茵栀黄颗粒治疗雌激素诱导的大鼠胆汁淤积的机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨茵栀黄颗粒治疗雌激素诱导的大鼠胆汁淤积的作用机制。
     方法
     用苯甲酸雌二醇(EB,5mg/kg/d)颈部皮下连续注射5d,建立大鼠肝内胆汁淤积模型,对造模成功大鼠随即分为7组,1组为模型组,另6组分别用生理盐水和茵栀黄颗粒灌胃干预7、14、21d,此外,另设1正常对照组,通过胆汁流速、总胆汁流量、血清生化指标、肝脏病理学、免疫组化及Western-blot对各组大鼠进行评价对比。
     结果
     1.胆汁流速:用EB皮下注射5d后,模型组与正常对照组相比,胆汁流速及总胆汁流量均下降(P<0.05)。生理盐水分别干预7、14、21d时,其与模型组相比,其胆汁流速及总胆汁流量均呈现上升的趋势,但无显著差异。茵栀黄颗粒分别干预7、14、21d时,其与相同天数的生理盐水组相比,其胆汁流速与总胆汁流量均有上升趋势,其中以14、21d增加显著(P<0.05)。
     2.血清生化指标:模型组与正常对照组相比,各项血清生化指标呈现上升的趋势,但以DBIL及TBA的升高最为显著(P<0.05)。生理盐水分别干预7、14、21d后,与模型组相比,7d其生化指标无差异(P>0.05);14d其生化指标上升趋势明显,以DBIL及TBA的升高最为显著(P<0.05);21d生化指标呈现下降趋势,以TBA下降最为显著(P<0.05)。茵栀黄颗粒分别干预7、14、21d后,与相同天数的生理盐水组相比,14d血清生化指标下降趋势明显,以DBIL及TBA的下降最为显著(P<0.05);7和21d时无显著变化(P<0.05)
     3.肝脏HE染色:正常对照组肝组织结构和细胞形态正常。模型组与正常对照组相比,肝组织出现少量胆管增生,静脉扩张淤血及局部肝细胞坏死变性,少量的炎症细胞浸润。生理盐水分别干预7、14、21d后,与模型组相比,7至14d肝脏病变呈持续加重趋势,21d呈缓解趋势。茵栀黄颗粒分别干预7、14、21d后,与相同天数的生理盐水组相比,其肝脏病变程度均减轻,21d已基本恢复正常。
     4.免疫组化:各组大鼠肝脏转运体Mrp2,Oatp2,Bsep及Ntcp均表达于细胞膜上,未见内陷。
     5. Western-blot:模型组与正常对照组相比,转运体Oatp2、Ntcp、Bsep及Mrp2表达均显著下降(P<0.05)。生理盐水组分别干预7、14、21d后与模型组相比,转运体Bsep及Mrp2的表达逐渐上升,其中14、21d出现显著性差异(P<0.05);Oatp2的表达在7、21d时无显著变化(P>0.05),但14d时显著下降(P<0.05);Ntcp的表达在7、14d时无显著变化(P>0.05),但21d时显著升高(P<0.05)。茵栀黄颗粒分别干预7、14、21d后与相同天数的生理盐水组相比,转运体Bsep的表达均无显著变化(P>0.05);Mrp2的表达在14d时无显著变化(P>0.05),但7、21d时其表达均显著升高(P<0.05);Oatp2及Ntcp的表达7d时均无显著变化(P>0.05),但14、21d时表达均显著升高(P<0.05)。
     结论
     茵栀黄颗粒治疗雌激素诱导大鼠肝内胆汁淤积的作用机制可能与其上调肝细胞膜转运体Oatp2、Ntcp及Mrp2的表达有关,此外,也可能与机体代偿性上调Bsep的表达有关。
Aim
     Study on the treatment mechanism of Yin-Zhi-Huang granules to rat cholestasis induced by estrogen
     Methods
     Rat's intrahepatic cholestasis was induced by estradiol benzoate (EB,5mg/kg/d) via subcutaneous injection for5days, The successfully established experimental intrahepatic cholestasis rats models were randomly divided into7groups, one of them was Model group and other groups were interfered with saline and Yin-Zhi-Huang granules via oral administration for7,14and21days, respectively, no special treatment was required for the Normal group. Then rats were evaluated through comparing bile flow velocity, bile flow volume, biochemical indicator of blood serum, hepatic pathology, immunohistochemistry and western blot.
     Results
     1. Bile flow experiment: After having been given EB daily subcutaneous injection for5days, bile flow velocity and bile flow volume were decreased compared with Normal group (P<0.05). After saline intervening for7,14and21days, compared with Model group, bile flow velocity and bile flow volume were on the rise, but there was no significant difference. After Yin-Zhi-Huang granules intervening for7,14and21days, bile flow velocity and bile flow volume were on the rise and they were significantly increased (P<0.05) at14and21days compared with the same day's in Saline group.
     2. Serum biochemical indexes:Compared with Normal group, serum biochemical indexes were on the rise in Model group, the direct bilirubin and total bile acid was significantly increased (P<0.05). After saline intervening for7,14and21days, compared with Model group, there was no significant difference in7days (P>0.05), serum biochemical indexes were on the rise in14days and the the direct bilirubin and total bile acid was significantly increased (P<0.05). It showed a downward tendency at21days and the total bile acid was significantly decreased (P<0.05). After Yin-Zhi-Huang granules intervening for7,14and21days, compared with the same day's Saline group, serum biochemical indexes had very marked drop trends, the the direct bilirubin and total bile acid were significantly decreased (P<0.05) at14days, there were no significant differences (P>0.05) at7and21days.
     3. Liver HE staining: The hepatic tissue structure was normal in Normal group. After EB daily subcutaneous injection for5days, compared with Normal group, there were a small number of bile duct hyperplasia, venous congestion, partial hepatocytes necrosis, and inflammatory cell infiltration in rat liver. After saline intervening for7,14and21days, compared with Model group, the lesions showed a continuous aggravating trend from7to14days, it showed a remission trend at21days. After Yin-Zhi-Huang granules intervening for7,14and21days, the hepatic lesion was much more alleviative than the same day's Saline group, even recovered to normal at21days.
     4. Immunohistochemistry showed that the transporter Mrp2, Oatp2, Bsep and Ntcp were all expressed in the liver cell membrane in each group, there was no internalization.
     5. Western-blot experiment:Compared with Normal group, the expression of the hepatic Oatp2, Ntcp, Bsep and Mrp2were all significantly decreased (P<0.05). After saline intervening for7,14and21days, compared with Model group, the expression of the transporter Bsep and Mrp2were on the rise, and there was significantly difference at7and14days, the expression of Oatp2had no significant differences (P>0.05) at7and21days, but significantly decreased (P<0.05) at14days, the expression of Ntcp had no significant differences (P>0.05) at7and14days, but significantly increased (P<0.05) at21days. After Yin-Zhi-Huang granules intervening for7,14and21days, compared with the same day's Saline group, no significant differences was observed in expression of Bsep (P>0.05), the expression of Mrp2had no significant differences (P>0.05) at14days, but significantly increased (P<0.05) at7and21days, the expression of Oatp2and Ntcp had no significant differences (P>0.05) at7days, but significantly increased (P<0.05) at14and21days.
     Conclusion
     The mechanism of Yin-Zhi-Huang granules on treatment of rat intrahepatic cholestasis induced by estrogen may be associated with the up-regulated expression of the hepatic transporter Oatp2, Ntcp and Mrp2. In addition, it may also relate with the body's compensatory mechanism on the up-regulated expression of Bsep.
引文
[1]孙进.口服药物吸收与转运[M].北京:人民卫生出版社,2006:146-149.
    [2]杨万莲.三种中药方剂对犬实验性肝内胆汁淤积性黄疽的影响[D].北京:中国农业大学,2004:1-68.
    [3]胆汁淤积的诊断与治疗[J].专题座谈会,中华消化杂志,2000,20(5):335-336.
    [4]Marco Arrese, Michael Trauner. Molecular aspects of bile formation and cholestasis. TRENDS in Molecular Medicine,2003,9(12):558-564.
    [5]赵群,司继刚.胆汁淤积的药物治疗[J].山东省医院药学学术研讨会论文集,2008,59-63.
    [6]张明月,普均.肝内胆汁淤积的诊断与治疗[J].临床肝胆病杂志,2010,26(1):90-92.
    [7]宗蕾,陆伦根.肝内胆汁淤积发病机制的研究进展[J].临床消化病杂志,2009,21(3):133-135.
    [8]毛德文,胡振斌,王丽等.肝内胆汁淤积的致病因素及发病机制的研究进展[J].辽宁中医药大学学报,2007,9(4):197-200.
    [9]Zollner G, Trauner M. Mechanisms of cholestasis[J]. Clin Liver Dis,2008,12(1):1-26.
    [10]Oude Elferink RPJ, Meijer DKF, Kuipers F, et al. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport[J]. Biochim Biophys Acta, 1995,1241:215-268.
    [11]Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis[J]. N Engl J Med, 1998,339:1217-1227.
    [12]Trauner M, Meier PJ, Boyer JL. Molecular regulation of hepatocellulartransport systems in cholestasis[J]. J Hepatol,1999,31:165-178.
    [13]GERNOT ZOLLNER, PETER FICKERT, RAINER ZENZ, et al. Hepatobiliary Transporter Expression in Percutaneous Liver Biopsies of Patients With Cholestatic Liver Diseases. Hepatology[J],2001,33:633-646.
    [14]邹仲之.组织学与胚胎学[M].北京:人民卫生出版社,2005.
    [15]胡和平,周华邦,周东勋.胆汁形成与胆汁淤积性疾病发生的机制[J].中华肝脏病杂志,2008,16(8):571-573.
    [16]Marco Arrese, Meenakshisundaram Ananthananarayanan, Frederick J Suchy. Hepatobiliary transport:molecular mechan-isms of development and cholestasis[J]. Pediatr Res,1998,44: 141-147.
    [17]Meier, P.J, Stieger, B. Bile salt transporters[J]. Annu, Rev.Physiol,2002,64:635-661.
    [18]Marco Arrese, Michael Trauner. Molecular aspects of bile formation and cholestasis[J]. TRENDS in Molecular Medicine,2003,9(12):558-564.
    [19]Zollner G, Fickert P, Zenz R, et al. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases[J]. Hepatology,2001,33(3):633-646.
    [20]Hagenbuch, B. and Meier, P.J. The superfamily of organic anion transporting polypeptides[J]. Biochim. Biophys. Acta,2003,1609(1):1-18.
    [21]Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione[J]. Mol. Pharmacol,58(2):335-340.
    [22]Suzuki, H. and Sugiyama, Y. Transporters for bile acids and organic anions. Pharm. Biotechnol[J],1999,12:387-439.
    [23]Meijer DK, Smit JW, Hooiveld GJ, et al. The molecular basis for hepatobiliary transport of organic cations and organic anions[J]. Pharm. Biotechnol,1999,12:89-157.
    [24]Borst, P. and Elferink, R.O. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem[J].2002,71:537-592.
    [25]Jorg Konig Ph.D., Daniel Rost, Yunhai Cui, et al. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane[J]. Hepatology 1999,29(4):1156-1163.
    [26]Rius M, Nies AT, Hummel-Eisenbeiss J, et al. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane.Hepatology[J], 2003,38(2):374-384.
    [27]Trauner, M. and Boyer, J.L. Bile salt transporters:molecular characterization, function, and regulation[J]. Physiol. Rev,2003,83:633-671.
    [28]郭晓强.CFTR型氯离子通道研究进展[J].生命科学,2007,19(2):189-192.
    [29]Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. [J]. Engl. J. Med, 1998,339(17):1217-1227.
    [30]Oude Elferink RP, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology[J],2006,130(3):908-25.
    [31]De Vree JM, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis[J]. Proc Natl Acad Sci USA,1998,95(1):282-7.
    [32]an Mil SW, vall der Woerd WL, vail der Brugge G, et al. Benign recurrent Intrahepatic cholestasis type 2 is caused by mutations in ABCB11[J]. Gastroenterology,2004,127: 379—384.
    [33]Feranchak AP,Sokol RJ. Cholangiocyte biology and cystic fibrosis liver disease[J]. Semin LiverDis,2001.21:471-488.
    [34]Alagille D. Alagille syndrome today[J]. Clin Invest Med,1996,19(5):325-30.
    [35]黄磊,魏明发.胆道闭锁的基因学研究进展[J].中华小儿外科杂志,2007,28(4):216-218.
    [36]Geier A, Wagner M, Dietrich CG, et al. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration[J]. Biochim Biophys Acta, 2007,1773(3):283-308.
    [37]Trauner M, Meier PJ, Boyer JL. Molecular regulation of hepatocellular transport systems in cholestasis[J]. J Hepatol,1999,31(1):165-178.
    [38]Lee J, Boyer JL. Molecular alterations in hepatocyte transport mechanisms in acquired cholestatic liver disorders[J]. Semin Liver Dis,2000,20(3):373-384.
    [39]Lammert F, Marschall HU, Glantz A, et al. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management[J]. J Hepatol,2000,33(6):1012-1021.
    [40]Jacquemin E, de Vree JM, Cresteil D, et al. The wide spectrum of multidrug resistance 3 deficiency:from neonatal cholestasis to cirrhosis of adulthood[J]. Gastroenterology,2001, 120(6):1448-1458.
    [41]Jacquemin E. Role of multidrug resistance 3 deficiency in pediatric and adult liver disease:one gene for three diseases[J]. Semin Liver Dis,2001,21(4):551-562.
    [42]Ropponen A, Sund R, Riikonen S, et al. Intrahepatic cholestasis of pregnancy as an indicator of liver and biliary diseases:a population-based study[J]. Hepatology,2006,43(4):723-728.
    [44]Lucena JF, Herrero JI, Quiroga J, et al. A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy, and adulthood biliary cirrhosis[J]. Gastroenterology, 2003,124(4):1037-1042.
    [45]Meyers M, Slikker W, Pascoe G, et al. Characterization of cholestasis induced by estradiol-17 beta-D-glucuronide in the rat[J]. J Pharmacol Exp Ther,1980,214(1):87-93.
    [46]Mottino AD, Cao J, Veggi LM, et al. Altered localization and activity of canalicular Mrp2 in estradiol-17beta-D-glucuronide-induced cholestasis[J]. Hepatology,2002,35(6):1409-1419.
    [47]Trauner M, Arrese M, Soroka CJ, et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis[J]. Gastroenterology,1997,113(1): 255-264.
    [48]Mottino AD, Veggi LM, Wood M, et al. Biliary secretion of glutathione in estradiol 17beta-D-glucuronide-induced cholestasis[J]. J Pharmacol Exp Ther,2003,307(1):306-313.
    [49]Stieger B, Fattinger K, Madon J, et al. Drug-and estrogen-induced cholestasis trough inhibition of the paepatocellular bile salt export pump (Bsep) of rat liver[J]. Gastroenterology, 2000,118(2):422-430.
    [50]Crocenzi FA, Mottino AD, Cao J, et al. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats[J]. Am J Physiol Gastrointest Liver Physiol,2003,285(2): 449-459.
    [51]Geier A, Dietrich CG, Gerloff T, et al. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat[J]. Biochim Biophys Acta,2003,1609(1): 87-94.
    [52]Simon FR, Fortune J, Iwahashi M, et al. Characterization of the mechanisms involved in the gender differences in hepatic taurocholate uptake[J]. Am J Physiol,1999,276(21):556-565.
    [53]Simon FR, Fortune J, Iwahashi M, et al. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters[J]. Am J Physiol,1996,271(61):1043-1052.
    [54]Jacquemin E, Cresteil D, Manouvrier S, et al. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy[J]. Lancet,1999,353(9148):210-211.
    [55]Dixon PH, Weerasekera N, Linton KJ, et al. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy:evidence for a defect in protein trafficking[J]. Hum Mol Genet,2000,9(8):1209-1217.
    [56]Gendrot C, Bacq Y, Brechot MC, et al. A second heterozygous MDR3 nonsense mutation associated with intrahepatic cholestasis of pregnancy[J]. J Med Genet,2003,40(3):32.
    [57]Mullenbach R, Linton KJ, Wiltshire S, et al. ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy[J]. J Med Genet,2003,40(5):e70.
    [58]Pauli-Magnus C, Lang T, Meier Y, et al. Sequence analysis of bile salt export pump(ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy[J]. Pharmacogenetics,2004,14(2):91-102.
    [59]Floreani A, Carderi I, Paternoster D, et al. Intrahepatic cholestasis of pregnancy:three novel MDR3 gene mutations[J]. Aliment Pharmacol Ther,2006,23(11):1649-1653.
    [60]Wasmuth HE, Glantz A, Keppeler H, et al. Intrahepatic cholestasis of pregnancy:The severe form is associated with common variants of the hepatobiliary phospholipids transporter ABCB4 gene[J]. Gut,2007,56(2):265-270.
    [61]Schneider G, Paus TC, Kullak-Ublick GA, et al. Linkage between a new splicing site mutation in the MDR3 alias ABCB4 gene and intrahepatic cholestasis of pregnancy[J]. Hepatology,2007,45(1):150-158.
    [62]Eloranta ML, Hakli T, Hiltunen M, et al. Association of single nucleotide polymorphisms of the bile salt export pump gene with intrahepatic cholestasis of pregnancy[J]. Scand J Gastroenterol,2003,38(6):648-652.
    [63]Keitel V, Vogt C, Haussinger D, et al. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy[J]. Gastroenterology,2006,131(2): 624-629.
    [64]Mullenbach R, Bennett A, Tetlow N, et al. ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy [J]. Gut,2005,54(6):829-834.
    [65]Sookoian S, Castano G, Burguendo A, et al. Association of the multidrug resistance associated protein gene (ABCC2) variants with intrahepatic cholestasis of pregnancy[J]. J Hepatol,2008,48(1):125-132.
    [66]Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects:a paradigm for the genetics of adult cholestatic syndromes[J]. Semin Liver Dis,2007,27(1):77-98.
    [67]Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis[J]. Hepatology,2006,44(4):778-787.
    [68]Fattinger K, Funk C, Pantze M, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions[J]. Clin Pharmacol Ther,2001,69(4):223-231.
    [69]Funk C, Ponelle C, Scheuermann G, et al. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity:in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat[J]. Mol Pharmacol,2001,59(3): 627-635.
    [70]Smith AJ, van Helvoort A, van Meer G, et al. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping[J]. J Biol Chem,2000,275(31):23530-23539.
    [71]Bode KA, Donner MG, Leier I, et al. Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate[J]. Biochem Pharmacol,2002,64(1):151-158.
    [72]Fouassier L, Kinnman N, Lefevre G, et al. Contribution of mrp2 in alterations of canalicular bile formation by the endothelin antagonist bosentan[J]. J Hepatol,2002,37(2):184-191.
    [73]Lang C, Meier Y, Stieger B, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury[J]. Pharmacogenet Genomics,2007,17(1):47-60.
    [74]Desmet VJ. Vanishing bile duct syndrome in drug-induced liver disease[J]. J Hepatol,1997, 26(Suppl 1):31-35.
    [75]Whitehead MW, Hainsworth I, Kingham JG. The causes of obvious jaundice in South West Wales:perceptions versus reality[J]. Gut,2001,48(3):409-413.
    [76]Geier A, Wagner M, Dietrich CG, et al. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration[J]. Biochim BiophysActa 2007,1773(3):283-308.
    [77]Moseley RH. Sepsis-associated cholestasis[J]. Gastroenterology,1997,112(1):302-306.
    [78]Geier A, Dietrich CG, Balasubramanian N, et al. Mouse and rat Ntcp genes are directly transactivated via a conserved HNF-4alpha element in the proximal promoter region. A previously unidentified role [J]. Hepatology,2006,42(Suppl 1):459A.
    [79]Beigneux AP, Moser AH, Shigenaga JK, et al. The acute phase response is associated with retinoid X receptor repression in rodent liver[J]. J Biol Chem,2000,275(21):16390-6399.
    [80]Beigneux AP, Moser AH, Shigenaga JK, et al. Reduction in cytochrome P-450 enzyme expression is associated with repression of CAR (constitutive androstane receptor) and PXR (pregnane X receptor) in mouse liver during the acute phase response[J]. Biochem Biophys Res Commun,2002,293(1):145-149.
    [81]Vos TA, Hooiveld GJ, Koning H, et al. Up-regulation of the multidrug resistance genes,Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver[J]. Hepatology,1998,28(6):1637-1644.
    [82]Fickert P, Fuchsbichler A, Wagner M, et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice[J]. Gastroenterology,2004, 127(1):261-274.
    [83]Lazaridis KN, Strazzabosco M, LaRusso NF. The cholangiopathies:disorders of biliary epithelia[J]. Gastroenterology,2004,127(5):1565-1577.
    [84]Pauli-Magnus C, Kerb R, Fattinger K, et al. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis[J]. Hepatology 2004, 39(3):779-791.
    [85]Oswald M, Kullak-Ublick GA, Paumgartner G, et al. Expression of hepatic transporters OATP-C and MRP2 in primary sclerosing cholangitis[J]. Liver,2001,21(4):247-253.
    [86]Juran BD, Lazaridis KN. Genetics of hepatobiliary diseases[J]. Clin Gastroenterol Hepatol, 2006,4(5):548-557.
    [87]Kaplan MM, Gershwin ME. Primary biliary cirrhosis[J]. N Engl J Med,2005,353(12): 1261-1273.
    [88]Prieto J, Qian C, Garcia N, et al. Abnormal expression of anion exchanger genes in primary biliary cirrhosis[J]. Gastroenterology,1993,105(2):572-578.
    [89]Medina JF, Martinez A, Vazquez JJ, et al. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis[J]. Hepatology,1997,25(1):12-17.
    [90]Prieto J, Garcia N, Marti-Climent JM, et al. Assessment of biliary bicarbonate secretion in humans by positron emission tomography [J]. Gastroenterology,1999,117(1):167-172.
    [91]Melero S, Spirli C, Zsembery A, et al. Defective regulation of cholangiocyte C1-/HCO3(-) and Nap/Hp exchanger activities in primary biliary cirrhosis[J]. Hepatology,2002,35(6): 1513-1521.
    [92]Kaplan MM, Gershwin ME. Primary biliary cirrhosis[J]. N Engl J Med,2005,353(12): 1261-1273.
    [93]Lindor KD, Kowdley KV, Luketic VA, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis[J]. Hepatology.2009,50(3):808-814.
    [94]Hongwei He, Albert Mennone, James L. Boyer, et al.Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct ligated rats and human hepatic cells[J]. Hcpatology.2011 53(2):548-557.
    [95]Marcelo G. ROMA, Flavia D. TOLEDO, Andrea C. et al. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clinical Science,2011,121(12): 523-544.
    [96]赵群,司继刚.胆汁淤积的药物治疗[J].2008,年山东省医院药学学术研讨会,2008.
    [97]刘小红.熊去氧胆酸治疗妊娠期肝内胆汁淤积症31例.陕西医学杂志,2009,38(8):986-987.
    [98]Fickert P, Zollner G, Fuchsbichler A, et al. Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver[J]. Gastroenterology.2001,121(1): 170-83.
    [99]Zollner, G., Fickert, P., Fuchsbichler, A. et al. Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine[J]. J. Hepatol,2003,39:480-488.
    [100]Zollner, G., Wagner, M., Moustafa, T. et al. Coordinated induction of bile acid detoxification and alternative elimination in mice:role of FXR-regulated organic solute transporter-a/(3 in the adaptive response to bile acids[J]. Am.J. Physiol. Gastrointest. Liver Physiol,2006,290: 923-932.
    [101]Salvioli, G., Lugli, R., Pradelli, J. M. et al. Urinary excretion of bile acids during acute administration in man[J]. Eur. J. Clin. Invest,1988,18:22-28.
    [102]Takikawa, H., Beppu, T. and Seyama, Y. Urinary concentrations of bile acid glucuronides and sulfates in hepatobiliary diseases[J]. Gastroenterol. Jpn,1984,19:104-109.
    [103]Schuetz, E. G., Strom, S., Yasuda, K.et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450[J]. J. Biol. Chem,.2001,276:39411-39418.
    [104]Wagner, M., Zollner, G. and Trauner, M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin[J]. Liver Dis,2010,30:160-177.
    [105]Stahl, S., Davies, M. R., Cook, D. I. et al. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis[J]. Xenobiotica, 2008,38:725-777.
    [106]赵敏,于月成,吴维光等.S-腺苷蛋氨酸联合熊去氧胆酸治疗妊娠肝内胆汁淤积症疗效观察[J].第四军医大学学报,2006,27(3):258-260.
    [107]Duce AM, Ortiz P, Cabrero C, et al. S-Adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis[J]. HEPATOLOGY,1988,8: 65-68.
    [108]Avila MA, Berasain C, Torres L, et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma[J]. J Hepatol,2000,33:907-914.
    [109]Mato JM, Corrales FJ, Lu SC, et al. S-Adenosylmethionine:a control switch that regulates liver function[J]. FASEB J,2002,16:15-26.
    [110]Mato JM, Ca'mara J, Ferna'ndez de Paz J, et al. S-Adenosylmethionine in alcoholic liver cirrhosis:a randomized,placebo-controlled, double-blind, multicenter clinical trial[J]. J Hepatol,1999,30:1081-1089.
    [111]sukamoto HC, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury[J]. FASEB J,2001,15:1335-1349.
    [112]Mato JM, Alvarez L, Ortiz P, Pajares MA. S-adenosylmethionine synthesis:molecular mechanisms and clinical implications[J]. Pharmacol Ther,1997,73:265-280.
    [113]Pascale RM, Simile MM, De Miglio MR, Feo F. Chemoprevention of hepatocarcinogenesis: S-adenosyl-L-methionine[J]. Alcohol,2002,27:193-198.
    [114]Agency for Healthcare Research and Quality. Evidence report/technology assessment no.64, s-adenosyl-1-methionine for treatments of depression, osteoarthritis, and liver disease. Available at:http://www.ahrq.gov/clinic/tp/sametp.htm
    [115]Jos'e M. Mato and Shelly C. Lu. Role of S-Adenosyl-L-Methionine in Liver Health and Injury[J]. HEPATOLOGY,2007,45 (5):1306-1312.
    [116]Mato JM, Corrales FJ, Lu SC, Avila MA. S-Adenosylmethionine: a control switch that regulates liver function[J]. FASEB J,2002,16:15-26.
    [117]Nieto N, Cederbaum AI. S-adenosylmethionine blocks collagen I production by preventing transforming growth factor-b induction of the COL1A2 promoter[J]. J Biol Chem,2005, 280:30963-30974.
    [118]Ansorena E, Garci'a-Trevijano ER, Marti'nez-Chantar ML, et al. S-adenosylmethionine and methylthioadenosineare anti-apoptotic in cultured rat hepatocytes but pro-apoptotic in human hepatoma cells[J]. HEPATOLOGY,2002,35:274-280.
    [119]Yang HP, Sadda MR, Li M, et al. S-Adenosylmethionine and its metabolite induce apoptosis in HepG2 cells:role of protein phosphatase 1 and Bcl-x S[J]. HEPATOLOGY,2004,40: 221-231.
    [120]王志毅,赵有蓉,邹淑碧等.腺苷蛋氨酸致低钾血症3例[J].中国药业,2001,10(6):59.
    [121]药物临床信息参考[M].四川:四川科学技术出版社,2004,482.
    [122]忻祥法.胆维他临床研究进展[J].上海医药,2002,23(8):354-355.
    [123]王锡钦.亮菌甲素联合茵栀黄治疗胆汁淤积性肝炎34例[J].中国中两医结合杂志,2006,14(4:273-274.
    [124]李猛,吴福宁,李娅娅.浅谈中医学对胆汁淤积的病机认知和辩证分型.2009,40(318):5-6.
    [125]杨万莲.三种中药方剂对犬试验性肝内胆汁淤积性黄疸的影响[D].中国农业大学,2004.
    [126]罗超.中西医结合诊疗肝内胆汁淤积的新理念.河北中医,2010,7(32):1093-1095.
    [127]朱德增.新加茵陈蒿汤治疗慢性重度肝炎疗效观察[J].中西医结合学报,2003,1(1):77-78.
    [128]Tzung-Yan Lee a, Hen-Hong Chang, Jenn-Han Chen,et al. Herb medicine Yin-Chen-Hao-Tang ameliorates hepatic fibrosis in bile duct ligation rats[J]. Journal of Ethnopharmacology,2007,109:318-324.
    [129]赵君,吴献群,杨欣等.茵陈蒿对雌孕激素诱导的肝内胆汁淤积孕鼠肝脏超微结构和细胞黏附分子-1表达的影响[J].中西医结合肝病杂志.2008,3(18):156-157.
    [130]王云,罗天永.舒肝宁注射液治疗黄疸型肝炎的临床效果观察[J].护十进修杂志,2010,8(5):744-745.
    [131]赵璐,曾南,刘晓帅等.舒肝宁注射液对小鼠实验性肝损伤的保护作用[J].中药药理与临床,2007,23(6):65-67
    [132]刘庆民,付继荣,张汉启等.中药肝舒宁对慢性肝炎肝纤维化治疗作用的临床研究[J].世界华人消化杂志,2001,9(9):1096-1098
    [133]刘延奎,单振武,徐晓光.茵栀黄颗粒的急性毒性和保肝作用研究[J].齐鲁药事,2004,23(6):49-50.
    [134]李贵,朱建伟,吴丽丽.茵栀黄颗粒的保肝作用研究[J].中药材,2001,24(5):353-355.
    [135]王国杰,李,康永明.茵栀黄颗粒治疗新生儿病理性黄疸的临床观察[J].中医药信息,2011,28(4):121-122.
    [136]赵长普,党中勤,李鲜.茵栀黄颗粒治疗急性黄疸型肝炎的疗效观察[J].西部医学,2010,22(8):1497-1498.
    [137]周燕.肝细胞膜转运蛋白Mrp2对头孢哌酮药动学影响初探[D].硕十学位论文,兰州大学,2010.
    [138]Wendong Huang, Jun Zhang, and David D. Moore. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR[J]. J. Clin. Invest,2004,113(10): 137-143.
    [139]朱华波.熊去氧胆酸联合茵栀黄治疗原发性胆汁性肝硬化疗效观察[J].医学临床研究,2010,27(10):1964-1965.
    [140]Koller T, Banarova A Ondrias E Kollerova J, Payer J. Acute cholestasis following Treatment with nimesulide and oral contraception:case report and review[J]. Vnitr Lek, 2008,54:665-669.
    [141]Meier Y, Zodan T, Lang G et al. Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump[J] World J GastroenterOl,2008,14:38-45.
    [142]Henriquez-Hernandez, Flores-Morales, Santana-Farre, et al. Role of pituitary Hormones on 17alpha-ethinylestradiol induced cholestasis in rat[J]. J Pharmacol Exp Ther,2007,32: 695-705.
    [143]程良斌,张赤志.黛矾散对雌激素诱导肝内胆汁淤积大鼠肝细胞膜影响的实验研究[D].湖北中医学院,2006:1-55.
    [144]Vore M. Estrogen cholestasis. Membranes, metabolites, or receptors[J]. Gastroenterology, 1987,93(3):643-649.
    [145]贾玉红,贾玉杰,姜妙娜.雌激素性肝内胆汁淤积发病机制的研究进展[J].大连医科大学学报,2001,23(2):144-146.
    [146]Reyes H, Kern F Jr. effect of pregnancy on bile flow and bilary lipids in the hamster[J]. 1979,76(1):144-150.
    [147]Davis RA, Kern F Jr, Showalter R, et al.Alterations of hepatic Na+-K+-ATPase and bile flow by estrogen:effects on liver surface membrane lipid structure and function[J].1978, 75(9):4130-4134.
    [148]Simon FR, Fortune J, Iwahashi M,et al.Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters[J]. Am J Physiol,1996,271(6):G1043-52.
    [149]M Trauner, M Arrese, CJ Soroka, et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis[J].1997,113(1):255-64.
    [150]李玉林,唐建武.病理学[M].第六版,人民卫生出版社,2005:69-87.
    [151]邹仲之主编,组织学与胚胎学[M].人民卫生出版社,2005:165-170
    [152]李健伟,刘建.雌激素与妊娠期肝内胆汁淤积症发病关系的研究进展[J].国际检验医学杂志,2006,27(6):507-509.
    [153]葛环,徐吕芬,孙午等.雌二醇诱导孕鼠妊娠肝内胆汁淤积肝细胞超微结构变化和表 皮生长因子受体表达的影响[M].南京医科大学学报,2003,23(5):440443.
    [154]孟强,刘克辛.转运体在肝脏中的作用[M].世界华人消化杂志,2011,19(9):881-886.
    [155]Shuichi Sekine, Kousei Ito, Junjiro Saeki, et al. Interaction of Mrp2 with radixin causes reversible canalicular Mrp2 localization induced by intracellular redox status[J]. Biochimica et Biophysica Acta,2011,1812:1427-1434.
    [156]Karpen, S.J. Transcriptional regulation of hepatobiliary transporters. In Molecular Pathogenesis of Cholestasis (Trauner, M.and Jansen[M], P.L.M., eds,2003, pp 124-140.
    [157]Jung, D. and Kullak-Ublick, G.A. et al. Hepatocyte nuclear factor 1 α:a key mediator of the effect of bile acids on gene expression[M]. Hepatology,2003,37:622-631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700