若干非线性问题特殊解的迭代解法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代科学工程计算领域中,会遇到一些具有许多解(或方案)的问题.对于这类问题,人们感兴趣的往往是它的一些特殊解.本文研究的问题便属于这类问题.对核子物理中提出的非对称代数Riccati方程,人们关心的是它的最小非负解.对多材料鼓面形状设计问题和非线性磁材料中的裂纹和不均匀性检测问题,人们想得到的是最优形状.如何快速有效地求得人们所关心的解,吸引了众多研究者的兴趣.
     关于非线性方程的求解,已经存在很多成熟的迭代方法,如牛顿法,Eu-ler迭代族和Halley迭代族等.对于同一个问题,不同迭代法的优劣性也会因Jacobian矩阵的计算和函数求值的复杂性而不同.King-Werner迭代法自被King(?)Werner分别提出后,因其每步迭代中Jacobian矩阵和函数值的计算次数与牛顿法相同,而其收敛阶在非奇异时为1+(?)的优势而引起了研究者的注意.对于最佳形状设计和形状重构问题,其用数学刻画是个约束优化问题,这可以有许多算法求解,如拉格朗日乘子法,增广拉格朗日法等.
     本文将求解三个问题的特殊解.第一个问题是在中子迁移理论中提出的非对称代数Riccati方程的最小正解,第二个问题是鼓面设计中的符合特定设计要求的最佳形状问题.第三个问题是非线性磁材料中的裂纹和材料不均匀性检测问题.
     在第二章中,我们首先介绍一些已有的求解非对称代数Riccati方程的最小正解的算法,然后用King-Werner方法求非对称代数Riccati方程的最小正解并给出King-Werner迭代法求解该非线性方程的最小正解的收敛性分析以及误差分析.数值例子表明King-Werner方法求奇异情况下的最小正解具有一定的优势.在求解奇异的非对称代数Riccati方程的最小正解时,许多已有的算法迭代速度会比较慢,借助Guo等提出的移技术,一些算法收敛速度慢的问题得以解决.在移技术中,会涉及到一个正实参数,并且该参数的不同取值对迭代算法的收敛速度的影响会有所不同.我们将算法得到的迭代点列看作是该参数的函数列,通过分析该参数对函数列的影响来分析该参数对简单迭代法,修改的简单迭代法,非线性块雅可比迭代法和非线性块高斯-赛德尔迭代法四种迭代法求最小正解时的收敛速率的影响.随后的数值例子验证了理论分析的正确性.
     在第三章中,我们将研究鼓面的最佳材料分布问题.我们首先简单介绍目标函数关于密度函数的Gateaux导数,然后选取密度函数的一个能使目标函数的增量尽量大于零的更新方向,通过这一方式来设计一个算法,最后通过数值实验来验证算法求解该类问题的有效性和合理性.
     在第四章里,我们解决的问题是非线性磁材料中裂纹和材料不均性的检测.这个问题属于形状重构问题.我们首先用分片常数水平集方法来表示材料的组成,然后将该问题转化为一个约束优化问题,并通过拉格朗日乘子法将该约束优化问题转化成无约束优化问题,最后通过梯度法来求解该无约束问题.数值实验显示我们的算法不但对水平集函数的初始值依赖不大,而且有效稳定.
In the modern scientific computing and engineering, people often encounter many problems which have several solutions. For problems of this kind, what people are interested in are usually some special solutions. The problems we investigate in this paper belong to this kind of problems. For the nonsymmetric algebraic Riccati equation arising in nuclear physics, what people concern is its minimal positive solution. For the problems of the optimal shape design and the shape reconstruction problems, the goal is to find the optimal shape. How to obtain the solutions in which people are interested in an effective way, has attracted the attentions of many researchers.
     For the solutions of some nonlinear equations, there are many mature meth-ods such as Newton method, Euler-family and Halley-family. For the same prob-lem, due to the complexity of the computation of Jacobian matrix and the value of the function, the merits and demerits of different methods are different. Since the proposal of the King-Werner iteration method by King and Wiener, respec-tively, due to the advantage that the computation of the Jacobian matrix and the value of function is almost the same as the Newton iteration but the con-vergent order in the nonsingular case is high up to1+(?), it has attracted lots of attentions of many researchers. For the problems of the optimal shape design and the shape reconstruction, they can be transformed into the unconstrained optimization ones which can be solved by many methods such as the Lagrangian multiplier method, augmented Lagrangian method.
     In this paper, we will discuss the special solutions of three problems of this kind. The first problem is to seek the minimal positive solution of the nonsymmetric algebraic Riccati equation. The second one is to find the optimal shape of the head of an drum according to a certain criteria. The last problem is to seek the shape which is the most close to the actual shape of the crack or the inhomogeneity in the nonlinear magnetic material.
     In Chapter2, we will present the existing methods for the minimal positive solution of the nonsymmetric algebraic Riccati equation. We use the King-Werner iteration method to seek the minimal positive solution and give the convergence analysis and the error analysis. Numerical tests show King-Werner method has some advantage at the singular case. For the singular case, the existing methods converge slowly. By means of the shift technique proposed by Guo et al., the phenomenon that some existing methods converge slowly has been solved. In the shift technique, it will involve a positive real parameter. The value of this parameter has some effects on the convergence rates of some algorithms. By con-sidering the iterative sequences as the functions sequence of this parameter, we analyze the effects of the parameter on the convergence rates of these four meth-ods including the Simple Iteration method, Modified Simple; iteration method, nonlinear block Jaccobi iteration method and nonlinear block Gauss-Seidel iter-ation method. Numerical tests verified our theoretical analysis.
     In Chapter3, we solve a problem of finding the optimal shape of the head of an drum. We first introduce the Gatcaux derivative of the objective with respect to the density function, then design an algorithm by choosing a direction of updating the density function which can make the increment of the objective functional larger than0as soon as possible. We also do some numerical tests to show the efficiency and feasibility of the algorithm.
     In Chapter4. we want to find the crack or the inhomogeneity in the nonlinear magnetic material. This problem belongs to the shape reconstruction problem. We first use the piecewise constant level set method to represent the composition of the material, then transform this problem into a constrained optimization one and further transform the constrained optimization one into an unconstrained one by the Lagrangian multiplier method, finally solve the unconstrained opti-mization by the gradient method. Numerical tests show that the algorithm is not dependent on the initial choice of the level set function, and the algorithm is not only efficient, but also robust.
引文
[1]Juang J. Existence of algebraic matrix Riccati equations arising in transport theory. Linear Algebra Appl.,1995,230(15):89-100.
    [2]Rogers L C G. Fluid models in queueing theory and Wiener-Hopf factoriza-tion of Markov chains. Ann. Appl. Probab.,1994,4(2):390-413.
    [3]Rogers L C G, Shi Z. Computing the invariant law of a fluid model. J. Appl. Probab.,1994,31 (4):885-896.
    [4]Gohberg I, Kaashoek M A. An inverse spectral problem for rational ma-trix functions and minimal divisibility. Integral Equations Operator Theory, 1987,10(3):437-465.
    [5]Roberts J D. Linear model reduction and solution of the algebraic Ric-cati equation by use of the sign function. Internat. J. Control,1980, 32(4):677-687.
    [6]Laub A J. Invariant subspace methods for the numerical solution of Riccati equations. The Riccati Equation. Berlin:Springer,1991.
    [7]Mehrmann V L. The autonomous linear quadratic control problem. Berlin: Springer-Verlag,1991.
    [8]Lancaster P, Rodman L. Algebraic Riccati Equations. New York:The Claren-don Press, Oxford University Press,1995.
    [9]Juang J, Lin C H, Nelson P, Global existence, asymptotics and uniqueness for the reflection kernel of the angularly shifted transport equation. Math. Models Methods Appl. Sci.,1995,5(2):239-251.
    [10]Juang J, Lin W W. Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl.,1999,20(1):228-243.
    [11]Shimizu A, Aoki K. Application of Invariant Embedding to Reactor Physics. Academic Press:New York,1972.
    [12]Juang J, Lin Z T. Convergence of an iterative technique for algebraic matrix Riccati equations and applications in transport theory. Transport Theory Statist. Phys.,1992,21(1-2):87-100.
    [13]Guo C H, Laub A J. On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl,2000,22(2):376-391.
    [14]Guo C H. Nonsymmetric algebraic Riccati equations and Winner-Hopf fac-torization for M-matrics. SIAM J. Matrix Anal. Appl.,2001,23(1):225-242.
    [15]Guo C H. A note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation. Linear Algebra Appl.,2002,357(1):299-302.
    [1C]Bini D A, Iannazzo B, Poloni F. A fast newton method for a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl.,2008,30(1):276-290.
    [17]Guo C H, Iannazzo B, Meini B. On the doubling algorithm for a (shift-ed) nonsymmetric algebraic Riccati equations. SIAM J.Matrix Anal. Appl., 2007,29(4):1083-1100.
    [18]Guo X X, Lin W W, Xu S F. A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math.,2006,103(3): 393-412.
    [19]Bai Z Z, Guo X X, Xu S F. Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations. Numer. Linear Algebra Appl.,2006,13(8):655-674.
    [20]Gao Y H, Bai Z Z. On inexact Newton methods based on doubling itera-tion scheme for non-symmetric algebraic Riccati equations. Numer. Linear Algebra Appl.,2011,18(3):325-341.
    [21]Bini D A, Iannazzo B, Latouche G, Meini B. On the solution of algebraic Riccati equations arising in fluid queues. Linear Algebra Appl.,2006,413(2-3):474-494.
    [22]Lu L Z. Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory. SIAM J. Matrix Anal. Appl., 2005,26(3):679-685.
    [23]Bao L, Lin Y Q, Wei Y M. A modified simple iterative method for nonsym-metric algebraic Riccati equations arising in transport theory. Appl. Math. Comput.,2006,181(2):1499-1504.
    [24]Bai Z Z,GaoYH, Lu L Z. Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory. SIAM J. Sci. Comput.,2008, 30(2):804-818.
    [25]Wu S L, Huang C M. Two-Step Relaxation Newton Method for Nonsym-metric Algebraic Riccati Equations Arising from Transport Theory. Math. Probl. Eng.,2009,17pp.
    [26]Lu L Z. Newton iterations for a non-symmetric algebraic Riccati equation. Numer. Linear Algebra Appl.,2005,12 (2-3):191-200.
    [27]Lin Y Q. A class of iterative methods for solving nonsymmetric algebraic Riccati equations arising in transport theory. Comput. Math. Appl.,2008, 56(12):3046-3051.
    [28]Lin Y Q, Bao L. Convergence analysis of the Newton-Shamanskii method for a nonsymmetric algebraic Riccati equation. Numer. Linear Algebr. Appl., 2008,15(6):535-546.
    [29]Lin Y Q, Bao L, Wei Y M, A modified Newton method for solving non-symmetric algebraic Riccati equations arising in transport theory. IMA J. Numer. Anal,2008,28(2):215-224.
    [30]King R F. Tangent method for nonlinear equations. Numer. Math.,1972, 18(4):298-304.
    [31]Werner W. Uber ein Verfahren der Ordnung 1+(?) zur Nullstellenbestim-mung. Numer. Math.,1979,32(3):333-342.
    [32]Werner W. Some supplementary results on the 1+(?) order method for the solution of nonlinear equations. Numer. Math.,1982,38(3):383-392.
    [33]Wang X H, Zheng S M. On the convergence of King-Werner's iteration pro-cedure for solving nonlinear equations. Math. Numer. Sinica.,1982,4(1):70-79.
    [34]Guo X X, Li C X. Solving the nonnegative solution for a (shifted) nonsym-metric algebraic Riccati equation in the critical case. Appl. Math. Comput., 2010,216(6):1682-1686.
    [35]Overton M L. Large-scale optimization of eigenvalues. SIAM J. Optim., 1992,2(1):88-120.
    [36]Lewis A S. The mathematics of eigenvalue optimization. Math. Program., 2003,97(1-2):155-176.
    [37]Allaire G. Shape Optimization by the Homogenization Method. New York:Springer-Verlag,2001.
    [38]Sethian J, Wiegmann A. Structural boundary design via level set and im-mersed interface methods. J. Comput. Phys.,2000,163(2):489-528.
    [39]Cox S J. Extremal eigenvalue problems for the Laplacian.in:Herrero M. and Zuazua E. Ed. Recent Advances in PDE. Vol.30. Paris:Masson,1993. 37-53.
    [40]Bends(?)e M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg., 1988,71 (2):197-224.
    [41]Osher S, Sethian J. Front propagation with curvature-dependent speed:al-gorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.,1988, 79(1):12-49.
    [42]Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York:Springer Press,2003.
    [43]Osher S, Santosa F. Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys.,2001,171(1):272-288.
    [44]Haber E. A multilevel, level-set method for optimizing eigenvalues in shape design problems. J. Comput. Phys.,2004,198(2):518-534.
    [45]Strang G, Persson P O. Circuit simulation and moving mesh generation, IEIC Technical Report (Institute of Electronics, Information and Commu-nication Engineers),2004,104:19-24.
    [46]Brandman J. A level-set method for computing the eigenvalues of elliptic op-erators defined on compact hypersurfaces. J. Sci. Comput.,2008,37(3):282-315.
    [47]He L, Kao C Y, Osher S. Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys.,2007,225(1):891-909.
    [48]Zhu S F, Wu Q B, Liu C X. Variational piecewise constant level set meth-ods for shape optimization of a two-density drum. J. Comput. Phys.,2010, 229(13):5062-5089.
    [49]Zhu S F, Liu C X, Wu Q B. Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum. Comput. Methods Appl. Mech. Engrg.,2010,199(45-48):2970-2986.
    [50]Zhao H K, Chan T, Merriman B, Osher S. A variational level set approach to multiphase motion. J. Comput. Phys.,1996,127(1):179-195.
    [51]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physical D,1992,60(1-4):259-268.
    [52]Burger M. A level set method for inverse problems. Inverse Problems,2001, 17(5):1327-1355.
    [53]Burger M. A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound.,2003,5(3):301-329.
    [54]Allaire G, Jouve F, Toader A M. A level set method for shape optimization. C. R. Acad. Sci. Paris,2002,334(12):1125-1130.
    [55]Allaire G, Jouve F and Toader A M. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys.,2004,194(1):363-393.
    [56]Lie J, Lysaker M, Tai X C. A variant of the level set method and applications to image segmentation. Math. Comp.,2006,75(255):1155-1174.
    [57]Krein M G. On certain problems on the maximum and minimum of char-acteristic values and on the Lyapunov zones of stability. AMS Translations Ser.,1955,2:163-187.
    [58]Cox S J, Uhlig P X. Where Best to hold a drum fast. SIAM Review,2003, 45(1):75-92.
    [59]Cox S J. The two phase drum with the deepest bass note. Japan J. Indust. Appl. Math.,1991,8(3):345-355.
    [60]Zhang Z F, Liang K W, Cheng X L. A Monotonic Algorithm for Eigenvalue Optimization in Shape Design Problems of Multi-Density Inhomogeneous Materials. Commun. Comput. Phys.,2010,8(3):565-584.
    [61]Zhang Z F, Liang K W, Cheng X L. Greedy algorithms for eigenvalue opti-mization problems in shape design of two-density inhomogeneous materials. Int. J. Comput. Math.,2010,88(1):183-195.
    [62]Kao C Y, Su S. Numerical approaches on shape optimization of elliptic eigenvalue problems and shape study of human brains. Doctorial thesis, Ohio State University,2010.
    [63]Giguere S, Lepine B A, Dubois J M S. Pulsed eddy current technology: characterizing material loss with gap and lift-off variations, Res. Nondestruct Eval.2001,13 (3):119-129.
    [64]Chen S S, Merriman B, Kang M, Caflisch R E, Ratsch C, Cheng L T, Gyure M, Fedkiw R P, Anderson C, Osher S. A Level Set Method for Thin Film Epitaxial Growth. J. Comput. Phys.,2001,167(2):475-500.
    [65]Burger M, Osher S. A Survey on Level Set Methods for Inverse Problems and Optimal Design. European J. Appl. Math.,2005,16(2):263-301.
    [66]Vese L A, Chan T F. A Multiphase Level Set Framework for Image Seg-mentation Using the Mumford and Shah Model. Int. J. Comput. Vis.,2002, 50(3):271-293.
    [67]Wang M Y, Wang X M, Guo D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg.,2003,192(1-2):227-246.
    [68]Tanushev N M. Vese L A. A piecewise-constant binary model for electrical impedance tomography. Inverse Probl. Imaging,2007,1(2):423-435.
    [69]Osher S, Fedkiw R P. Level Set Methods:An Overview and Some Recent Results. J. Comput. Phys.,2001,169(2):463-502.
    [70]Cimrak I, Keer R V. Level set method for the inverse elliptic problem in nonlinear electromagnetism. J. Comput. Phys.,2010,229(24):9269-9283.
    [71]Allaire G, Gournay F de, Jouve F, Toader A M. Structural optimization using topological and shape sensitivity via a level set method. Control Cy-bernet.,2005,34(1):59-80.
    [72]Burger M, Hackl B, Ring W, Incorporating topological derivatives into level set methods. J. Comput. Phys.,2004,194(1):344-362.
    [73]Amstutz S, Andra H. A new algorithm for topology optimization using a level-set method. J. Comput. Phys.,2006,216(2):573-588.
    [74]Wang X M, Mei Y L, Wang M Y. Incorporating topological derivatives into level set methods for structural topology optimization, in:T.L. et al. (Eds.), Optimal Shape Design and Modeling, Polish Academy of Sciences, Warsaw, 2004, pp.145-157.
    [75]Lie J, Lysaker M, Tai X C. A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process.,2006, 15(5):1171-1181.
    [76]Lie J, Lysaker M, Tai X C. Piecewise constant level set methods and image segmentation.in:Kimmel R, Sochen N, Weickert J, Ed. Scale S-pace and PDE Methods in Computer Vision:5th International Conference, Scale-Space 2005, Lecture Notes in Computer Science.vol.3459. Heidel-berg:Springer,2005.573-584.
    [77]Tai X C, Chan T F. A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Model., 2004,1(1):25-47.
    [78]Huang Z D, Kong X Y, Hu W D. The King-Werner method for solv-ing nonsymmetric algebraic Riccati equation. Appl. Math. Comp.,2010, 216(6):1790-1804.
    [79]Kong X Y. The analysis of the parameter involving in the shift technique for nonsymmetric algebraic Riccati equations.in:ICMT 2011. United S-tates:IEEE Computer Society.2011:2654-2657.
    [80]Guo C H, Lin W W. Convergence rates of some iterative methods for non-symmetric algebraic Riccati equations arising in transport theory. Linear Algebra Appl.,2010,432(1):283-291.
    [81]高永华.若干二次矩阵方程的理论与算法:[博士学位论文].北京:中国科学院数学与系统科学研究院,2007.
    [82]Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sci-ences. New York:Academic Press.1979.
    [83]Horn R A, Johnson C R. Matrix Analysis. New York:Cambridge University Press,1985.
    [84]陈景良,陈向晖.特殊矩阵,北京:清华大学,2000.
    [85]Decker D W, Keller W B, Kelley C T. Convergence rates for Newton's method at singular points. SIAM J. Numer. Anal.,1983,20(2):296-314.
    [861袁亚湘,孙文瑜.最优化理论与方法.第一版.北京:科学出版社,1997.
    [87]Roger H, Stefano S C. A General Setting for the Parametric Google Matrix. Internet Math.,2006,3(4):385-411.
    [88]Hardy G H, Littlewood J E, Polya G. Inequalities.2nd ed. Cam-bridge:Cambridge University Press,1952.
    [89]Lie J, Lysaker M, Tai X C. A piecewise constant level set framework. Int. J. Numer. Anal. Model.,2005,2(4):422-438.
    [90]Tai X C, Li H W. A piecewise constant level set method for elliptic inverse problems. Appl. Numer. Math.,2007,57(5-7):686-696.
    [91]Tai X C, Li H W. Piecewise constant level set method for interface problems, Free boundary problems. Internat. Ser. Numer. Math.,2007,154:307-316.
    [92]Zhang Z F, Cheng X L. A boundary piecewise constant level set method for boundary control of eigenvalue optimization problems. J. Comput. Phys., 2011,230(2):458-473.
    [93]Muller J L, Sitanen S. Direct reconstruction of conductivities from boundary measurements. SIAM J. Sci. Comput.,2003,24(4):1232-1266.
    [94]Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. New York:Springer-Verlag,1997.
    [95]Ladyzhenskaya O A, Ural'tseva N N. Linear and Quasilinear Elliptic Equa-tions. New York:Academic press,1968.
    [96]Park H, Shin H. Shape identification for natural convection problems using the adjoint variable method. J. Comput. Phys.,2003,186(1):198-211.
    [97]Cimrak I, Melicher V. Sensitivity analysis framework for micromagnetism with application to optimal shape design of magnetic random access mem-ories. Inverse Problems,2007,23(2):563-588.
    [98]Sergeant P, Cimrak I, Melicher V, Dupre L, Keer Van R. Adjoint variable method for the study of combined active and passive magnetic shielding. Math. Probl. Eng.,2008,15 pp.
    [99]Durand S, Cimrak I, Sergeant P. Adjoint variable method for time-harmonic Maxwell equations. COMPEL:Int. J. Comput and Math in Elec. and Electr. Eng.,2009,28(5):1202-1215.
    [100]Cimrak I, Melicher V. Determination of precession and dissipation param-eters in the micromagnetism. J. Comput. Appl. Math.,2010,234(7):2239-2249.
    [101]Srinath S, Mittal D N. An adjoint method for shape optimization in un-steady viscous flows. J. Comput. Phys.,2010,229(6):1994-2008.
    [102]Courant R, Friedrichs K, Lewyt H. On the Partial Difference Equations of Mathematical Physics. IBM J. Res. Develop.,1967,11(2):215-234.
    [103]Gottlieb S, Shu C W. Total variation diminishing Runge-Kutta schemes. Math. Comp.,1998,67(221):73-85.
    [104]Berger M S. Nonlinearity and functional analysis. New York-London:Aca-demic Press,1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700