2754.
    [64]Venkataramanan R,Jain A,Cadoff E,et al.Pharmacokinetics of FK 506:preclinical and clini-cal studies[J].Transplant Proc,1990,22(Suppl.1):52-56.
    [65]Venkataramanan R,Jain A,Warty Vs,et al.Pharmacokinetics of FK 506 in transplant patients[J].Transplant Proc,1991,23(6):2736-2740.
    [66]Jusko WJ,Piekoszewski W,Klintmalm GB,et al.Pharmacokinetics of tacrolimus in liver transplant patients[J].Clin Pharmacol Ther,1995,57(3):281-290.
    [67]Jain AB,Venkataramanan R,Cadoff E,et al.Effect of hepatic dysfunction and T tube clamping on FK 506 pharrnacokinetics and trough concentrations[J].Transplant Proc,1990,22(Suppl.1):57-59.
    [68]陈业辉,郑克立,陈立中,等.口服他克莫司血药浓度-时间曲线下面积[J].中华泌尿外科杂志,2004,25(11):750-752.
    [69]Undre NA,Schafer A,and the European Tacrolimus Multicentre Renal Study Group.Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation[J].Transplant Proc,1998,30(4):1261-1263.
    [70]Aoyama T,Yamano S,Waxman DJ,et al.Cytochrome P-450 hPCN3,a novel cytochrome P-450 ⅢA gene product that is differentially expressed in adulthuman liver.cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine[J].J Biol Chem,1989,264(18):10388-10395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700