脉冲GTAW熔池动态过程无模型自适应控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现脉冲GTAW(Gas Tungsten Arc Welding)自动化与智能化的困难之一在于实现对焊接熔池动态行为,如熔池的尺寸、熔透及焊缝成形的实时检测与有效控制。电弧焊接是涉及材料、冶金、物理化学变化等多因素交互作用的复杂过程。焊接质量(焊缝成形、接头组织及性能)与焊接工艺的多参数有关,这些参数的作用相互关联,既有动态过程的耦合,又有静态效果的重叠。对于焊接动态过程这样的多变量、非线性、时变且含有诸多不确定因素和约束条件的复杂对象,采用基于精确数学建模方法,难以得到有效的可控制模型,决定了对焊接熔池的动态变化亦即对焊接熔宽、熔透和焊缝成形等质量控制是非常困难的。采用经典及现代控制理论方法来解决上述问题,同时受到理论上和应用上的挑战,难以达到满意的结果。本文以脉冲GTAW焊接过程为对象,对基于被动式熔池直接视觉图像传感的焊接过程的控制进行了深入的研究,研究工作着重于无模型自适应控制(MFC)方法与实际焊接过程的应用结合,将无模型自适应控制方法引入到脉冲GTAW熔透及焊缝成形控制中,该方法只需要GTAW过程的输入输出数据,不仅克服了焊接过程难以建立精确数学模型的困难,且由于具有较强的自适应能力,能克服焊接过程的多种不确定性因素。
     为了研究熔池特征参数与焊接工艺参数之间的动态关系,本文首先进行了传统阶跃试验,采用一阶惯性环节来描述焊接过程,得到了平稳焊接过程焊接脉冲峰值电流、送丝速度与熔池形状参数之间的数学模型。结果表明对于脉冲GTAW过程,焊接过程存在非线性、强耦合、时变等复杂特点。同时为了预测背面熔宽和正面余高以及满足控制仿真的需要,采用随机试验得到建模数据,分别建立了BP(Back Propagation)神经网络模型和ARX(Auto-Regressive Exogeneous)模型
     焊接过程很难用基于模型的控制方法实现高质量的焊缝成形控制,为了克服这一困难,本文将无模型自适应控制引入到脉冲GTAW的熔透及焊缝成形控制中。以背面熔宽为被控制量,焊接峰值电流为控制量,设计了GTAW过程单输入单输出无模型自适应控制器,闭环控制系统仿真验证了该方法的可行性。为了进一步验证该方法的有效性,设计了梯形、渐变哑铃形和突变哑铃形三种不同形状的工件,以代表实际焊接过程中不同的散热条件。基于上述三种工件的实验结果表明,在不同的散热条件下单输入单输出无模型自适应控制器均能实现较好的控制效果。
     为了增强无模型自适应控制器的自适应能力与抗干扰能力,使无模型自适应控制器具有智能化的调节能力,更符合实际的焊接过程控制需要。本文将模糊逻辑引入到无模型自适应控制中,设计了G函数模糊调节的无模型自适应控制器,该控制器能从一定程度上,反映实际焊工的操作经验。通过与无模型自适应控制基本方法的仿真比较可以看出,在相同的调节时间内,具有模糊调节功能的无模型自适应控制的超调量小,且响应曲线更加平滑。而在三种不同形状工件上的实际焊接实验进一步验证了该方法的有效性。与无模型自适应控制的基本方法相比,该方法使控制器的调节更加平滑,从而更有利于焊缝的稳定成形。
     GTAW过程焊缝成形除外界环境等因素影响外,它还受到多个可控焊接参数的直接影响。因此为了提高焊接质量,实现高效的自动化焊接技术,最终实现多变量GTAW过程控制,首先设计了以背面熔宽为被控量,以峰值电流和送丝速度为控制量的GTAW控制过程多输入单输出无模型自适应控制器。仿真及三种工件焊接过程都较好的保持了平稳性,背面熔宽在期望值附近波动,能较好满足焊缝成形控制的需要。与焊接过程单变量控制器相比,多输入单输出的无模型自适应控制其不仅能取得较满意的控制效果,且由于引入了另一个控制量,焊接过程中可以同时调节两个焊接参数,所以当受到外部干扰时,可以更加快速的将背面熔宽调节到期望值。
     由于焊接是一个多变量强耦合的复杂过程,为了使控制器能更加真实有效的体现焊接过程这一特征,提高控制器性能,提出了多输入多输出无模型自适应控制理论,给出了其具体的设计步骤及实现过程,该方法仍具有只利用系统输入输出数据即可实现控制目标的特点。针对脉冲GTAW过程,设计多输入单输出及多输入多输出无模型自适应控制器,最终实现了通过同时监测背面熔宽与正面余高,而同时调节焊接峰值电流和送丝速度,实现了正反面焊缝同时稳定成形。
The fundamental difficulty of realizing pulsed GTAW automation and intellectualization is to detect and control the weld pool’s dynamic behavior, such as weld pool’s geometry parameters, weld penetration and weld beam forming. Arc welding is a complex process which involves interactions of materials, metallurgy and physical chemistry. Weld quality (weld beam forming, microstructures and properties of joint) is related to the multiple parameters of welding technology, these parameters are independent, coupled in the dynamic process and overlapped in the static process. Because welding process is a multi-variable, non-linear, time-varying process which also contains many uncertain factors and constraint conditions, it is very difficult to get an efficient control model based on the accurate mathematic modeling method, and this makes it very difficult to control the weld pool’s dynamic changes, and to control the weld pool’s width, penetration and weld beam forming. To solve the problem by using of classic and modern control theory will face the challenges both on the theory and application, and this makes it difficult to get an ideal result. This paper takes the pulsed GTAW as the research object, and does research on the control of welding process based on the passive visual sensor of weld pool, this paper focuses on the combination of the model-free adaptive control method and practical application of welding process, and applies the model-free adaptive control method in the penetration and weld beam forming control of pulsed GTAW. This method only needs the input and output data of GTAW process, it not only overcomes the difficulty of obtaining an accurate mathematic model of welding process, but also overcomes many uncertain factors of the welding process because it has stronger adaptive ability.
     In order to search the dynamic relation between pool characteristic parameters and welding parameters, the conventional step experiment were firstly carried out and the one-order inertia models of welding peak current, wire feeding speed and welding speed to geometry parameters of weld pool are obtained. The results show that arc welding is characterized as multi-variable, strong coupling, nonlinear, time varying. In order to predict the backside width and topside height of the weld pool and meet the requirement of control simulation, the BP (Back Propagation) neural network model and ARX (Auto-Regressive Exogeneous) model were built in a random design. These models can be used in control simulation and actual welding experiments.
     It’s difficult to model welding process accuratly. To overcome this problem, SISO (Single Input Single Output) model-free adaptive controller of GTAW was designed, and the control variable was weld peak current, the controlled variable was backside width of weld pool. The closed loop control system simulation was carried out based on ARX model and BP neural network prediction model to prove the feasibility of this method. To verify the validity of this controller, three kinds of worpieces were designed to represent different heat emission conditions, which were trapezia-shaped workpiece, graded dumbbell-shaped workpiece and mutant dumbbell-shaped workpiece. The actual welding experiments of three different shaped workpieces were carried out, the results show that SISO model-free adaptive control can get better controlled performance.
     Enlightened by the intelligent behavior of welders, this paper combines the fuzzy control and model-free adaptive control algorithm base on the general form of model-free adaptive control, merges the welder’s experience knowledge into the design of controller, and designs the fuzzy logic model-free adaptive controller. This controller can reflect the welder’s operating experiences to some extent. Compared with the simulation of the basic model-free adaptive control method, it can be shown that the overshoot of the model-free adaptive control method with fuzzy adjusting function is smaller and the response curve is more smoothing. The welding experiments on the three work-pieces of different shape prove the effectiveness of this method.
     Besides influencing of uncontrolled variables and external, GTAW process is directly affected by many controlled welding parameters. In order to improve weld quality and reach high efficient automatic welding technology, MISO (Multi Input Multi Output) model-free adaptive control of GTAW were designed by analyzing the problem of variables selection. Simulation and welding experiments show that the welding shaping is uniform and can meet the needs of welding process. Compared with single variable model-free adaptive control of welding process, multi variables model-free adaptive control not only receive better control performance but also make the variation range of control variable smaller.
     Based on the theory of MISO model-free adaptive control, MIMO (Many Input Many Output) model-free adaptive control theory, design methods and implementation steps are presented. Then MIMO model-free adaptive control of GTAW was designed, in which the control variables were welding peak current and the wire feeding speed, the controlled variables were backside width of weld pool and topside height of weld pool. Simulation and experiments results show that when the heat emission condition of worpieces changes, control variables can make controlled variables to arrive at desire values fastly. And because of choosing topside height of weld pool as another controlled variable, not only fusion penetration can be ensured but also topside appearance of weld quality can be ensured, which is important in practical productions.
引文
1. Ward, P., Improving Productivity with Robotic Welding, Welding Journal, 2001, 80(8), 52-54
    2.王彬,我国焊接自动化的现状及发展趋势,焊接技术, 2000(6), 38-41
    3.毛鹏军,焊接机器人技术发展的回顾与展望,焊接, 2001(8), 6-10
    4. Beatlie, R. J., Cheng, S. K., and Logue, P. S., The use of vision sensors in multi-pass welding applications, Welding Journal, 1988, 67(11), 28-33
    5. Morgan, C. G., Bromley, J. S., and Davey, P. G., Visual guidance techniques for robot arc welding, in Proceeding of 3rd Internaltional Conference on Robot Vision and Sensory Controls. 1983. p. 615-619.
    6.张裕明, TIG焊熔透正面视觉自适应控制的研究, [学位论文],哈尔滨,哈尔滨工业大学, 1990
    7.张裕明,吴林, TIG焊熔透正面监测量的确定,焊接学报, 1991, 12(1), 39-45
    8. Nakata, S., Huang, J., and Tsuruha, Y., Visual Sensing System for In-Process Control of Arc Welding Process, Welding International, 1988(12), 1086-1090
    9. Agapakis, J. E. and Bolstad, J., Vision Sensing and Processing System for Monitoring and Control of Welding and Other High Luminosity Processes, International Robots & Vision Automation Conference, 1991, 23-29
    10. Kovacevic, R. and Zhang, Y. M., Real-Time Image Processing for Monitoring of Free Weld Pool Surface, Journal of Manufacturing Science and Engineering, 1997, 119(5), 161-169
    11. Hoffman, T., Real-Time Imaging for Process Control, Advanced Materials & Processes, 1991(9), 37-43
    12. Kovacevic, R. and Zhang, Y. M., Real-time image processing for monitoring the free weld pool surface, ASME Journal of Manufacturing Science and Engineering, 1997,119(5), 161-169
    13. Zhang, Y. M., Beardsley, M., and Kovacevic, R., Real-time Image Processing for 3D Measurement of Weld Pool Surface, Manufacturing Science and Engineering, 1994, 68(1), 255-262
    14. Agapiou, G., A detailed analysis of the MIG spectrum for the development of laser-based seam tracking sensors, Optics & Laser Technology, 1999, 31, 157-161
    15. Jaeseon Kim, Young Tak Son, Hyung Such Cho, et al., A robust visual seam tracking system for arc welding, Mechatronics, 1996, 6(2), 141-163
    16. Kim, E. W., Allemand, C., and Eagar, T. W., Visible Light Emissions during Gas Tungsten Arc Welding and Its Application to Weld Image Improvement, Welding Journal, 1987, 66(12), 369s-377s
    17. Song, Y. L., Some Phenomena and Features of the Component Distributions in Welding Arc, China Welding, 1995, 4(2), 65-69
    18. Song, Y. L., Some Features of Welding Arc Radiation, China Welding, 1996, 5(2), 96-101
    19. Wang, Q. L., Li, P. J., and Naka, M., The Welding Arc Spectrum and the Improved Arc Light Information for Welding Process Control, High Temperature Physicals, 1996, 22(6), 313-320
    20. Li, P. J. and Wang, Q. L., The Development of the Arc Light Sensing Method in GTAW Process, in Proceedings of the 78th American Welding society Annual Meeting. 1997: Los Angeles, USA. p. 112-120.
    21.李鹏九,焊接过程弧光传感的应用基础研究, [学位论文], 1997
    22.宋永伦and李俊跃,焊接电弧等离子体的平衡性质,焊接学报, 1995, 15(2), 138-145
    23. Brzakovic, D. and Khani, D. T., Weld Pool Edge Detection for Automated Control of Welding, IEEE Transactions on Robotics and Automation, 1991, 7(3), 397-403
    24. Chen, S. B., Wu, L., Wang, Q. L., et al., Self-learning fuzzy neural network andcomputer vision for control of pulsed GTAW, Welding Journal, 1997, 76(5), 201s-209s
    25. Chen, S. B., Wu, L., and Wang, Q. L., Self-learning fuzzy neural networks for control of uncertain systems with time delays, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 1997, 27(1), 142-148
    26. Zhao, D. B., Lou, Y. J., Chen, S. B., et al., Surface height and geometry parameters for describing shape of weld pool during pulsed GTAW, SPIE International Symposium on Intelligent System and Advanced Manufactring 1999, 3833, 91-99
    27. Lou, Y. J., Chen, S. B., and Wu, L., Neuron PSD control based on sensing image of weld pool during pulsed GTAW, in Proceedings of International Conference on Manufacturing Science. 1998: Wuhan, P.R. China. p. 10-12.
    28. Lou, Y. J., Chen, S. B., and Wu, L., Monitoring of weld joint penetration based on sensing double-side vision images of weld pool, Journal of Harbin Institute of Technology, 1998, 7(11), 22-27
    29.王建军,铝合金脉冲TIG焊熔池动态特征的视觉信息获取与自适应控制, [学位论文],上海,上海交通大学, 2003
    30. Kou and Wang, Y. H., Weld pool convection and its effect, Welding Journal, 1986, 65(3), 63-70
    31.曹振宁, TIG/MIG焊接熔透熔池流场与热场的数值分析, [学位论文],哈尔滨,哈尔滨工业大学, 1993
    32. Kotecki, D. J., Mechanism of ripple formation during weld solidification, Welding Journal, 1972, 51(8), 386-394
    33. Wang, Q. L., Detection of the weld full prentration signals of a traveling arc in GTAW process, in Proceedings of IIW Asian Pacific Regional Welding Congress. 1988: Hobart.
    34.杨春利,薄钢板TIG焊电弧传感熔池谐振法熔透实时控制, [学位论文], 1991
    35.耿正,铝合金TIG焊电弧传感熔池自激振荡法熔透实时控制, [学位论文],哈尔滨,哈尔滨工业大学, 1991
    36.王其隆,张九海, and杨春利,快速行走TIG焊接时熔透信号的提取及分析,焊接学报, 1992, 11(3), 175-179
    37. Kotnik, J. F., Then control and analysis of full-penetration pulsed-GAT welds using weld pool oscillation sensing, Masters Thesis, 1986
    38.胡德文,非线性与多变量系统相关辨识,国防科技大学出版社, 2001
    39.刘中华,视觉传感VPPAW焊缝成形实时控制系统, [学位论文],哈尔滨,哈尔滨工业大学, 2001
    40.赵冬斌,基于三维视觉传感的填丝脉冲GTAW熔池形状动态智能控制, [学位论文], 2000
    41.樊重建,变间隙铝合金脉冲GTAW熔池视觉特征获取及其智能控制研究, [学位论文],上海,上海交通大学, 2008
    42.杜全营,填丝脉冲GTAW熔池三维特征实时提取与智能控制, [学位论文],上海,上海交通大学, 2006
    43. Kovacevic, R. and Zhang, Y. M., Online measurement of weld fusion state using weld pool image and neurofuzzy model, in Proceedings of the IEEE International symposium on Intelligent Control. 1996. p. 307-312.
    44.王伟,朱六妹, and丁争,焊接电弧电压模糊模型的相关辨识,电工技术学报, 1998, 13(1), 59-63
    45.李文and孙辉,模糊系统辨识方法在TIG焊过程建模中的应用,铁道学报, 1998, 20(6), 111-114
    46. Chan, B., Pacey, J., and Bibby, M., Modelling gas metal arc weld geometry using artificial neural network technology, Canadian Metallurgical Quarterly(Netherlands), 1999, 38(1), 43-51
    47. Kim, I. S., Prasad, Y. K. D. V., Son, J. S., et al., A study on prediction of bead height in robotic arc welding using a neural network, Journal of Materials Processing Technology, 2002, 130-131, 229-234
    48. Li, P., Fang, M. T. C., and Lucas, J., Modelling of submerged arc weld beads using self-adaptive offset neutral networks, Journal of Materials Processing Technology, 1997, 71(2), 288-298
    49. Lin, R. H. and Fischer, G. W., An on-line arc welding quality monitor and process control system, Industrial Automation and Control: Emerging Technologies, 1995., International IEEE/IAS Conference on, 1995, 22-29
    50. Kim, K. C. and Maev, R. G., Neural network analysis for evaluating welding process, Key Engineering Materials, 2004, 27(3), 2357-2364
    51. Luo, H., Zeng, H., Hu, L. J., et al., Application of artificial neural network in laser welding defect diagnosis, Journal of Materials Processing Technology, 2005, 170 (1-2), 403-411
    52.黄石生and李迪,焊接过程的神经网络建模及控制研究,机械工程学报, 1994, 30(3), 24-30
    53. Chen, S. B., Wu, L., and Wang, Q. L., Self-learning fuzzy neural networks for control of the arc weldingprocess, IEEE International Conference on Neural Networks, 1996, 2
    54.陈善本,具有时滞的不确定性系统神经网络模糊自学习控制,控制理论与应用, 1996, 13(3), 347-355
    55. Chen, S. B., Lou, Y. J., Wu, L., et al., Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part I - Bead-on-plate welding, WELDING JOURNAL, 2000, 79(6), 151S-163S
    56. Chen, S. B., Zhao, D. B., Wu, L., et al., Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part 2: Butt joint welding, Welding journal, 2000, 79(6), 164-174
    57. Zhao, D. B., Chen, S. B., Wu, L., et al., Intelligent control for the shape of the weld pool in pulsed GTAW with filler metal, WELDING JOURNAL, 2001, 80(11), 253S-260S
    58. Zhang, G. J., Chen, S. B., Liu, X., et al., Predicting the backside width of weld pool during pulsed GTAW process based on a neural network model [4565-30], PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 2001, 131-137
    59.张勇and陈善本,焊接柔性加工单元中熔池的实时控制,焊接学报, 2002, 23(4), 1-5
    60. Liu, Z., Wang, Q., and Zheng, B., Process control based on double-side image sensing of the keyhole in VPPA welding, Journal of Materials Processing Technology, 2001, 115(3), 373-379
    61. Tarng, Y. S., Wu, J. L., Yeh, S. S., et al., Intelligent modelling and optimization of the gas tungsten arc welding process, Journal of Intelligent Manufacturing, 1999, 10(1), 73-79
    62. Juang, S. C., Tarng, Y. S., and Lii, H. R., A comparison between the back-propagation and counter-propagation networks in the modeling of the TIG welding process, Journal of Materials Processing Technology, 1998, 75(1), 54-62
    63.王兵,林涛,漏焊智能检测系统中的知识获取,焊接学报, 2001, 22(3), 29-32
    64. Wang, B., Chen, S. B., and Lin, T., Rough set based knowledge acquiring method in intelligent detecting system for lack of weld, in Proceedings of the 4th World Congress on Intelligent Control and Automation. 2002. p. 2887- 2891.
    65. Wang, B., Chen, S. B., and Wang, J. J., Rough set based knowledge modeling for the aluminum alloy pulsed gtaw process, The International Journal of Advanced Manufacturing Technology, 2005, 25(9), 902-908
    66.黎文航,基于变精度粗糙集理论的焊接动态过程知识建模方法研究, [学位论文],上海,上海交通大学, 2007
    67.黄细霞,基于支持向量基的建模方法及其在材料加工中的应用研究, [学位论文],上海,上海交通大学, 2008
    68. Chu, W.-H. and Tung, P.-C., Development of an automatic arc welding system usinga sliding mode control, International Journal of Machine Tools & Manufacture, 2005, 45, 933-939
    69. Zadeh, L. A., Fuzzy sets, Information and Ctonrol, 1965, 8, 338-353
    70.张广军,视觉传感的变间隙填丝脉冲GTAW对接焊缝成形智能控制, [学位论文],哈尔滨,哈尔滨工业大学, 2002
    71. Akira Hirai, Sensing and control of weld pool by fuzzy-neural network in robotic welding system, in The 27th Annual Conference of the IEEE Industrial Electronics Society. 2001. p. 238-242.
    72. Zhang, Y. M., Adaptive Control of Full Penetration Gas Tungsten Arc Welding, IEEE Transactions on Control System Technology, 1996, 4(4), 394-403
    73. Marry A. Austin, Real-time multi-processing fuzzy logic adaptive control gas tungsten arc welding system, in The IEEE Proceedings of the 4th WPDRTS. 1996. p. 139-142.
    74. Zhang, Y. M., Neuro-fuzzy Model Based Control of Weld Fusion Zone Geometry, in The Proceedings of the American Control Conference. 1997. p. 2483-2487.
    75. Zhang, Y. M. and Kovacevic, R., Neurofuzzy model-based predictive control of weld fusion zone geometry, IEEE Transactions on Fuzzy Systems, 1998, 6(3), 389-401
    76. Hunt, K. J., Neural Networks for Control System: A Survey, Automatica, 1992, 28(6), 1083-1112
    77. Irving, B., Neural Networks Are Paying Off on the Production Line, Welding Journal, 1997, 76(10), 59-64
    78. Huang, S. S. and Li, D., Weld Quality Control by Neural Network, Welding in the Word, 1994, 34, 359-363
    79. Kaneke, Y., Iisaka, T., and Oshima, K., Neuro-fuzzy Control of the Weld Pool in Pulsed MIG Welding, Welding International, 1995, 9(3), 191-196
    80. Lim, T. G. and Cho, H. S., Estimation of Weld Pool Sizes in GMA Welding Process Using Neural Networks, Journal of Systems and Control Engineering, 1993, 207(1),15-26
    81. Tu, J. F. and Dishore, N. L., On-line Estimation of Laser Weld Penetration, ASME Journal of dynamic Systems, Measurement, and Control, 1997, 119, 791-801
    82. Kim, J. W. and Na, S. J., A Self-organizing Fuzzy Control Approach to Arc Sensor for Weld Joint Tracking in Gas Metal Arc Welding of Butt Joints, Welding Journal, 1993, 72(1), 60s-66s
    83. Hartman, D. A., Intelligent Control in Arc Welding, Intelligent Engineering Systems Through Artificial Neural Networks, ASME, 1999, 715-725
    84.黄石生,贺剑峰, and宋永伦,钨极氩弧焊焊缝熔宽模糊控制系统设计,焊接学报, 1996, 17(2), 94-98
    85. Suga, Y., Application of Neural Network to Visual Sensing of Weld Line and Automatic Tracking in Robot Welding, Welding in the World, 1994, 34, 275-282
    86. Andersen, K., Artificial Neural Networks Applied to Arc Welding Process Modeling and Control, IEEE Transactions on Industry Applications, 1990, 26(5), 824-830
    87.娄亚军,基于熔池图象传感的脉冲GTAW动态过程智能控制, [学位论文], 1998
    88. Gao, X. and Huang, S., Fuzzy Neural Networks for Control of Penetration Depth during GTAW, China Welding, 2000, 1, 1-8
    89. Du Quanying, Chen Shanben, and Lin Tao, Inspection on shape of weld based on shape from shading, The international Journal of Advanced Manufacturing Technology, 2006, 27, 667-671
    90. Quan Ying Du, Shan Ben Chen, and Lin, T., An application of shape from shading, in ICARCV 2004-Proceedings of The 8th International Conference on Control, Automation, Robotics and Vision. 2004. p. 184-189.
    91.侯忠生,无模型自适应控制的现状与展望,控制理论与应用, 2006, 23(4), 586-592
    92. Spall, J. C. and Cristion, J. A., Model-free control of nonlinear stochastic systems with discrete-time measurements, IEEE Transactions on Automatic Control, 1998,43(9), 1198-1210
    93. Spall, J. C. and Cristion, J. A., Method for model-free control of general discrete-time systems, U.S.P.a.T.O.o.t.U.S.D.o. Commerce, Editor. 1996.
    94. Cheng, S. G., Model-free adaptive process control, U.S.P.a.T.O.o.t.U.S.D.o. Commerce, Editor. 2000.
    95. Spall, J. C. and Chin, D., Traffic responsive signal timing for systemwide traffic control, Transportation Research C5, 1997, 5(3/4), 153-163
    96. Silva, G. J., Datta, A., and P, B. S., New results on the synthesis of PID controllers, IEEE Transactions on Automatic Control, 2002, 47(2), 241-252
    97.韩京清,控制理论-模型论还是控制论,系统科学与数学, 1989, 9(4), 328-335
    98.韩京清,非线性PID控制器,自动化学报, 1994, 20(4), 487-490
    99.韩京清,王伟,非线性跟踪微分器,系统科学与数学, 1994, 4(2), 177-183
    100.韩京清,从PID技术道“自抗扰控制”技术,控制工程, 2002, 9(3), 13-18
    101. Arimoto, S., Kawamura, S., and Miyazaki, F., Bettering operation of robots by learning, Journal of Robotic Systems, 1984, 1(2), 123-140
    102. Chen, Y. Q. and Wen, C. Y., Iterative learning control: convergence, robustness and applications, in Lecture Notes in Control and Information Sciences. 1999, Springer-Verlag: Berlin.
    103. Xu, J. X. and Tan, Y., Linear and nonlinear iterative learning control, in Lecture Notes in Control and Information Sciences. 2003, Springer-Verlag: Berlin.
    104.谢胜利,田森平,谢振东,迭代学习控制理论与应用,北京,科学出版社, 2005
    105. Inoue, T., M, N., and S, I., High accuracy control of a proton synchrotron magnet power supply, in Proceedings of the 8th World Congress of IFAC. 1981, 216-221
    106. Longman, R. W., Iterative learning control and repetitive control for engineering practice, International Journal of Control, 2000, 73(10), 930-954
    107.侯忠生,非线性系统参数辨识、自适应控制及无模型学习自适应控制, [学位论文],沈阳,东北大学, 1994
    108.侯忠生,韩志刚,鲁棒的非线性系统无模型学习自适应控制,控制与决策, 1995, 10(2), 137-142
    109. Hou, Z. S. and Huang, W. H., The model-free learning adaptive control of a class of SISO nonlinear systems, in Proceedings of the American Control Conference. 1997: Albuquerque, New Mexico. p. 343-344.
    110.侯忠生,黄文虎,一类离散时间非线性系统不依赖受控系统数学模型的学习自适应控制,控制理论与应用, 1998, 15(6), 893-899
    111. Hou, Z. S., Han, C. W., and Huang, W. H., The model-free learning adaptive control for a class of MISO nonlinear discrete-time systems, in Proceedings of the 5th IFAS Symp on Low Cost Automation Shenyang, 1998, 1998, 13-26
    112.侯忠生,非参数模型及其自适应控制理论,北京,科学出版社, 1999
    113. Tan, K. K., Adaptive predictive PI control of a class of SISO systems, in Proceedings of American Control Conference. California, 1999, 3848-3852
    114. Tan, K. K., Leet, H., and Huang, S. N., A daptive predictive control of a class of SISO nonlinear systems, Dynamics and Control, 2001, 11(2), 151-174
    115.韩志刚,无模型控制器的应用,控制工程, 2002, 9(4), 22-25
    116.韩志刚,无模型控制方法在化肥生产中的应用,控制理论与应用, 2004, 21(6), 858-863
    117.王春蔚,基于无模型自适应控制理论的局部入口匝道控制系统研究, [学位论文],北京,北京交通大学, 2005
    118.周强,翟伟廉,安装MR阻尼器工程结构的非参数模型自适应控制,地震工程与工程振动, 2004, 24(4), 127-132
    119.刘纯国,隋振,付文智,等,板材多点成形过程的非参数模型及自适应控制,控制工程, 2004, 11(4), 306-308
    120. Hjalmarsson, H., Gunnarsson, S., and Gevers, M., Model-free tuning of a robust regulator for a flexible transmission system, Europe Journal of Control, 1995, 1(2), 148-156
    121. Hjalmarsson, H., Gevers, M., and Gunnarsson, S., Iterative feedback tuning: theory and applications, IEEE Control Systems Magazine, 1998, 18(4), 26-41
    122. Hjalmarsson, H., Iterative feedback tuning: an overview, International Journal of Adaptive Control Signal Process, 2002, 16(5), 373-395
    123. Safonov, M. G. and Tsao, T. C., The unfalsified control concept and learning, IEEE Transactions on Automatic Control, 1997, 42(6), 843-847
    124. Safonov, M. G. and Tsao, T. C., The unfalsified control concept: a direct path from experiment to controller, in FRANCIS B A, TANNENBAUM AR. Feedback Control, Nonlinear Systmes and Coplexity. 1995, Springer-Verlag: New York. p. 196-214.
    125.韩光文,辨识与参数估计,北京,国防工业出版社, 1980
    126.李言俊,张科,系统辨识理论及应用,北京,国防工业出版社, 2003
    127.张铁柱,无模型控制的理论与应用研究, [学位论文],沈阳,东北大学, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700