基于二维成像声纳的水下运动目标定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下运动目标的测量技术无论在军事领域还是在民用领域均具有广阔的应用前景,对水下运动目标的三维运动轨迹测量,通常采用的手段有内测和外测两种方式,其中内测方式是在运动目标自身内部安装速度、姿态等相关传感器来感知运动目标的运动过程中的状态信息,然后通过事后数据提取和事后处理方式推算出目标的运动轨迹;而外测方式通常采用超短基线、短基线、长基线定位系统以及水下光学或声学成像系统对运动目标进行轨迹测量。除了光学和声学成像以外,无论哪种测量方法都需要在运动物体上安装相应的测量设备,然而在很多特定情况下运动物体上不具备相关设备的安装条件,因此无法借助基于合作信标或是内测方式的测量手段;而基于光学测量设备的外测方法的测量效果受环境影响很大,尤其是水体的浑浊度直接影响光学成像的质量,进而造成动目标轨迹测量误差较大甚至无法测量;借助主动的高分辨成像声纳可以克服以上手段或需求所面临的问题,虽然高分辨的三维成像声纳是最佳选择,但是由于测量场所以及当前与之相关的技术实现条件所限而无法实现,同时采用单部二维声纳仅能实现二维测量,综合考虑技术要求以及技术实现等诸多因素,本文根据水下高速目标成像的试验任务需求,对二维成像声纳测量水下运动目标的三维轨迹测量的一些关键技术进行研究,并完成了成像声纳设备系统的研制,较好地解决了特定环境下的高速目标的成像与跟踪问题,本文具体研究内容如下:
     阐述了论文的研究背景及其意义,对国内外的测扫声纳、前视声纳、声透镜声纳和合成孔径声纳的发展状况及其主要的产品性能技术指标和成像效果进行简要的概述;基于国内外成像声纳的研究现状及水下运动目标测量的特定需求,引出本文所需研究的关键技术。
     针对强混响背景下的高速运动目标的实时成像技术,首先阐述了常规波束形成(即时延求和波束形成技术)的基本原理和性能,为了满足测量系统的实时观测要求,常规的波束形成算法不能满足要求,为了满足系统的实时性以及易于实现的要求,研究了基于FFT的波束形成技术;针对系统近场工作的要求,拓展了传统的基于中心波束不同距离的多点聚焦的FFT波束形成算法,给出了一种宽波束(本测量系统的扫描扇面为90度)条件下的多波束、不同距离聚焦的FFT波束形成算法,有效地解决了近场成像质量与成像实时性的要求。其次,由于系统需工作在强混响条件下,同时高速运动的体目标导致目标回波信号不再是简单的多普勒频移而是多普勒扩展,而基于FFT的波束形成技术本质上是窄带的相移波束形成,因此不再适应高速标成像要求;利用高速运动的体目标回波的宽带特性,本文提出了利用宽带波束形成算法进行对目标进行成像,从而解决动目标的多普勒效应引起的成像位置偏移问题以及强混响背景下的高速目标的有效成像问题。
     对本文所采用的基于两部高分辨二维成像声纳的水下运动目标三维运动轨迹解算技术进行了研究。针对二维成像声纳的成像特点提出了一种基于解集合交汇思想的三维轨迹解算技术,分析了测量系统的误差源,建立了测量系统的解算模型,推导了不同误差源条件下的系统综合测量误差,理论和仿真分析了本文所提出的解算算法能够满足测量要求。
     最后对测量系统安装与工作的要求对系统的接收声纳与发射声纳的软硬件结构进行了优化设计,给出了具体的实现方案,并依据该方案实现了该系统,测量系统的水池试验表明:
     (1)两部二维成像声纳的成像性能满足系统设计指标(即距离和方位分辨力);
     (2)本文提出的基于两部二维成像声纳的目标三维位置解算技术的测量精度满足设计指标要求;
     (3)水池条件下模拟的高速目标成像结果表明:本文的提出针对高速目标的成像算法能够有效地抑制背景混响的影响,并且提高了系统高速目标成像的能力。
Measurement techniques for underwater moving target all have wide application prospectswhether in the military or in the civilian areas. Generally, there are interior and exterior meansto measure the3D motion trajectory of underwater moving targets. The interior measurementacquires the relative motion status information through velocity and attitude sensors installedinside the moving target and then calculate the motion trajectory via data post-extraction andpost-processing. Moreover, the exterior measurement commonly makes use of USBL, SBL,LBL, underwater optical imaging or underwater acoustic imaging. Except the above twoimaging means, any other means all have to install the appropriate equipment on the movingtarget. However, there is no installation condition for relative equipment in many special cases,thus whether acoustic beacons or interior measurement all can’t be used in such cases. Due toits sensitivity to environment change, the performance of optical imaging is directly influencedby the water turbidity, which may cause coarse measurement errors or even invalidate themeasurements. Fortunately, the above problems can be overcome by making use of the highresolution imaging sonar. Though the3D high resolution imaging sonar is the best choice, itcan’t be implemented because of test site and immature techniques. Besides, the2D imagingsonar can only achieve the2D measurement of underwater moving target. After considering therelative technical needs and implementation conditions, a scheme adopting two2D imagingsonars for measuring the3D motion trajectory of underwater moving target is proposed in thisdissertation. In order to fulfill the special demands of device installation, the whole systemdesign is optimized, which have been validated in the trial effectively.
     In the first chapter, it introduces the research background and meanings firstly. Then itsummarizes the state of the art, the performance parameters and imaging results of the mainproducts about oversea and domestic side-scanning sonar, forward-looking sonar, acoustic lenssonar and synthetic aperture sonar. Herein, it concludes the key technology of underwater targetmotion measurement system studied in this dissertation. In the end, it gives the specificstructures of the following research work.
     The second chapter focuses on the real-time imaging technology for the high-speedmoving target under the strong reverberation background. Firstly, it introduces the principlesand performance about the conventional beam-forming (i.e. time-delay sum beam-forming).Because the conventional beam-forming can’t meet the requirements of real-time imaging, theFFT beam-forming is studied for real-time and easy implementation. Aiming at the system requirement working in the near field, it extends the traditional FFT beam-forming based on thecenter beam of multi-points focused at different distances and gives a FFT beam-formingalgorithm on the basis of multi-beams focused at different distances in the condition of broadbeam (the studied measurement system with scanning fan of90degrees), meeting therequirements of the imaging quality of near-field and real-time imaging. Secondly, due to theinfluence of the strong reverberation, the received echoes are not simply Doppler shift butDoppler spread, which causes the FFT beam-forming ineffective. In this dissertation, abroadband beam-forming method is proposed by making use of the characteristics of targetechoes. And this method solves the imaging problem of high-speed moving target in thecondition of strong reverberation.
     The third chapter presents the method to calculate the3D motion trajectory of underwatermoving target through two2D high resolution imaging sonars. According to the imagingcharacteristics of2D imaging sonar, it proposes a method of calculating3D trajectory via2Dintersection. And then it analyzes the error sources of the measurement system, establishes thesolution model of the measurement system and derives integrated measurement errors ofdifferent error sources. The theoretical and numerical simulation all has validated the proposedalgorithm.
     In the last chapter, the software and hardware structures of receiving and transmittingsonars are optimized, considering the installation and working requirements of themeasurement system. And the specific scheme is introduced and implemented. The tank trialindicates:
     (1) the imaging performance of the two2D imaging sonars meets the system index (i.e.range and azimuth resolution);
     (2) the proposed method to calculate the3D trajectory position based on the two2Dimaging sonars satisfies the demand of measurement precision;
     (3) the proposed imaging algorithm of high-speed moving target can suppress thereverberation effectively and improve the imaging quality for high-speed moving targets.
引文
[1]王颖,王爱军.水雷通用内测记录装置的研制.山西机械.1996(1):38-39页.
    [2]徐宇明.水下航行器内测系统及数据处理方法研究.西北工业大学硕士论文,2007.
    [3]李启虎.声纳信号处理引论.海洋出版社,1985:371-378页.
    [4] Hsall D L. An introduction to multisensor data fusion. Proceeding of the IEEE,1997,85(1):6-23P
    [5]孙超.水下多传感器阵列信号处理.西北工业大学出版社,2007
    [6]王燕.非合作目标精确定位跟踪技术.哈尔滨工程大学博士论文,2004
    [7] Becker K. A general approach to TMA observability from angle and frequentcymeasurements. IEEE Transactions on Acoustics, Speech and Signal Processing,1996,32(1):487-496
    [8]毛卫宁.水下被动定位方法回顾与展望.东南大学学报(自然科学版),2001,31(6):129-132
    [9] Jauffret C, Pillon D. Observalility in passive target motion analysis. IEEE Transactionon Aerospace and Electronic Systems.1996,32(4):1290-1300.
    [10] Davis A, Lugsdin A. High speed underwater inspection for port and harbor securityusing Coda Echoscope3D sonar [C]. in proc. IEEE OCEANS MTS. Washinton, DC,USA: IEEE, Piscataway, USA,2005:2006-2011.
    [11] Hansen R K, Castellani U, Murino V, et al. Mosaicing of3D sonar data setstechniquesand applications[C]. in proc. IEEE OCEANS MTS. Washington, DC, USA: IEEE,Computer Society, Piscataway, USA,2005:2006-2011.
    [12] Hansen R K, Andersen P A. The application of real time3D acoustical imaging [C].in proc. OCEANS.1998:738-741.
    [13] Yu S C, Kim T W, Marani G, et al. Real-Time3D Sonar Image Recognition forUnderwaterVehicles[C]. in proc. Symposium on Underwater Technology and workshopon Scientific Use of Submarine Cables and Related Technologies.2007:142-146.
    [14] Giannitrapani R, Trucco A, Murino V. Segmention of underwater3D acoustical imagesfor augmented and virtual reality applications[C]. in proc. IEEE OCEANS MTS.1999:459-465.
    [15] Repetto S, Palmese M, Trucco A. High-resolution3-D imaging by a sparse array: arrayoptimization image simulation[C]. in proc, Oceans.2005:763-768.
    [16] Baranoski E J. Real-time array signal processors for embedded applications[C]. in proc.the Thirty-Third Asilomar Conference on Signals, Systems, and Computers.1999:1381-1385.
    [17] Palmeses M, Trucco A. Acoustic imaging of underwater embedded objects:signalsimulation for three-dimensional sonar instrumentation[J]. IEEE TRANSACTIONS ONInstrumentation and Measurement,2006,55(4):1339-1347.
    [18] Repetto S, Palmnes M, Trucco A, et al. Design and assessment of a low-cost3-D sonarimaging system based on a sparse array[C]. IEEE Instrumentation and MeasurementTechnology Conference,2006:410-415.
    [19] Somers ML and Stubbs A. R. Sidesean sonar. IEEE PROCEEDINGS. JIJNE1984,131(3),Part F.
    [20] Denbigh P N. Swath bathymntry: principles of operation and an analysis of errors. IEEEJonurnal of Oceanic Engineering.1989,14(4):289-298.
    [21] Wright, A. St. C. Deep towed sidessean sonars. OCEANS’93’.’Engineering in Harmonywith Ocean’. Proceedings18-21Oct.1993(3): III478-483.
    [22] Masnadi-Shirazi M A, De Moustier C, Cervenka P and Zisk S H. Differential phaseestimation with the SeaMARCII bathymetric sidescan Sonar system. IEEE Jounal ofOceanic Engineering.1992,17(3):239-251.
    [23] Matsumuoto H. Characteristics of SeaMARCII phase data. IEEE Journal of OceanicEngineering.1999,15(4):350-360.
    [24] Yvan Petillot. Underwater Vehicle Obstacle Avoidance and Path Planning Using a Multi-Beam Forward Looking Sonar2001(02):32-36.
    [25] Ioseba Tena, Ruiz van, Petillot. David. Lane Tracking Objests In uderwater MultibeamSonar Images.1998,15(3):56-60.
    [26]张铁栋.前视声呐的后置图像处理算法研究.硕士学位论文,2004.
    [27]袁连喜.水下智能机器人声视觉成像可视化技术研究,哈尔滨工程大学硕士论文,2002.
    [28]丁凯.基于前视声纳的水下目标跟踪技术研究.哈尔滨工程大学硕士生论文,2006.
    [29] Kenneth M Houston. Three-dimensional acoustic imaging using micromechanicalhydrophones. Oceans’95.1995(2):1174-1182P.
    [30] Edward O B. Application of Thin Acoustic Lenses in a32-Beam, Dual-Frequency,Diver-Held Sonar. OCEANS’96. MTS/IEEE.’ Prospects for the21st Century’.Conference Proceedings.23-26Sept.1996(2):767-772P.
    [31]谢良富,张鸿海.球面声透镜的研磨加工.机械工艺师,1993(8):2l-22页.
    [32]余雅松,王锦柏.柱面型声透镜设计及验证.声学技术,2008,27(2):150-155页.
    [33]卞红雨,桑恩方,纪祥春,赵景义.声透镜波束形成技术仿真研究.哈尔滨工程大学学报,2004,25(1):43-45页
    [34]李颂文.声透镜波束形成技术.声学技术,2007,26(5):771-774页。
    [35]李颂文.声透镜成像声呐的高速成像收发通道设计,哈尔滨工程大学学报,2010,2009,31(3):286-292页.
    [36] Belcher E O, Lynn D C, Dinh H Q and Laughlin T J. Beamforming and imaging withacoustic lenses in small, high-frequency sonars. OCEANS’99MTS/IEEE. Riding theCrest into the21st Century.13-16P Sept.1999(3):1495-1499P.
    [37] Belcher E, Hanot W, Burch J, Dual-frequency Identificantion Sonar (DIDSON).Underwater Technology,2002. Proccesings of the2002International Symposium on.16-19April2002:187-192P.
    [38] Negahdaripour S. Calibration of DIDSON forward-scan acoustic video camera OCEANS2005. Proceedings of MTS/IEEE.17-23Sept.2005(2):1287-1294P.
    [39]孙大军,田坦.合成孔径声呐技术研究(综述).哈尔滨工程大学学报,2000,21(1).
    [40] Gough P T and Hawkins D W. A Short History of Synthetic Aperture Sonar.International Geoscience and Remote Sensing Symposium (IGARSS).1998(2):618-620P.
    [41] Waksh G M. Final report, feasibility study: synthetic aperture array techniques fro highresolution ocean bottom mapping[R]. NewYork: AD851398,1967.
    [42] Sherwin C W. Some early development in synthetic aperture radar system. IRE.1962,6(2):111-115P.
    [43]张春华,刘纪元.合成孔径声纳成像及其研究进展.物理,2006,35(5).
    [44]田杰.863合成孔径声纳项目通过验收.应用声学,2006,25(4).
    [45] Belcher, E.O.; Lynn, D.C.; Dinh, H.Q.; Laughlin, T.J. Beamforming and imaging withacoustic lenses in small high-frequency sonar[C]. Oceans99MTS. IEEE. Seattle, USA,1999:1495-1499.
    [46] Logins C.D. A comparison of forward-looking sonar design alternatives[C]. Oceans’01MTS. IEEE2001. Honolulu, USA,2001:1536-1545.
    [47] Belcher, E.O.; Dinh, D.C. Limpet mine image sonar[C].13thProceedings of SPIEAnnual International Symposium on Aerosense. Orlando, USA,1999:2-10.
    [48] Van V.B, Buckley K.M. Beamforming:a versatitle approach to spatial filtering[J]. ASSPMagazine, IEEE,1988,5(2):4-24.
    [49] Nielsen R.O. Sonar Signal Processing[M]. Boston: Artech House,1991.
    [50]侯自强,李贵斌.声呐信号处理—原理与设备[M].北京:海洋出版社,1986.
    [51]田坦,刘国枝,孙大军.声呐技术[M].哈尔滨工程大学出版社,2000.
    [52] Murino V, Trucco A. Underwater3D imaging by FFT dynamic focusing beamforming[C].in pro. IEEE International Conference on Image Processing.1994:890-894.
    [53] Palmese M, Trucco A. Three-Dimensional Acoustic Imaging by Chirp Zeta TransformDigital Beamforming[J]. IEEE Transcations on Instrumentation and Measurement.2009,58(7):2080-2086.
    [54] Maranda B. Efficient digital beamforming in the frequcecy domain [J]. The Journal ofthe Acoustical Society of America.1989,86(5):1813-1819.
    [55] Odelowo B.O. A Fast Beamforming Algorithm for Planar/Volumntric Arrays[C]. in proc.the Tirty-Ninth Asilomar Conference on Signals, Systems and Computers.2005:1707-1710.
    [56] Liu W, Weiss S, Mcwhirter J G, et al. Frequency invariant Beamforming fortwo-dimensional and three-dimentsional arrays[J]. signal Processing.2007,87(11):2535-2543.
    [57] Ries S. Digital time-delay beamforming with interplolated signals[J]. Signal Processing.2004,84(12):2403-2423.
    [58] Palmese M, Trucco A. Digital Near Field Beamforming for Efficient3-D UnderwaterAcoustic Image Generation[C]. in proc. IEEE International Workshop on ImagingSystems and Techniques. Krakow, Poland: IEEE Computer Society, Piscataway, USA,2007:1-5.
    [59] Ziomek L.J. Three necessary conditions for the validity of the Fresnel phaseapproximation for the near-field beam pattern of an aperture[J]. IEEE Journal of OceanicEngineering.1993,18(1):73-75.
    [60] Trucco A. A least-squares approximation for the delays used in focused beamforming [J].The Journal of the Acoustical Society of America.1998,104(1):171-175.
    [61] C. B. Burckhart,H. Hoffmannan P,A. Grandchamp,Ultrasound axicon. A device forfocusing over a large depth [J]. J.A.S.A.,1973,54:1628-1630.
    [62] H.Z.Wang, Y. He. Y.H. Yang. Ultrasound Characteristics of focused axisymmetricallycurved surface transducers [J]. IEEE trans. ultranson. Ferr.&freq. control,1989,36:63-72.
    [63]凡人.聚焦探头研制概况[J].国外无损检测,1984,4(3):10-16.
    [64] Xia Wu, Michael Sherar. Theorectical evaluation of moderately focused sphericaltransducers and multi-focus acoustic lens/transducer systems for ultrasound thermaltherapy [J]. Phys. MED. BIOL.2002,(47):1603-1621.
    [65] Belecher E.O. Acoustic lenses applied in a64-beam,750k diver-held sonar[C]. OCEANS97MTS/IEEE. Nova Scotia, Canada,1997:451-456.
    [66] Kaiho I. A dream for realization of high-sppeed,3D volume image by lens-focusedmethod[C].7thCongress of the Asian Federation of Ultrasound in Medicine and Biology.Utsunomiya, Japan,2004:38-46
    [67] Trucco A. Enlarging the scanning region of a focused beamforming system[J].Electronics Letters.1997,33(17):1502-1504.
    [68]金添,常文革.基于综合时频分析的机动目标ISAR成像,现代雷达[M],2004.26(11):19-21
    [69]李宁,汤俊,彭应宁.频域波束形成算法.清华大学学报(自然科学版)[M].2008,47(7):1127-11301
    [70]任超,吴嗣亮,王菊,李加琪.一种新的波束形成算法.北京理工大学学报[M].2008,29(5):429-432.
    [71] Yang Yixin, Wan Chunru, Sun Chao. Adaptive design of FIR filter with applications inbroadband beamforming[C]. TENCON,2004IEEE Region10Conference,2004(1):507-510.
    [72] Koca M, Levy B.C. Broadband beamforming with power complementary filters[J]. IEEETrans on Signal Processing.2002,7(50):1573-1582.
    [73]邵杰.一种改进的宽带波束形成方法.四川大学学报[M].2006,38(4):126-130.
    [74]赵宏钟,朱永锋,付强.地物背景下的运动目标频域波束形成带宽合成方法.系统工程于电子技术[M],2011(3):23-27.
    [75] Rabideau D J. An S-band digital array radar testbed[C]. IEEE international symposium onPhased Array Systems and Technology2003. Boston, MA: IEEE Press,2003:113-118.
    [76] Godara L C. Application of the fast Fourier transform to broadband beamforming [J].Journal of the acoustical Society of America,1995,98(7):230-240.
    [77] Howard M. Adaptive digital beamforming (ADBF) architecture for wideband phased-array [C]. Proceedings of the SPIE-The International Scoiety for Optical Engineering.Orlando. FL: SPIE Press,199:36-47.
    [78] Kennedy R A, Abbayapals T D, Ward D B. Broadband nearfield Beamfroming Using aRadial Beampattern formation. IEEE Trans on Signal Processing,1998,46(8):2147-2156.
    [79] Koh C L. A comparison of adaptive beamforming implementations for widebandscenarios[C].2ndIEE/EURASIP Conference on DSP enabled Radio. London: IEE Press.2005:9-13.
    [80] Ward D B, Kennedy R A, Williamson R C. An adaptive algorithm for broadbandfrequency invariant beamforming[C]. proc. of ICASSP.1997,40(5):3537-3740.
    [81]朱维杰,孙进财,曾向阳.宽带波束形成器的自适应综合.声学学报,2003,28(3):283-287.
    [82]梁小利,孙洪琳.基于线性插值算法的图像缩放与实现[J].长沙通信职业学院学报,2008,7(2):49-51.
    [83]罗会信,曹艳力.一种高效的图像插值算法[J].计算机与现代化,2007,(5):19-21.
    [84]龚昌来,杨冬涛.一种改进的双线性插值图像放大算法[J].激光与红外,2009,39(8):899-901.
    [85]彭直兴,沈忠民.基于双线性插值的三维地震波旅行时计算西南石油大学学报(自然科学版)[J].2008,30(5):86-87.
    [86]王会鹏,周和莉,张杰.一种基于区域的双三次图像插值算法[J].计算机工程,2010,36(19):216-217.
    [87] J.L. Hiburn, D.E. Johnson. Multiple-feedback higher-order active filters[C]. in proc.IEEE Region3conference and Exhilbit.1974,10(5):46-53.
    [88] J.L. Hiburn, D.E. Johnson. A fourth-order bandpass filter[C]. in proc.17thMidwestSympo-sium on Circuits and Systems.1974:102-106.
    [89] R.P. Sallen, E.L. Key. A practical method of designing RC active filters[C]. IRE Transa-ctions on Circuit Theory,1955, CT-2:74-85.
    [90] J. Tow. Design formulas for active A step-by-step active filter design[C]. IEEE spectrum,1969.11:64-68.
    [91] J. Tow. Design formulas for active RC filters using operational amplifier biquad[C].Electron Letters1969.7:339-341.
    [92] D.E约翰逊,J.L希尔伯恩[美].有源滤波器的快速实用设计.人民邮电出版社,1980:41-16.
    [93] ANDAY, F. Alternate state-variable realizations using singleended operational amplifies
    [C]. in proc. IEEE.1971.59:1710-1711.
    [94] Inigo, R.M. Active filter realization suing finite-gain voltage amplifiers[C]. IEEE Trans.Circuit Theory.1970, CT-17(445-448).
    [95] Kerwin, L.P.Huelsman. The design of high performance active RC band-pass filters[C].IEEE International convention Record1960,14(10):74-80.
    [96]张睿,李维英,李建东.带通采样技术在软件接收机中的应用.西安电子科技大学学报,2000,27(3):326-329.
    [97] Gedney S. An anisotropic perfectly matched layer-abeorbing medium for the truncationof FDTD lattices[J]. IEEE Transaction on Antennas Progagation.1996,44(12):1630-1639.
    [98]陈武福,胡修林,陈钧,张兵山.基于FPGA技术的多路并行数据采集系统[J].华中理工大学学报,1999,27(3):22-28.
    [99]杨林楠,李红刚,张丽莲,彭琳.基于FPGA的高速数据采集系统的设计.计算机工程,2007,33(7):246-248.
    [100]黄新财,佃松宜,汪道辉.基于FPGA的高速连续数据采集系统的设计.微计算机信息,2007,21(3):57-59.
    [101]林长青,孙胜利.基于FPGA的多路高速数据采集系统.电测与仪表.2005,42(473):52-53.
    [102] Bratov, V. Binkley, J. Katzman, V. Choma, J. Architecture and Implementation of aLow-Power LVDS Output Buffer for High-Speed Applications[J]. IEEE transactions oncircuits and systems2006,53(10):340-344.
    [103] Torralba G, Gonzalez V, Lindenstruth V, Scanchis E. A VLSI for deskewing and faulttolerance in LVDS links[J]. IEEE Transactions on Nuclear Science.2006,53(3):36-40.
    [104] F Formenti, E. Scapparone. Transmission of isolated LVDS signal pulses at longdistance [J]. Accelerators, Spectrometers, Detectors and Associated Equipment.2010,614(2):103-106.
    [105] Doo-Hwan KIM, Sung-Hyun YANG, Kyoung-Rok CHO. Dual-Level LVDSTechnique for Reducing Data Transmission Lines by Half in LCD Driver IC's [J]. IEICETransactions on Electronics.2008, E91/C(1):76-80.
    [106] K. Gingerich, J. Goldie. New TIA standard enables multipoint LVDS. Electrical DesignNews,2002,47(4):230-235.
    [107]程拥强,郭凤龙,朱劲.单片机对CF存储卡文件读写的实现.计算机应用.2003,23(9):23-26.
    [108]郭灿新,张绍峰,黄成军,徐冰雁,沈昊. CF卡文件系统在DSP数据采集中的开发应用.电子技术应用,2006,32(1):68-71.
    [109]毛晓燕,汤健彬,金建详.基于8051的CF卡文件系统的实现.自动化仪表,2003,24(6):34-37.
    [110] Klemm R. Space-time Adaptive Pressing-Principles and Applications[M]. Lor/doflIInstitution of Electrical Engineers,1998,543-599.
    [111] Nickel U.On the influence of channel errors oll array signal processingmethods[J].Archiv filer Elekuonik und Uebertragungstechnik: Electronics and Commu-nication,1993,47(7):209-219.
    [112] Hancock. A class-D Amplifier Using MOSFETS with Reduced Minority CarrierLifetime [J].1991,39:650.
    [113] Qian Y, Deal W R, Kaneda N, et a1. Microstrip-fed quasi-Yagi antenna with broadbandCharacteristics[J]. Electronics Lettem.1998,34(23):2194-2196.
    [114] Qian Y, Deal W R, Kaneda N, et a1. A uraplaIlar quasi-W antenna with wide bandwidthand low mutual couplirig characteristics[C],1999IEEE APS Int.Symp. Dig, Odando,USA:[s.n.],1999:924—927.
    [115] Akos D M, Stockmaster M, Tsui J B Y, et a1. Direct bandpass sampling of multipledistinct RF signals[J]. IEEE Transactions on Communications,1999,47(7):983—988.
    [116] Choe M, Kim K. Bandpass sampling algorithm withnormal and inverse placements formultiple RF signals[J]. IEICE Transactions on Communication,2005,88(2):754-757.
    [117] Bae J,Park J.An efficient algorithm for bandpass sampling of multiple RF signals[J].IEEE Signal Processing Letters,2006,13(4):130-134.
    [118] Bose S,Khaitan V,Chaturvedi A.A low-cost algorithm to find the minimum samplingfrequency for multiplebandpass sampling[J].IEEE Signal Processing Letters,2008,15:877-880.
    [119] Sen S,Gadre V M..An algorithm for minimum band-pass sampling frequency formultiple RF signals in SDR system[C]. IEEE Workshop on Statistical Signal ProcessingProcee-dings. Bordeaux, France: IEEE Press,2005:327-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700