移植肝“毒性胆汁”形成及导致胆管损伤机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景
     胆道并发症严重影响肝移植受者的生存及生活质量,被公认为肝脏移植的薄弱环节(Achilles’heel)。随着人们对胆道并发症认识的深化和外科吻合技术的提高,由外科技术原因造成的胆管吻合口并发症及引流管相关性并发症的发病率呈下降的趋势,而以非外科技术因素所导致的以移植物胆管树损害为主要特征的供体胆管并发症则成为术后胆道并发症的主要类型,发生率为2%-19%。以弥漫性或局灶性的移植物胆管树狭窄、扩张、毁损及管型形成为病理特征的缺血性胆管病变(ITBL)被认为是非外科性移植物胆管树损害的主要原因。尽管公认冷保存/再灌注损伤(CPRI)是其发病的主要因素,但具体机制尚不清楚。近年来,疏水性胆盐在胆道损伤中的作用受到人们的重视。疏水性胆盐既可以通过“去垢”(detergent)作用干扰生物膜的脂代谢,也可以诱导细胞调亡,具有很强的细胞毒性。人的胆盐池95%以上由疏水性胆盐组成。正常情况下,人类具有一套中和疏水性胆盐细胞毒性的自我保护机制,如磷脂可以与胆盐形成微胶粒(micelle)以降低其细胞毒性、胆汁所含的亲水性胆盐可以通过增强细胞膜的稳定性来对抗疏水性胆盐的细胞毒性等等。此外,胆汁主要成分的分泌完全依赖于位于肝细胞毛细胆管面的肝胆膜转运蛋白(HMTs),HMTs基因表达异常有可能导致胆汁淤积和胆管损伤。已经有研究提示肝移植术后早期存在胆汁成分失衡的现象。综合近年来国内外的研究结果,我们提出了移植肝冷保存/再灌注胆管损伤的“毒性胆汁”假说:在经历CPRI后,移植肝HMTs及相关调控因子的表达及功能可能出现改变,导致机体对抗疏水性胆盐毒性的保护性机制被破坏,形成具有较强细胞毒性的“毒性胆汁”,最终对胆管造成损伤。显然,如果我们能对该假说加以验证,必将加深对移植肝胆道并发症发生机制的认识,也有助于拓展新的预防和治疗策略。
     二、目的
     疏水性胆盐具有很强的细胞毒性,在胆管损伤中扮演着重要角色。本研究拟以验证“毒性胆汁”假说为主要目的,建立一种适于移植肝胆道问题研究的大鼠肝移植模型,探讨经历CPRI后移植肝胆汁主要成分的变化规律及与胆管损伤的相关性,并对
Background
     Biliary complications after orthotopic liver transplantation(OLT) have been a common problem since early beginning of this technique, which have been called“the Achilles’heel”of OLT by Sir Roy Calne. With the improvement of surgical techniques, the incidence rate of the biliary complications associated with bile duct anastomosis decreased remarkably, while the nonanastomotic stricture and dilatation involving only the biliary tree of the graft with a radiological appearance of biliary ischemia(Ischemic-type biliary lesions, ITBL) become the major type of biliary complications after OLT, which has be reported to occur at a relatively constant rate 15-26%. It is well known that the cold preservation-reperfusion injury(CPRI) plays an important role in the pathegenesis of ITBL.However, the details still remain unclear despite numerous studies. Recently, it is reported that hydrophobic bile salts play a role in the pathogenesis of bile duct injury. The hydrophobic bile salts are cytotoxic due to their potent detergent properities toward cellular membranes. Under normal circumstances, some protective mechanisms can prevent the cytotoxcity of bile salts. For instance, bile salts can be neutralized in the bile by complex formation with phospholipid and some hydrophilic bile salts can stabilize cell membranes. In addition, various selective transporter proteins in the sinusoidal and canalicular membrane of hepatocytes(hepatobiliary membrane transporters, HMTs) have been identified and were shown to play a role in the secretion of sepefic bile components. Impairment in the gene expression or function of HMTs may lead to intrahepatic cholestasis with or without bile duct injury. It has been reported that after OLT the composition of bile will change. Based on the above-mentioned results, we proposed the“toxic bile”hypothesis: After suffering CPRI, the protective mechanisms against bile salts cytotoxicity might be destroyed partly caused by the change of the gene expression and function of HMTs or other regulatory factors, which leads to the formation of“toxic bile”with excess hydrophobic bile salts. Therefore, a detailed systemic elucidation of the mechanism of the toxic bile formation is needed and will explore some new approaches for the prevention and treatment of biliary complications following OLT.
引文
1. 陈耿, 张玉君, 杨程等. 重建肝动脉血液供应和胆道外引流的大鼠原位肝移植模型的建立. 中华器官移植杂志. 2006;27(1):40-43
    2. 陈耿, 张玉君, 杨程等. 大鼠原位肝移植胆道外引及胆汁采集方法的改进与评估. 消化外科. 2006; 5(2):77-80
    3. Xu HS, Rosenlof LK, Selby JB et al. A simple method for bile duct anastomosis and interval bile collection in the liver transplanted rat. J Surg Res. 1992;53(5):520-523
    4. Chan FKL, Zhang YK, Sutherland FR et al. Effects of liver transplantation on bile formation and biliary lipid secretion in the Sprague-Dawley rat. Hepatology. 1995;22(4 Pt 1): 1254-1258
    5. Chan FKL, Zhang YK, Shaffer EA. Bile secretory function of the arterialized versus nonarterialized rat liver allograft. Transplantation. 1996;62:1657-1663
    6. 何晓顺, 孙君泓, 黄洁夫 等. 大鼠原位肝移植胆道外引流模型的建立. 中华显微外科杂志. 1999;22(1): 45-47
    7. 王文涛, 严律南, 曾勇 等. 大鼠肝移植模型的制作和胆道外引流方法的改进. 中国普外基础与临床杂志. 2002;9(3): 161-164
    8. Xu HS, Picher JA, Jones RS. Physiologic study of bile salt and lipid secretion in rats after liver transplantation. Annals of Surgery. 1993;4(4):404-412
    9. Howden B, Jablonski P, Grossman H et al. The importance of the hepatic artery in rat liver transplantation. Transplantation. 1989;47(3):428-431
    10. Zhao D, Zimmermann A, Kuznetsova LV et al. Regression of bile duct damage and bile duct proliferation in the non-rearterialized transplanted rat liver is associated with spontaneous graft rearterialization. Hepatology. 1995;21(5):1353-1360
    11. Knoop M, Bachmann S, Keck H et al. Experience with cuff rearterialization in 600 orthotopic liver grafts in the rat. The American Journal of Surgery. 1994; 167(3): 360-363
    12. Kashfi A, Mehrabi A, Pahlavan PS et al. A review of various techniques of orthotopic liver transplantation. Transplant Proc. 2005;37(1):185-188
    13. 马毅, 何晓顺, 陈规划 等. 重建肝动脉血供大鼠原位肝移植模型的术式探讨. 中华实验外科杂志. 2004; 21(1):110-111
    14. Schemmer P, Schoonhoven R, SwenberyJA et al. Gentle in situ liver manipulation during organ harvest decreases survival after rat liver transplantation. Transplantation. 1998;65(8): 1015-1020
    15. Tokunaga Y, Ozaki N, Wakashiro S et al. Effect of perfusion pressure during flushing on the viability of the procured liver using noninvasive fluorometry. Transplantation. 1988;45(6): 1031-1035
    16. Nosaka T, Bowers JL, Cay O et al. Biliary complications after orthotopic liver transplantation in rats. Surg Today.1999;29:963-965
    17. Lehmann TG, Bunzendahl H, Langrehr JM et al. Arterial reconstruction in rat liver transplantation—development of a new tubing technique of the common hepatic artery. Transplant Int. 2005;18(1):56-64
    18. Inoue S, Tahara K, Shimizu H et al. Rat liver transplantation for total vascular reconstruction, using a suture method. Microsurgery. 2003;23(5):470-475
    19. Ramos E, Closa D, Hotter G et al. The impact of arterialization on prostanoid generation after liver transplantation in the rat. Transplantation. 1994;58(2):40-44
    20. Reck T, Steinbauer F, Steinbauer M et al. Impact of arterialization hepatic oxygen supply, tissue energy phosphates, and outcome after liver transplantation in the rat. Transplantation. 1996;62(5):582-587
    21. Romas E, Bagur C, Fernandez-Cruz L. The importance of arterial reconstruction in liver transplantation in rats. Surgery. 1993;113(4):476
    22. Gao W, Lemasters JJ, Thurman RG. Development of a new method for hepatic rearteriali- zation in rat orthotopic liver transplantation. Reduction of liver injury and improvement of surgical outcome by arterialization. Transplantation. 1993;56(1):19-24
    23. Pascher A. Neuhaus P. Bile duct complications after liver transplantation. Transplant Int. 2005; 18:627-642
    24. 陈耿, 董家鸿. 移植肝冷保存/再灌注胆管损伤的机制. 中华外科杂志. 2006;44(9): 635-638
    25. 董家鸿. 胆道并发症:肝移植的“阿喀琉斯之踵”.中华普通外科杂志. 2005; 20:465-466
    26. Xu HS, Picher JA, Jones RS. Physiologic study of bile salt and lipid secretion in rats after liver transplantation. Annals of Surgery. 1993;4:404-412
    27. Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989;30:719-730
    28. Benedetti A, Alvaro D, Bassotti C et al. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology;1997;26:9-21
    29. Kukan M, Haddad PS. Role of hepatocytes and bile duct cells in preversation-reperfusion injury of liver cells. Liver Transplantation. 2001;7:381- 400
    30. Noack K, Bronk SF, Kato A et al. The greater vulnerability of bile duct cells to reoxygenation injury than to anoxia: implications for the pathognesis of biliary strictures after liver transplantation. Transplantation;1993;56: 495-500
    31. Vajdova K, Smrekova R, Kukan M et al. Bile analysis as a tool for assessing integrity of biliary epithelial cells after cold ischemia-reperfusion of rat livers.Crytobiology. 2000;41:145-152
    32. Schmuker DL, Ohta M, Kanai S et al. Hepatic injury induced by bile salts: correlation between biochemical and morphological events. Hepatology;1990;12:1216-1221
    33. Geuken E, Visser D, Kuipers F et al. Rapid increase of ile salt secretion is associated with bile duct injury after human liver transplantation. J Hepatology. 2004. 41:1017-1025
    34. Hertl M, Harvey PRC, Swanson PE et al. Evidence of preservation injury to bile ducts by bile salts in the pig and its prevention by infusions of hydrophilic bile salts. Hepatology;1995;21: 1130-1137
    35. Hertl M, Hertl MC, Malago M et al. In vivo protection of the pig liver against ischemia/reperfusion injury by tauroursodeoxycholate. Langenbecks Arch Surg. 1999;384:461- 466
    36. Hertl M, Hertl MC, Kluth D et al. Hydrophilic bile salts protect bile duct epithelium during cold preservation: a scanning electron microscopy study. Liver Transpl. 2000;6: 207-212
    37. Tsuboi K, Tazuma S, Nishioka T et al. Partial characterization of cytoprotective mechanism of lecithin against bile salt-induced bile duct damage. J Gastroenterology. 2004;39:955-960
    38. Fickert P, Fuchsbichler A, Wanger M et al. Regurgitation of bile acids from leakey bileducts causes sclerosing cholangitis in mdr2(Abcb4) knockout mice. Gastroenterology; 2004;127: 261-274
    39. Foley DP, Ricciardi R, Traylor AN et al. Effect of Hepatic Artery Flow on Bile Secretory Function After Cold Ischemia. Am J Transplant. 2003;3:148-155
    40. Hooiveld GJEJ, Vos TA, Scheffer GL et al. 3-hydroxy-3-methylglutaryl-coenzyme A eductase inhibitors(statins) induce hepatic expression of the phospholipids translocase mdr2 in rats. Gastroenerology. 1999;117:678-687
    41. Carrella M, Feldman D, Cogol S et al. Enhancement of mdr2 gene transcription mediates the biliary transfer of phosphatidylcgoline supplied by an increased biosynthesis in the Pravastatin-treated rat. Hepatology. 1999;29:1825-1832
    42. Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med. 2004;10:1352 –1358
    43. Pellicciari R, Costantino G, Fiorucci S. Farnesoid X receptor: From structure to potential clinical applications. J Med Chem. 2005;48:5383-5403
    44. Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Archives of Biochemistry and Biophysics. 2005; 433:397-412
    47. Laffitte BA, Kast HR, Nguyen CM et al. Identification of the DNA binding specificity and potential target genes for the farnesoid X activated receptor. J. Biol. Chem. 2000;275: 10638- 10647
    48. Parks DJ, Blanchard SG, Bledsoe RK et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365-1368
    49. Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl. Acad. Sci. U.S.A. 2004;101:3668-3673.
    50. Pellicciari R, Fiorucci S, Camaioni E et al. 6Rethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 2002;45: 3569-3572
    51. Pellicciari R, Costantino G, Camaioni E et al. Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid. J. Med. Chem. 2004;47:4559-4569
    52. Ananthanarayanan M, Balasubramanian N, Makishima M et al. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001;276:28857-28865
    53. Sinal CJ, Tohkin M, Miyata M et al.Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731-744
    54. Ioannis Habeos, Panos G. Ziros a, Agathoklis Psyrogiannis et al. Statins and transcriptional regulation: The FXR connection. Biochemical and Biophysical Research Communications. 2005;334:601–605
    55. Kim MS, Shigenaga J, Moser A et al. Repression of farnesoid X receptor during the acute phase response. J Biol Chem. 2003;278:8988-8995
    56. Fiorucci S, Antonelli E, Rizzo G et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004;127: 1497-1512
    57. Lu Y, Binz J, Numerick MJ et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest. 2003;112:1678-1687
    58. Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med. 2004;10:1352 –1358
    59. Barbier O, Torra IP, Sirvent A et al. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology. 2003;124:1926-1940
    60. Pircher PC, Kitto JL, Petroski ML et al. Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem. 2003;278: 27703-27711
    1. 陈耿, 董家鸿. 移植肝冷保存/再灌注胆管损伤的机制. 中华外科杂志. 2006;44(9): 635-638
    2. 董家鸿. 胆道并发症:肝移植的“阿喀琉斯之踵”.中华普通外科杂志. 2005; 20:465-466
    3. 丁敏, 刘春芳, 何俊. 柱前衍生反相高效液相色谱法测定血清中 9 种胆汁酸. 分析科学学报. 2004;20(5): 492-494
    4. 刘春芳. 血清胆汁酸 RP-HPLC 分析的方法学研究及临床应用. 重庆医科大学硕士学位论文. 2003: 6-31
    5. Chan FKL, Zhang YK, Sutherland FR et al. Effects of liver transplantation on bile formation and biliary lipid secretion in the Sprague-Dawley rat. Hepatology. 1995;22(4 Pt 1): 1254-1258
    6. Chan FKL, Zhang YK, Shaffer EA. Bile secretory function of the arterialized versus nonarterialized rat liver allograft. Transplantation. 1996;62:1657-1663
    7. Sakakura H, Suzuki M, Kimura N et al. Simultaneous determination of bile acids in rat bile and serum by high-performance liquid chromatography. J Chromatogr. 1993;621(2):123-131
    8. Roda A, Piazza F, Baraldini M. Separation techniques for bile salts analysis.J Chromatogr. 1998;717:263-278
    9. Güldutunna S, You T , Kurts W et al. High performance liquid chromatographic determination of free and conjugated bile acids in serum,liver biopsies, bile,gastric juice and feces by fluo- rescence labeling.Clinica Chimica Acta.1993; 214:195-207
    10. Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989;30:719-730
    11. Hayashi M. Determination of bile acids in rat bile by high-performance liquid chromatography. J Chromatogr. 1985;338:195-200
    12. Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med. 2004;10:1352 –1358
    13. Benedetti A, Alvaro D, Bassotti C et al. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver.Hepatology;1997;26:9-21
    14. Tung BY, Kimmey MB. Biliary complications of orthotopic liver transplantation. Dig Dis. 1999;17: 133-144
    15. Fan ST, Lo CM, Liu CL et al. Biliary reconstruction and complications of right lobe living donor liver transplantation. Ann Surg. 2002;236:676-683
    16. Broering DC, Kim JS, Mueller T et al. One hundred thirty-two consecutive pediatric liver transplants without hospital mortality: lessons learned and outlook for the future. Ann Surg. 2004;240:1002-1012
    17. Jagannath S, Kalloo AN. Biliary complications after liver transplantation. Curr Treat Options Gastroenterol. 2002;5: 101-112
    18. Sanchez-Urdazpal L, Gores GJ, Ward EM et al. Ischemia-type biliary complications after orthotopic liver transplantation. Hepatology;1992;16:49-53
    19. Popescu I, Sheiner P, Mor E et al. Biliary complications in 400 cases of liver transplantation. Mt Sinai J Med. 1995;61:57-62
    20. Kadmom M, Bleyl J, Kueppers B et al. Biliary complications after prolonged University of Wisconsin preservation of liver allografts. Transplant Proc. 1993;25:1651-1652
    21. Sanchez-Urdazpal L, Gores GJ, Ward EM et al. Diagnostic features and clinical outcome of ischemic-type biliary complications after liver transplantation. Hepatology; 1992;17:605-609
    22. Erlinger S. Bile secretion. In: Surgery of the liver and biliary tract, 3rd Edition. edited by Blumgart LH, Fong Y. Elsevier Science, 2000, p. 109-120
    23. Cutrin JC, Cantino D, Biasi F et al. Reperfusion damage to bile canaliculi in transplanted human liver. Hepatology;1996;24:1053-1057
    24. Mori M. Electron microscopic and new microscopic studies of hepatocyte cytoskeleton: physiological and pathological relevance. J Electron Microsc. 1994;43:347-355
    25. Oshio C, Philips MJ. Contractility of bile canaliculi: implications for liver function. Science. 1981;212:1041-1042
    26. Kitamura T, Brauneis U, Gatmaitan Z et al. Extracellular ATP, intracellular calcinum and canalicular contraction in rat hepatocyte doublets. Hepatology. 1991;14:640-647
    27. Ben-Ari Z, Pappo O, Mor E. Intrahepatic cholestasis after liver transplantation. Livertranspl. 2003;9:1005-1018
    28. Kukan M, Vajdova K, Horecky J et al. Effects of blockade of Kuffer cells by gadolinium chloride on hepatobiliary function in cold ischemia- reperfusion injury of rat liver. Hepatology. 1997;26:1250-1257
    29. Elimadi A, Sapena R, Settaf A et al. Attenuation of liver normothermic ischemia- reperfusion injury by preservation of mitochondrial functions with S-15176, a potent trimetazidine derivative. Biochem Pharmacol. 2001;62:509-516
    30. Carrasco L, Sanchez-Bueno F, Sola J et al. Effects of cold ischemia time on the graft after orthotopic liver transplantation: a bile cytological study. Transplantation; 1996;61:393- 396
    31. Noack K, Bronk SF, Kato A et al. The greater vulnerability of bile duct cells to reoxygenation injury than to anoxia: implications for the pathognesis of biliary strictures after liver transplantation. Transplantation;1993;56: 495-500
    32. Vajdova K, Smrekova R, Kukan M et al. Bile analysis as a tool for assessing integrity of biliary epithelial cells after cold ischemia-reperfusion of rat livers.Crytobiology. 2000;41:145-152
    33. Vairetti M, Ferrigno A, Bertone R et al. Exogenous melatonin enhances bile flow and ATP levels after cold storage and reperfusion in rat liver: implications for liver transplantation. J. Pineal Res.2004:1-8
    34. Doctor RB, Dahl RH, Salter KD et al. Reorganization of cholangiocytemembrane domains represents an early event in rat liver ischemia. Hepatology;1999; 29:1364- 1374
    35. Doctor RB, Dahl RH, Salter KD et al. ATP depletion in rat cholangiocytes leadsto marked internalization of membrane proteins. Hepatology;2000; 31:1045-1054
    36. Accatino L, Pizarro M, Solis N et al. Bile secretory function after warm hepatic ischemia-reperfusion injury in the rat. Liver Transpl. 2003;9:1199 –1210
    37. 熊本京, 黄长文. 肝外胆道不同部位组织缺血再灌注损伤的超微结构改变. 江西医学院学报. 2000;40:89-91
    38. Pirenne J, Van Gelder F, Coosemans W et al. Type of donor aortic preservation solution and not cold ischemia time is a major determinant of biliary stricturesafter liver transplantation. Liver Transpl 2001;7: 540-545
    39. Moench C, Moench K, Lohse AW et al. Prevention of ischemic-type biliary lesions by arterial back-table pressure perfusion. Liver Transpl 2003;9:285-289
    40. Knoop M, Schnoy N, Keck H et al. Morphological changes of human common bile ducts after extended cold preservation. Transplantation. 1993;56:735-736
    41. Benedetti A, Alvaro D, Bassotti C et al. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology;1997;26:9-21
    42. Hertl M, Harvey PRC, Swanson PE et al. Evidence of preservation injury to bile ducts by bile salts in the pig and its prevention by infusions of hydrophilic bile salts. Hepatology;1995;21: 1130-1137
    43. Hertl M, Hertl MC, Malago M et al. In vivo protection of the pig liver against ischemia/reperfusion injury by tauroursodeoxycholate. Langenbecks Arch Surg. 1999;384:461- 466
    44. Hertl M, Hertl MC, Kluth D et al. Hydrophilic bile salts protect bile duct epithelium during cold preservation: a scanning electron microscopy study. Liver Transpl. 2000;6: 207-212
    45. Tsuboi K, Tazuma S, Nishioka T et al. Partial characterization of cytoprotective mechanism of lecithin against bile salt-induced bile duct damage. J Gastroenterology. 2004;39:955-960
    46. Fickert P, Fuchsbichler A, Wanger M et al. Regurgitation of bile acids from leakey bile ducts causes sclerosing cholangitis in mdr2(Abcb4) knockout mice. Gastroenterology; 2004;127: 261-274
    47. Foley DP, Ricciardi R, Traylor AN et al. Effect of Hepatic Artery Flow on Bile Secretory Function After Cold Ischemia. Am J Transplant. 2003;3:148-155
    48. Geuken E, Visser D, Kuipers F et al. Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation. J Hepatology. 2004;41: 1017-1025
    49. Post S, Palma P, Gonzalez Ap et al. Timing of arterialization in liver transplantation. Ann Surg. 1994;220:691-698
    50. Sankary HN, McChesney L, Frye E et al. A simple modification in operative techniquecan reduce the incidence of nonanastomotic biliary strictures after orthotopic liver transplantation. Hepatology. 1995;21:63-69
    51. Brockmann JG, August C, Wolters HH et al. Sequence of reperfusion influences ischemia/reperfusion injury and primary graft function following porcine liver transplantation. Liver Transpl. 2005;10:1214-1222
    52. Polak WG, Miyamoto S, Nemes BA et al. Sequential and simultaneous revascularization in adult orthotopic piggyback liver transplantation. Liver Transpl. 2005;11: 934-940
    53. Kudo A, Kashiwagi S, Kajimura M et al. Kupffer cells alter organic anion transport through multidrug resistance protein 2 in the post-cold ischemic rat liver. Hepatology. 2004;39:1099-1109
    54. 黄志强, 黄晓强, 周宁新. 肝移植时代终末期胆病的治疗——回顾与反思. 消化外科. 2002;1:381-382
    1. Chawla A, Saez E, Evans RM. “Don’t know much bile-ology”. Cell. 2000;103:1–4.
    2. Meier PJ, Stieger B. Molecular mechanisms in bile formation. News Physiol Sci. 2000;15: 89-93
    3. Wolkoff AW, Suchy FJ, Moseley RH et al. Advances in hepatic transport: molecular mechanisms, genetic disorders, and treatment. a summary of the 1998 AASLD single topic conference. Hepatology. 1998;28:1713-1719
    4. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003;83:633-671
    5. Chan LMS, Lowes S, Hirst BH. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Pharmaceutical Sciences. 2004;21:25-51
    6. Lecureur V, Courtois A, Payen L et al. Expression and regulation of hepatic drug and bile acid transporters. Toxicology. 2000;153:203-219
    7. Diaz GJ. Basolateral and canalicular transport of xenobiotics in the hepatocyte: a review. Cytotechnology. 2000;34:225-236
    8. Stieger B, Meier PJ. Bile acid and xenobiotic transporters in liver. Current Opinion in Cell Biology. 1998;10:462-467
    9. Kullak-ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology. 2004;126:322–342
    10. Ferenci P, Zollner G, Trauner M. Hepatic transport systems. 2002;17:S105-S112
    11. Takikawa H. Hepatobiliary transport of bile acids and organic anions. J Hepatobiliary Pancreat Surg. 2002;9:43-447
    12. Kullak-ublick GA, Beuers U, Paumgartner G. Hepatobiliary transport. J Hepatology. 2000;32: 3-18
    13. Chiang JYL. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev. 2002;23:443–463
    14. Eloranta JJ, Kullak-ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Archives of Biochemistry and Biophysics. 2005;433:397-412
    15. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump (BSEP) promoter is transactivated by the farnesoid X receptor/bile acid receptor (FXR/BAR). J Biol Chem 2001;276:28857–28865
    16. Chiang JYL. Bile acid regulation of hepatic physiology. III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol 2003;284:G349–G356
    17. Chiang JYL. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev 2002;23:443–463
    18. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 2001;121:140–147.
    19. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, Mac-Kenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 2001;98:3369–3374.
    20. Inokuchi A, Hinoshita E, Iwamoto Y, Kohno K, Kuwano M, Uchiumi T. Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. A transcriptional control of a plausible bile acid transporter. J Biol Chem 2001;276:46822–46829
    21. Guo GL, Lambert G, Negish M et al. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem;2003;278:45062-45071
    22. Dubyak G, El-Moatassim C. Signal transduction via P2 purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol Cell Physiol. 1993;265: C577–C606
    23. Tronche F, Bach I, David-Wattine TCB, Pontoglio M et al. Hepatocyte nuclear factor 1 (HNF1) and liver gene expression. In: Liver Gene Expression, edited by Tronche F and Yaniv M. Austin, TX: Landes, 1994, p.155–181.
    24. Lekstrom-Himes J, Xanthopoulos KG. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem. 1998;273: 28545-28551
    25. Horvath CM, Darnell JE. The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr Opin Cell Biol. 1997;9: 233–239
    26. Grune S, Engelking LR, Anwer MS. Role of intracellular calcium and protein kinases in the activation of hepatic Na_/taurocholate cotransport by cyclic AMP. J Biol Chem. 1993;268: 17734– 17741
    27. Mukhopadhyay S, Webster CRL, Anwer MS. Role of protein phosphatases in cyclic AMP-mediated stimulation of hepatic Na-/taurocholate cotransport. J Biol Chem. 1998;273: 30039–30045
    28. Sun AQ, Arrese MA, Zeng L et al. The rat liver Na-/bile acid cotransporter: importance of the cytoplasmic tail to function and plasma membrane targeting. J Biol Chem. 2001;276: 6825–6833
    29. Kipp H, Pichetshote N, Arias IM. Transporters on demand: intrahepatic pools of canalicular ATP-binding cassette transporters in rat liver. J Biol Chem. 2001;276: 7218–7224
    30. Roelofsen H, Soroka C, Dietrich K et al. Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets. J Cell Sci. 1998;111: 1137–1145
    31. Misra S, Ujhazy P, Varticovski L et al. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci USA. 1999;96:5814–5819
    32. Kurz AK, Graf D, Schmitt M et al. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology. 2001;121: 407–419
    33. Elferink RO, Groen AK. Genetic defects in hepatobiliary transport. Biochimica et Biophysica Acta. 2002;1586:129-145
    34. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Eng J Med. 1998; 339:1217-1227
    35. Jansen PLM, Muller M, Sturm E et al. Genes and cholestasis. Hepatology. 2001;34: 1067-1074
    36. Trauner M, Boyer JL. Cholestatic syndromes. Curr Opin Gastroenterol. 2004;20: 220-230
    37. Lee J, Boyer JL. Molecular alterations in hepatocyte transport mechanism in acquiredcholestaric liver diseases. Semin Liver Dis. 2000;20:373-384
    38. Lee J, Azzaroli F, Wang L et al.. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology. 2001;121: 1473–1484
    39. Langmann T, Mauerer R, Zahn A et al. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporters superfamily in various tissues. Clin Chem. 2003;49:230-238
    40. Zolliner G, Fickert P, Zene R et al. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology. 2001;33;633 –646
    41. Faubion WA, Guicciardi ME, Miyoshi H et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest. 1999;103:137–145.
    42. Knoop M, Schnoy N, Keck H et al. Morphological changes of human common bile ducts after extended cold preservation. Transplantation. 1993;56:735-736
    43. Benedetti A, Alvaro D, Bassotti C et al. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology;1997;26:9-21
    44. Hertl M, Harvey PRC, Swanson PE et al. Evidence of preservation injury to bile ducts by bile salts in the pig and its prevention by infusions of hydrophilic bile salts. Hepatology;1995;21: 1130-1137
    45. Tsuboi K, Tazuma S, Nishioka T et al. Partial characterization of cytoprotective mechanism of lecithin against bile salt-induced bile duct damage. J Gastroenterology. 2004;39:955-960
    46. Macfaul GR, Chapman RW. Sclerosing cholangitis. Curr Opin Gastroenterol. 2005;21:348- 353
    47. Fickert P, Fuchsbichler A, Wanger M et al. Regurgitation of bile acids from leakey bile ducts causes sclerosing cholangitis in mdr2(Abcb4) knockout mice. Gastroenterology;2004;127: 261-274
    48. Foley DP, Ricciardi R, Traylor AN et al. Effect of Hepatic Artery Flow on Bile Secretory Function After Cold Ischemia. Am J Transplant. 2003;3:148-155
    49. Geuken E, Visser D, Kuipers F et al. Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation. J Hepatology.2004;41:1017-1025
    50. Accatino L, Pizarro M, Solis N et al. Bile secretory function after warm hepatic ischemia-reperfusion injury in the rat. Liver Transpl. 2003;9:1199-1210
    51. Doctor RB, Dahl RH, Salter KD et al. ATP depletion in rat cholangiocytes leadsto marked internalization of membrane proteins. Hepatology;2000; 31:1045-1054
    52. Roman ID, Fernandez-Moreno MD, Fueyo JA et al. Cyclosporine A induced internalization of the bile salt export pump in isolated rat hepatocyte couplets. Toxicol Sci. 2003;71:276-281
    53. Rost D, Kartenbeck J, Keppler D. Changes in the localization of the rat canalicular conjugate export pump Mrp2 in phalloidin-induced cholestasis. Hepatology. 1999;29:814-821
    54. Roma MG, Milkiewicz P, Elias E et al. Control by signaling modulators of the sorting of canalicular transporters in rat hepatocytes couplets: role of the cytoskeleton. Hepatology. 2000;32:1342-1356
    55. Yasui H, Yoshimura N, Kobayashi Y et al. Microstructural changes of bile canaliculi in canine liver: the effect of cold ischemia-reperfusion in orthotopic liver transplantation. Transplant Proc. 1998;30:3754-3757
    1. Kliewer SA, Lehmann JM, Willson TM. Orphan nuclear receptors: shifting endocrineology into reverse. Science. 1999;284:757-760
    2. Pellicciari R, Costantino G, Fiorucci S. Farnesoid X receptor: From structure to potential clinical applications. J Med Chem. 2005;48:5383-5403
    3. Seol W, Choi HS, Moore DD. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 1995;9:72-85
    4. Forman BM, Umesono K, Chen J et al. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell. 1995;81:541-550
    5. Laffitte BA, Kast HR, Nguyen CM et al. Identification of the DNA binding specificity and potential target genes for the farnesoid X activated receptor. J. Biol. Chem. 2000;275: 10638- 10647
    6. Wang H, Chen J, Hollister K et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 1999;3:543-553
    7. Parks DJ, Blanchard SG, Bledsoe RK et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365-1368
    8. Makishima M, Okamoto AY, Repa JJ et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362-1365
    9. Maglich JM, Caravella JA, Lambert MH et al. The first completed genome sequence from a teleost fish (Fugu rubripes) adds significant diversity to the nuclear receptor superfamily. Nucleic Acids Res.2003;31:4051-4058
    10. Downes M, Verdecia MA, Roecker AJ et l. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell. 2003;11:1079-1092
    11. Seo YW, Sanyal S, Kim HJ et al. FOR, a novel orphan nuclear receptor related to farnesoid X receptor. J. Biol. Chem. 2002;277:17836-17844
    12. Otte K, Kranz H, Kober I et al. Identification of farnesoid X receptor beta as a novel mamma- lian nuclear receptor sensing lanosterol. Mol. Cell. Biol. 2003;23: 864-872
    13. Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J. Biol. Chem.2003;278:104-110
    14. Carson-Jurica MA, Schrader WT, O’Malley BW et al. Steroid receptor family: structure and functions. Endocr. Rev. 1990;11:201-202.
    15. Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl. Acad. Sci. U.S.A. 2004;101:3668-3673.
    16. Love JD, Gooch JT, Benko S et al. The structural basis for the specificity of retinoid-X receptor-selective agonists: new insights into the role of helix H12. J. Biol. Chem. 2002;277: 11385-11391
    17. Nicolaou KC, Evans RM, Roecker AJ et al. Discovery and optimization of non-steroidal FXR agonists from natural product-like libraries.Org. Biomol. Chem. 2003;1:908-920
    18. Dussault I, Beard R, Lin M et al. Identification of geneselective modulators of the bile acid receptor FXR. J. Biol. Chem. 2003;278:7027-7033
    19. Bauer U, Cheruvallath Z, Deuschle U et al. FXR(NR1H4 nuclear receptor)-binding compounds. WO 2003015771, 2003
    20. Schultz JR, Tu H, Luk A et al. Shan, B. Role of LXRs in control of lipogenesis.Genes Dev. 2000;14:2831-2838
    21. Niesor EJ, Flach J, Lopes-Antoni I et al. The nuclear receptors FXR and LXRalpha: potential targets for the development of drugs affecting lipid metabolism and neoplastic diseases. Curr. Pharm. Des. 2001;7:231-255
    22. Roitelman J, Masson D, Avner R et al. Apomine, a novel hypocholesterolemic agent, accelerates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and stimulates low density lipoprotein receptor activity. J. Biol. Chem.2004;279:6465-6473
    23. Adachi R, Honma Y, Masuno H et al. Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. J. Lipid Res. 2005;46:46-57
    24. Fujino T, Une M, Imanaka T et al. Structure-activity relationship of bile acids and bile acid analogs in regard to FXR activation. J. Lipid Res. 2004;45:132-138
    25. Nishimaki-Mogami T, Une M, Fujino T et al. Identification of intermediates in the bile acid synthetic pathway as ligands for the farnesoid X receptor. J. Lipid Res. 2004;45:1538-1545
    26. Pellicciari R, Fiorucci S, Camaioni E et al. 6Rethyl-chenodeoxycholic acid (6-ECDCA),a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 2002;45: 3569-3572
    27. Pellicciari R, Costantino G, Camaioni E et al. Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid. J. Med. Chem. 2004;47:4559-4569
    28. Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch. Biochem. Biophysics. 2005;433:397–412
    29. Ananthanarayanan M, Balasubramanian N, Makishima M et al. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001;276:28857-28865
    30. Goodwin B, Jones SA, Price RR et al. A regulatory cascade of the nuclear receptors FXR, SHP-1 and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6:517-526
    31. Yang Y, Zhang M, Eggertsen G et al. On the mechanism of bile acid inhibition of rat sterol 12alpha-hydroxylase gene (CYP8B1) transcription: roles of alpha-fetoprotein transcription factor and hepatocyte nuclear factor 4alpha. Biochim. Biophys. Acta 2002;1583:63-73.
    32. Barbier O, Torra IP, Sirvent A et al. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology. 2003;124:1926-1940
    33. Pircher PC, Kitto JL, Petroski ML et al. Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem. 2003;278: 27703-27711
    34. Shepherd J, Packard CJ, Morgan HG et al. The effects of cholestyramine on high density lipoprotein metabolism.Atherosclerosis. 1979;33:433-444
    35. Buchwald H, Varco RL, Matts JP et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med. 1990;323:946 –955
    36. Sinal CJ, Tohkin M, Miyata M et al.Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731-744.
    37. Claudel T, Sturm E, Duez H et al. Bile acid-activated nuclear receptor FXR suppressesapolipoprotein A-I transcription via a negative FXR response element. J Clin Invest. 2002;109:961 –971
    38. Kerr TA, Saeki S, Schneider M et al. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis. Dev Cell. 2002;2:713-720
    39. Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem. 2000;275:39313–39317
    40. Kast HR, Nguyen CM, Sinal CJ et al. Farnesoid x-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol. 2001;15:1720-1728
    41. Kardassis D, Roussou A, Papakosta P et al. Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region-1 and the proximal apolipoprotein C-II promoter mediate apolipoprotein C-II gene regulation by bile acids and retinoids. Biochem J. 2003;372:291-304
    42. Kinoshita M, Kawamura M, Fujita M et al. Enhanced susceptibility of LDL to oxidative modification in a CTX patient:- role of chenodeoxycholic acid in xanthoma formation. J Atheroscler Thromb. 2004;11:167-172.
    43. Prieur X, Coste H, Rodriguez JC. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J Biol Chem. 2003;278:25468-25480
    44. Claudel T, Inoue Y, Barbier O et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology.2003;125:544-555
    45. Claudel T, Staels B, Kuipers F et al. The farnesoid X Receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005;25:2020-2031
    46. Anisfeld AM, Kast-Woelbern HR, Meyer ME. Syndecan-1 expression is regulated in an isoform specific manner by the farnesoid-X receptor. J Biol Chem. 2003;26:26
    47. Pineda Torra I, Claudel T, Duval C et al. Bile Acids Induce the Expression of the Human Peroxisome Proliferator- Activated Receptor alpha Gene via Activation of the Farnesoid X Receptor. Mol Endocrinol. 2003;17:259-272
    48. Watanabe M, Houten SM, Wang L et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408-1418
    49. Duran-Sandoval D, Mautino G, Martin G et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53:890-898
    50. Stacpoole PW, Grundy SM, Swift LL et al. Elevated cholesterol and bile acid synthesis in an adult patient with homozygous familial hypercholesterolemia. Reduction by a high glucose diet. J Clin Invest. 1981;68:1166-1171
    51. De Fabiani E, Mitro N, Gilardi F et al.Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem. 2003;278:39124-39132
    52. Yamagata K, Daitoku H, Shimamoto Y et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004;279:23158-23165
    53. Fiorucci S, Antonelli E, Rizzo G et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004;127: 1497-1512
    54. Lu Y, Binz J, Numerick MJ et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest. 2003;112:1678-1687
    55. Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med. 2004;10:1352 –1358
    56. Singh RB, Niaz MA, Ghosh S. Hypolipidemic and antioxidant effects of Commiphora mukul as an adjunct to dietary therapy in patients with hypercholesterolemia. Cardiovasc. Drugs Ther. 1994;4:659-664
    57. Sinal CJ, Gonzalez FJ. Guggulsterone: an old approach to a new problem. Trends Endocrinol. Metab. 2002;13:275-276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700