卫星数据传输高速调制器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外遥感卫星和各种有效载荷技术的迅速发展,遥感卫星所获取的数据量突飞猛进,目前卫星对地数据传输系统的主流调制方式BPSK、QPSK越来越无法满足卫星高速数据传输的要求,以16-QAM为代表的高阶调制方式将逐步在卫星数据传输系统中得到应用。本文面向卫星数据传输高速调制器的设计要求,运用现代数字信号处理技术并充分利用可编程逻辑器件以及各种高速硬件资源,设计实现了高速数字成形滤波器和射频功率放大器线性化数字预失真器,这两种技术应用在16-QAM卫星数据传输高速调制器的基带信号处理部分,对提高卫星高速数据传输的频谱利用率和功率利用率起到至关重要的作用,为下一步数字化卫星数据传输系统的实现奠定基础。
     首先,论文完成了800Mbps的16-QAM高速数字成形滤波器的设计和实现,主要技术指标达到国内领先水平。在进行数字成形滤波器设计时,提供了一套FIR成形滤波器主要参数选取的依据和方法,从硬件系统的运行速度、计算量、复杂度以及滤波后信号的质量、频谱特性、系统的误码率性能等各个方面加以分析和仿真验证。为了突破数字成形滤波器高速实现的瓶颈,提出一种基于多相滤波器结构与并行查找表相结合的滤波器实现结构,将滤波器的系数与调制方式码型映射相结合形成查找表,省去硬件乘法运算,提高计算速度,最后通过并行电路结构及高速电路技术实现了800Mbps的16-QAM高速数字成形滤波器原理样机。并且设计了一种基于双高速多路复接数模转换器的高速逻辑时钟同步电路,解决了高速成形滤波器设计中I/Q两路输出数据同步的问题。
     其次,详细研究了射频功率放大器数字预失真线性化技术,提出了一种查找表数字预失真算法的实现方案,搭建仿真模型进行验证,并针对一款星载数据传输应用中的2.3GHz SSPA高功率放大器,以XtremeDSP Development Kit-IV开发板为主要实现平台,编写VHDL程序语言下载到核心芯片Virtex?-4 FPGA中,搭建系统的实现与测试平台,设计实现了数字预失真器,通过验证该预失真器可以降低双音信号的互调失真功率达11dB,大大提高了射频功放的线性化水平。
     最后,以16-QAM卫星数据传输高速调制系统的设计为研究的出发点,全面系统地将高速数字成形滤波器和射频功放数字预失真器两项技术融入到系统的设计当中,运用MATLAB中的动态仿真工具SIMULINK搭建系统仿真模型,通过分析时域波形、星座图、误码率等方面充分论证了系统实现的正确性、有效性和可行性。并且针对16-QAM高速调制器的实现结构,推导设计了基于正交结构的射频功率放大器数字预失真器,通过仿真验证该方法能够简化系统设计并有效地改善功放非线性失真,该算法对于正交结构调制系统的设计具有重要的理论意义和实践价值。
With the rapid development of domestic and foreign remote sensing satellites and payload technology, data obtained by remote sensing satellite leaps and bounds. Therefore, the mainstream modulation, BPSK or QPSK, in the current satellite data transmission system is increasingly unable to meet the requirements of the satellite high-speed data transmission. The 16-QAM modulation representing for the high-level modulation has gradually been applied in the satellite high-speed data transmission system. This paper faces the design requirements of high-speed modulator in satellite data transmission system, uses the modern digital signal processing technology and makes full use of programmable logic devices and various high-speed hardware resources, finally, achievly designs and implements high-speed digital pulse-shaping filter and digital predistorter for RF power amplifier linearization. These two kinds of technology have been used in the baseband signal processing part of 16-QAM high-speed modulator in satellite data transmission system. As a result, they have not only significantly improved the spectrum utilization ratio and power efficiency of satellite data transmission system, but also laid the foundation for digital satellite data transmission system realization in future.
     First of all, the thesis has completed design and implementation of 800Mbps 16-QAM high-speed digital pulse-shaping filter, and the main technical indicators have reached domestic advanced level. During design of digital pulse-shaping filter, basis and method of selecting the FIR main parameter have been provided. Various aspects including hardware system speed, computation complexity, quality of filtered signals, spectral characteristic and the system BER performance have been analyzed and validated by simulation. In order to solve the bottleneck of high-speed digital shaping filter implementation, multi-phase filter structure and parallel look-up table have been proposed. Filter coefficients and symbol mapping in modulation method have been combined to form look-up table. Thus, it saved hardware multiplication and improved the hardware computational speed. Finally the principle prototype of Abstract 800Mbps high speed digital 16-QAM pulse-shaping filter has been implemented through parallel circuit structure and high-speed circuit technology.
     Secondly, predistortion linearization technique on digital RF power amplifier has been detailed studied. The thesis proposes a look-up table algorithm of digital predistortion and builds simulation model to validate it. Digital predistorter has been implemented according to a 2.3 GHz SSPA high power amplifier which is just applied to satellite data transmission system. The XtremeDSP Development Kit-IV Development board is used as mainly platform on which VHDL programming language is downloaded to the core chip Virtex?-4 FPGA. Through verification the predistorter can reduce intermodulation distortion of two-tone signal to 11dB, and greatly improve the RF power amplifier linearization level.
     Finally, 16-QAM high-speed modulator design in satellite data transmission system is studied, and the two technologies of high-speed digital shaping filter and RF power amplifier digital predistortion have been comprehensively and systematically implemented into the system. The dynamic simulation tool MATLAB/ SIMULINK has been used to build simulation model. Through analyzing the time domain waveform, constellation chart and BER performance, system has been sufficiently demonstrated correct, effective and feasible. In addition, according to the realization structure of 16-QAM high-speed modulator, RF power amplifier digital predistorter based on orthogonal structure has been formulated and designed. Through simulation test this method can effectively simplyfy system design and correct power amplifier nonlinear distortion. The algorithm for nonlinear distortion of orthogonal structure modulation system design has important theoretical significance and practical value.
引文
[1] N. C. Beaulieu, C. C. Tan, and M. O. DAMEN. A“better than”Nyquist pulse. IEEE Commun. Lett., vol.5, pp.367-368, Sept.2001.
    [2] A. Assalini and A. M. Tonello. Improved Nyquist pulses. IEEE Commun. Lett., vol.8, pp.87-89, Feb. 2004.
    [3] N. D. Alexandru. A Family of Improved Nyquist Pulses. Signals,Circuits and Systems, 2007. ISSCS 2007 International Symposium, vol. 2, pp. 1-4, July 2007.
    [4] X. G. Xia. A family of pulse-shaping filters with ISI-free matched and unmatched filter properties. IEEE Trans. Commun., vol., 45, pp. 1157-1158, Oct. 1997.
    [5] N. S. Alagha and P.Kabal. Generalized raised-cosine fitlers. IEEE Trans. Commun., vol. 47, pp.989-997, July 1999.
    [6] T.Demeechai. Pulse-shaping filters with ISI-free matched and unmatched filter properties. IEEE Trans. Commun., vol. 46, pp. 993-992, Aug. 1998.
    [7] A.V.Kisel. Nyquist 1 universal filters. IEEE Trans. Commun., vol. 48, pp.1095-1099, July 2000.
    [8]李爱红,肖山竹,张琛,张尔扬。高速成形滤波器的设计与实现。电路与系统学报。2006, 11(5):90-93, 2006年10月.
    [9]刘宏宇,张尔扬。基于FFT-IFFT的高速卫星成形滤波器设计及其FPGA实现。无线通信技术,2006, 2:32-36.
    [10]刘宏宇,杨军,刘小峰,张尔扬。基于矩阵乘法的高速卫星成形滤波器的FPGA实现。海军工程大学学报。2007,19(2):76-80, 2007年4月.
    [11]刘宏宇,朱江,张尔扬。卫星高速8PSK调制器中成形滤波器设计及其基于并行查表的FPGA实现。飞行器测控学报,2006,25(1):57-60, 2006年2月.
    [12] H. Nyquist. Certain topics in telegraph transmission theory. AIEE Trans., vol.47, pp. 617-644, 1928.
    [13] N. C. Beaulieu, C. C. Tan, and M. O. DAMEN. Parametric construction of Nyquist-I pulses.IEEE Trans. Communications, vol. COM-52, pp. 2134-2142, Dec. 2004.
    [14] N. C. Beaulieu. The evaluation of error probabilities for intersymbol and cochannel interference. IEEE Trans. Commun., vol. 31, pp.1740-1749, Dec.1991.
    [15] A. V. Kisel. An extension of pulse-shaping filters theory. IEEE Trans. Commun., vol. 47, pp.645-647, May 1999.
    [16] C. C. Christopher and N. C. Beaulieu. Transmission Properties of Conjugate-Root Pulses. IEEE Trans. Commun., vol.52, pp.553-558, Apr. 2004.
    [17] A. A. M. Saleh. Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun, vol. COM-29, pp.1715-1720, Nov. 1981.
    [18] A. Ghorbani, and M. Sheikhan. The effect of Solid State Power Amplifiers(SSPAs) Nonlinearities on MPSK and M-QAM Signal Transmission. Sixth Int'l Conference on Digital Processing of Signals in Comm., pp.193-197, 1991.
    [19] C. Rapp. Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for a Digital Sound Broadcasting System. Proceedings of the Second European Conference on Satellite Communications, Liege, Belgium, Oct. 22-24, 1991, pp. 179-184.
    [20]刘军,艾渤。功率放大器数字基带自适应预失真技术研究进展。电讯技术,第47卷第6期,pp1-6, 2007年12月.
    [21]金哲。宽带通信中有记忆射频功率放大器的建模与预失真方法。博士学位论文,浙江大学,2007年5月.
    [22] T. Liu, S. Boumaiza, M. Helaoui, H.B. Nasr and F.M. Ghannouchi. Behavior Modeling Procedure of Wideband RF Transmitters Exhibiting Memory Effects. Microwave Symposium Digest, 2005 IEEE MTT-S International, pp.12-17, June 2005.
    [23] H. B. Nasr, S. Boumaiza, M. Helaoui, A. Ghazel, and F.M. Ghannouchi. On the Critical Issues of DSP/FPGA Mixed Digital Predistorter Implementation. Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, Volume 5, pp.4-7, Dec.2005.
    [24] H. Alasady and M. Ibnkahla. Design Hardware Implementation of Look-Up Table Predistortion on ALTERA Stratrix DSP Board. 2008 Canadian Conference on Electricaland Computer Engineering, vols.1-4, 2008.
    [25]樊昌信,张甫翊,徐炳祥,吴成柯。通信原理(第五版)。北京:国防工业出版社,2001.
    [26]李爱红。中继卫星高速数传系统中发射端数字信号处理技术研究。国防科学技术大学博士学位论文,2008年4月.
    [27] R. Raich. Nonlinear System Identification and Analysis with Applications to Power Amplifier Modeling and Power Amplifier Predistortion. Georgia Institute of Technology, 2004.
    [28] A. Grebennikov (著).张玉兴,赵宏飞(译)。射频与微波功率放大器设计。北京:电子工业出版社,2006.
    [29] D. C. Cox. Linear Amplification with Nonlinear Components. IEEE Trans. On Communications, 22(12): 1942-1945,1974.
    [30] H. Chen, C. Lin, P. Huang, and J. Chen. Joint polynomial and Look-Up-Table Predistortion Power Amplifier Linearization [J]. IEEE Trans. On Circuits and Systems, 2006, 53(8): 612-616.
    [31] XtremeDSP Development Kit-IV Reference Guide, NT107-0272-Issure 3. 7th, Jul, 2007. www.xilinx.com.
    [32] FUSE System Software User Guide, NT107-0068V2-Issue 5. 1st, Jan, 2005. www.nallatech.com
    [33] Agilent E8257D PSG微波模拟信号发生器技术资料。www.agilent.com.
    [34]余弦。数字预失真算法的验证平台。东南大学硕士学位论文。2007.01.01.
    [35]艾渤,杨知行,潘长勇等。高功率放大器线性化技术研究。微波学报。Feb.2007. Vol.23 No.1: 62-70.
    [36] A. Zhu, P. J. Draxler, and J. J. Yan. Open-Loop Digital Predistorter for RF Power Amplifiers Using Dynamic Deviation Reduction-Based Volterra Series. IEEE Trans. Microw. Theory Tech., vol. 56, No. 7, pp.1524-1534, Jul. 2008.
    [37] M. Ibnkahla, Q. Rahman, A. Sulyman, etc. High speed satellite mobile communications: Technologies and challenges. The Proceeding of The IEEE, Special issue on Gigabit wireless communications: Technologies and challenges, vol.92, No. 2, pp.312-339,February 2004.
    [38] J. G. Proakis. Digital Communications, 4th ed., New York: McGraw Hill, 2002.
    [39] Andrea Goldsmith(著)。杨鸿文,李卫东,郭文彬等(译)。无线通信。北京:人民邮电出版社,2007.
    [40] John G. Proakis, Masoud Salehi, Gerhard Bauch(著)。刘树棠(译)。现代通信系统(MATLAB版)(第二版)。北京:电子工业出版社,2005.
    [41] J. C. Pedro and S. A. Maas. A Comparative Overview of Microwave and Wireless Power-Amplifier Behavioral Modeling Approaches [J]. IEEE Trans. On Microwave Theory and Techniques, 53(4): 1150-1163, 2005.
    [42] M. Isaksson, D. Wisell, and Daniel Ronnow. A Comparative Analysis of Behavioral Models for RF Power Amplifiers [J]. IEEE Trans. On Microwave Theory and Techniques, 54(1): 348-359, 2006.
    [43] D. Ronnow and M. Isaksson. Digital Predistortion of Radio Frequeney Power Amplifiers Using Kautz-Volterra Model [J]. Electronics Letters, 2006, 42(13): 780-782.
    [44] D. Zhu, J. C. Pedro, T. R. Cunha. Pruning the Volterra Series for Behavioral Modeling of Power Amplifiers Using Physical Knowledge [J]. IEEE Trans. on Microwave Theory and Techniques, 2007. This article has been accepted for inclusion in a future issue of this journal.
    [45] J. Dooley, Bill O'Brien, and T. J. Brazil. Behavioral Modeling of RF Power Amplifiers Using Modified Volterra Series in the Time Domain [A]. High Frequency Postgraduate Student Colloquium [C]. Manehester, United Kingdom, 2004: 169-174.
    [46] L. Ding and G. T. Zhou. Effects of Even-Order Nonlinear Terms on Power Amplifier Modeling and Predistortion Linearization [J]. IEEE Trans. on Vehicular Technology, 2004, 53(l): 156-163.
    [47] M. Isaksson and D. Wisell. Extension of the Hammerstein Model for Power Amplifier Applications [A]. 63rd Automatic RF Techniques Group Conference [C]. Fort Worth, US, 2004: 131-137.
    [48] D. R. Morgan, Z. X. Ma,J. Kim, M. G. Zierdt, and J. Pastalan. A Generalized MemorySignal Processing, 2006, 54(10): 3852-3860.
    [49] A. Ahmed, S. M. Endalkaehew, and G. Kompa. Power Amplifier Linearization Using Memory Polynomial Predistorter with Non-uniform Delay Taps [A]. IEEE MIT-S International Microwave Symposium [C]. Fort Worth,US,2004: 1871-1874.
    [50] B. J. Kokkeler. A Crosscorrelation Predistorter Using Memory Polynomials [A]. IEEE International Symposium on Circuits and Systems [C]. Vaneouver, Canada, 2004: 345-348.
    [51] Y. Kibangou and G. Favier. Wiener-Hammerstein Systems Modeling Using Diagonal Volterra Kemels Coefficients [J]. IEEE Signal Processing Letters, 2006, 13(6): 381-384.
    [52] L. Ding. Digital Predistortion of Power Amplifiers for Wireless Applications [D]. Georgia Institute of Technology, 2004.
    [53] M. A. Nizamuddin,P. J. Balister,W. H. Tranter,and J. H. Reed. Nonlinear Tapped Delay Line Digital Predistorter for Power Amplifiers with Memory [A]. IEEE Conference on Wireless Communications and Networking [C]. Virginia, USA, 2003: 607-611.
    [54] H. Ryu,J. S. Park,and J. Park. Threshold IBO of HPA in the Predistorted OFDM Communication System [J]. IEEE Tran. on Braodcasting, 2004, 50(4): 425-428.
    [55] J. Li. A Volterra Predistorter for Compensation of Nonlinear Effects with Memory in OFDM Trasmitters [D]. Dalhousie University, 2004.
    [56] Z. Jin, Z. H. Song, and J. M. He, Wavelet Network Based Predistortion Method for Wideband RF Power Amplifiers Exhibiting Memory Effects [J]. Journal of ZHejiang University, 2007, 8(4): 625-630.
    [57] S. Chang and E. J. Powers. A Simplified Predistorter for Compensation of Nonlinear Distortion in OFDM Systems [A]. IEEE Global Telecommunication Conference [C]. San Antonio, US. 2001: 3080-3084.
    [58] J. Li and J. Ilow, A Least-Square Volterra Predistorter for Compensation of Non-linear Effects with Memory in OFDM Transmitters [A]. IEEE Communication Networks and Services Research Conference [C]. Halifax, Canada, 2005, 197-202.
    [59] M. Faulkner, Amplifier Linearization Using RF Feedback and Feedforward Techniques [J].IEEE Trans. on Vehicular, 1998, 47(1): 209-215.
    [60] M. Johansson and L. Sundstrom. Linearization of RF Multicarrier Amplifiers Using Cartesian Feedback [J]. Electronic Letters, 1994, 30(14): 1110-1112.
    [61] D. C. Cox. Linear Amplification with Nonlinear Components [J]. IEEE Tran. on Communications, 1974, 22(12): 1942-1945.
    [62] J. S. Yao and S. L. Long. Power Amplifier Selection for LINC Applications [J]. IEEE Trans. on Circuits and Systems, 2006, 53(8): 763-767.
    [63] Massimiliano L.Letizia L.P. and Marina M, Digital Pulse-shaping FIR Filter Design with Reduced Intersymbol and Interchannel Interference[J], European Transactions on Telecommunications, 14:423-433, 2003.
    [64] Chanmeleon L, Distributed Arithmetic for the Design of High Speed FIR Filter using FPGAs[R].
    [65] J. Webber and N. Dahnoun.. Implementing aπ/4 Shift D-QPSK Baseband Modem Using TMS320C50. University of Bristol, UK, 1996
    [66] A. Guidi, G. Bolding, and W. Cowley. Development and Implementation of Robust and Spectrally Efficient Medium Data Rate Modems Part 1: Architectures. in 4th UK/Australian International Symposium on DSP for Communication Systems, Perth, Australia, 1996.
    [67] A. Guidi and P. E. McIllree. Development of a Spectrally Efficient, High Speed Modem for Microwave Terrestrial and Satellite Communications.in Electronic Technology Directions to the Year 2000, Adelaide, Australia, 1995.
    [68] N. Toledo, et al. Design and Characterization of a Low Cost ISM-Band Sub Carrier Multiplexed Broadband Digital Microwave Radio Link. International Microwave Symposium, Phoenix, AZ. May 2001.
    [69] A. H. Aghvami and I. D. Robertson. Power Limitation and High-Power Amplifier Non Linearities in On-board Satellite Communications Systems. IEEE Electronics and Communication Engineering Journal, Vol. 5, No. 2, pp 65-70, April 1993.
    [70] H.Kosugi, T.Matsumoto and T.Uwano. A High-efficiency Linear Power Amplifier Usingan Envelope Feedback Method[A]. Electronics and Communications in Japan[C], part 2, Vol. 77, No. 3, pp 50-57, 1994.
    [71] L.R.Kahn. Single-sideband Transmission by Envelope Eliminmion and Restoration[A]. Proceedings IRE[C], Vol. 40, pp 803-806. July 1952.
    [72] D.C.Cox. Linear Amplification with Nonlinear Components[J]. IEEE Transactions on Communications. Vol.22, No.12, pp 1942-1945. December 1974.
    [73] A.Bateman. The Combined Analogue Locked Loop Universal Modulator (CALLUM)[A]. In Proceedings of the 42nd IEEE Vehicular Technology Conference[C]. pp 759-763. May 1992.
    [74] A.S.Wright and W.CtDurtler. Experimental performance of an adaptive digital linearized power amplifier[J]. IEEE Transactions on Vehicular Technology. 1 992(4 1),pp 395-400.
    [75] Sundstrom L., Faulkner M. and Johansson M.. Quantization Analysis and Design of a Digital Predistortion Linearizer for RF Power Amplifiers[J]. IEEE Transactions on Vehicular Technology. pp 707-719. November 1996.
    [76] Krzysztof W.. A Novel Fast HPA Predistorter for High PAPR Signal[A]. 2005 IEEE 16th International Symposium on Personal,Indoor and Mobile Communication[C]. pp863-867.
    [77] He Z. Y., Ge J. H. and Geng A.J.. An Improved Look-Up Table Predistortion Technique for HPA with Memory Effevts in OFDM Systems[J].IEEE Transaction on Broadcasting. Vol, 52, N0.1, pp87-91. March 2006.
    [78] Dennis R. M., Zheng A.M. and Michael G. A.. Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers[J],IEEE Transaction on Signal Processing,V01.54,No.10,Octorber 2006,p:3852·3860.
    [79] P.L.Gilabert,G Montoro and E.Bertran,On the Wiener and Hammerstein Models for Power Amplifier Predistortion[A].APMC 2005 Proceedings[C].
    [80] Li J. and Jacek I.. Adaptive Volterra Predistorters for Compensation of Non1inear Effects with Memory in OFDM Transmitters[A].Proceedings of the 4th Annual Communication Networks and Services Research Conference 2006[C].
    [81] N. Naskas and Y Papananos. Neural Network Based Adaptive Basedband PredistortionMethod for RF Power Amplifiers[J]. IEEE Transaction on Circuits and Systems-II:Express Briefs. Vol. 51, No.11, pp 619-623. November 2004.
    [82] Bateman A., Haines D. M. and Wilkinson R. J.. Linear Transceiver Architectures[A]. In Proceedings of the 38th IEEE Vehicular Technology Conference[C]. pp 478-484. May 1988.
    [83] Nagata Y. Linear Amplification Technique for Digital Mobile Communications[A]. In Proceedings of the 39th IEEE Vehicular Technology Conference[C]. pp159-164. May l989.
    [84] Faulkner M., MaRsson T. and W. Yates. Adaptive Linearisation Using Predistortion[A]. In Proceedings of the 40th IEEE Vehicular Technology Conference[C]. pp 35-40. May l 990.
    [85] Faulkner M. and Johansson M.. Adaptive Linearization Using Predistortion Experimental Results[J]. IEEE Transactions on Vehicular Technology. Vol. 43, No. 2, pp 323-332. 1994.
    [86] Cavers J.K.. A Linearizing Predistorter with Fast Adapmtion[A]. In Proceedings of the 40th IEEE Vehicular Technology Conference[C]. pp 41-47. May 1990.
    [87] Cavers J.K.. Amplifier Linearization Using a Digital Predistorter with Fast Adaptation and Low Memory Requirements[J]. IEEE Transactions on Vehicular Technology. Vol.39, No. 4, pp374-382. November 1990.
    [88] Wright A. S. and Durtler W.G.. Experimental Performance of an Adaptive Digital Linearized Power Amplifier[A].In IEEE MTT-S Intemational Microwave Symposium Digest[C], Vol. 2. pp1105-1108. June 1992.
    [89] Hyun W. K., Yong S. C. and Dae H. Y.. Adaptive Precompensation of Wiener System[J]. IEEE Transaction on Signal Processing. Vol 46, No. 10, pp 2825-2829. October 1998.
    [90] Magnus I., David W. and Daniel R.. A Comparative Analysis of Behavioral Models for RF Power Amplifiers[J]. IEEE Transaction on Microwave Theory and Techniques. 54(1), pp348-359. 2006.
    [91] Sunmin L. and Changsoo E.. Predistorter Design for a Memory1ess Nonlinear High Power Amplifier Using the pth order Inverse Method for OFDM Systems[A]. Proceedings of 2005 International Symposium on Intelligent Signal Processing and Commnuication Systems[C]. pp 217-220. December 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700