OFDM/MIMO-OFDM系统中载波频偏估计和相位噪声抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(OFDM)以及它和多输入多输出(MIMO)的结合—MIMO-OFDM是目前宽带无线通信非常具有潜力的传输技术之一,然而,OFDM和MIMO-OFDM技术对载波频偏(CFO)和相位噪声(PHN)非常敏感,CFO和PHN会破坏OFDM子载波的正交性,严重恶化系统性能。因此,有效对抗CFO和PHN成为OFDM和MIMO-OFDM技术实现的一个重要挑战。论文主要针对OFDM和MIMO-OFDM系统实现中的CFO估计和PHN抑制方法进行了研究。论文的主要工作和创新之处在于:
     1、针对准静态多径信道环境下的OFDM系统,提出了一种低复杂度的盲CFO估计算法,该算法利用解调数据二阶统计量矩阵的对角能量最大化准则得到CFO估计,有效提高了CFO估计精度。该算法经推导可得出估计式的闭环求解表达式,具有较低的实现复杂度。
     2、在时变多径信道环境下,提出了一种面向判决(DD)的联合CFO和信道盲估计算法,该算法基于空间选择性期望最大化(SAGE)算法思想,采用迭代的方式得到CFO和信道的精确估计,并通过近似得到闭环的CFO估计求解表达式,有效降低了算法复杂度。
     3、在准静态多径信道环境下,针对存在PHN的OFDM系统提出了一种面向判决的载波间干扰(ICI)迭代抑制算法,所提算法利用Huber滤波思想,改进了传统PHN最大似然(ML)迭代抑制方法的反馈函数,从而有效减弱了判决误差对迭代抑制性能的影响,提高了ICI系数估计精度,具有较好的PHN抑制性能。为降低ML准则下ICI抑制方法的复杂度,论文提出了一种基于优化最小化(MM)算法的迭代ICI抑制算法,该算法利用优化不等式理论得到ICI估计中ML代价函数的替代函数,降低了ML迭代估计中的矩阵求逆维数,有效降低了运算复杂度。
     4、在准静态多径信道坏境下,针对贝尔实验室分层空时(V-BLAST)复用结构的MIMO-OFDM系统模型,提出了一种基于子空间投影准则的盲CFO估计算法,该算法引入Hadamard积的概念,建立了接收信号子空间和基于离散傅立叶变换(DFT)的时频变换子空间结构,通过分析CFO对时频Hadamard积空间和信号Hadamard积空间关系的影响,得到了与CFO相关的子空间投影代价函数,并通过对投影范数的最大化得到了CFO的估计,估计性能优于已有的MIMO-OFDM盲CFO估计方法。
     5、对于OFDM和MIMO-OFDM系统,关于CFO的影响和直观的BER性能分析在现有文献中已有很详尽的论述,而PHN的影响和性能分析仍有待深入研究。论文重点分析了MIMO-OFDM系统在PHN影响下的性能,通过合理近似,给出了不同基带调制方式下BER性能的闭环表达公式,对于实际MIMO-OFDM系统设计实现中PHN抑制方法的选择提供了简单直观的依据。
     6、MIMO-OFDM系统的PHN抑制目前还只针对共同相位误差(CPE)进行抑制。由于忽略ICI的影响,CPE抑制对系统性能改善并不明显。为进一步提高PHN抑制性能,在V-BLAST结构的系统模型下,论文将OFDM系统基于ML的ICI抑制算法扩展到MIMO-OFDM系统。与单纯进行CPE补偿的方法相比,所提算法对MIMO-OFDM系统PHN抑制性能有较大提升。
Orthogonal Frequency Division Multiplexing (OFDM) and multiple-input multiple-output OFDM (MIMO-OFDM) is a promising technique for broadband wireless communication currently. However, one of the main drawbacks of OFDM and MIMO-OFDM is that it is highly sensitive to carrier frequency offset (CFO) and phase noise (PHN). It is a significant challenge to suppress the effect of CFO and PHN in implementation of OFDM and MIMO-OFDM systems. This dissertation focuses on CFO estimation and PHN mitigation methods for implementation of OFDM and multiple-input multiple-output (MIMO) OFDM systems. The main contributions of the dissertation are as follows:
     1. A blind CFO estimation algorithm with low complexity was proposed for OFDM in quasi-static multipath channel. The likelihood function of CFO was extracted from signal covariance matrices in frequency domain, which could gave accurate CFO estimation. A closed-form solution could be manipulated with proposed algorithm, so it was computational efficient.
     2. A decision directed (DD) joint CFO and channel estimator was proposed for OFDM system in time-variant multipath channel. Based on space-alternating generalized expectation-maximization (EM) algorithm, CFO and channel state information were estimated iteratively. Furthermore, a close-form solution for CFO updating was derived by approximation.
     3. In quasi-static multipath channel, an iterative intercarrier interference (ICI) mitigation algorithm based on decision data was proposed for OFDM system with PHN. By using Huber filter, the conventional maximum likelihood feedback function in iteration was reformed, which could suppress the performance impairment due to decision error. So ICI estimation became more accurate and PHN mitigation has better performance. To reduce complexity in ICI mitigation based on ML criterion, a Majorization Minimize (MM) iterative algorithm for ICI mitigation was derived. By replacing ML cost function for ICI estimation with surrogate function, which is the majorization function of the ML cost function, the proposed PHN mitigation reduced orders of matrix to be inverted and has a lower complexity than the conventional ML PHN mitigation.
     4. Focus on V-BLAST space diversity multiplexing model in MIMO-OFDM systems, a blind CFO estimator was derived based on the subspace projection approach in quasi-static multipath channel. The proposed algorithm built sub-space of received signal and DFT based on Hadamard product concept. The projection cost function was obtained by analyzing the effect between CFO and Hadamard product sub-space of received signals and time-frequency domain transforming, then CFO was estimated accurately by maximization the Frobenius norm of projection. The proposed estimator has better performance than existing algorithms in literature.
     5. The performance analysis for OFDM and MIMO-OFDM systems with CFO were discussed detailedly in many literatures, but the effect and performance analysis of PHN were waiting for being studied deeply. The dissertation analyzed BER performance for MIMO-OFDM systems with PHN especially. Then, by reasonable approximate, a closed-form expression of BER was presented, which provided a simple and direct reference for choosing mitigation methods for implementation of MIMO-OFDM system.
     6. The PHN mitigation methods for MIMO-OFDM systems were focused on common phase error (CPE) mitigation up to now. CPE mitigation only for MIMO-OFDM systems could not give satisfying performance due to neglecting ICI component. To improving PHN mitigation performance further, the dissertation extended the ICI mitigation from OFDM systems to MIMO-OFDM systems based on V-BLAST system model. Compared with CPE mitigation method, the proposed mitigation algorithm can significantly improve the performance of PHN mitigation for MIMO-OFDM.
引文
[1] Tse D. and Viswanath P. Fundamentals of Wireless Communication. Cambridge University Press, May, 2005.
    
    [2] Webb W. Wireless Communications: The Future. Wiley, 2007.
    [3] Paulraj A. J., , Gore D. A., Nabar R. U., et al. An Overview of MIMO Communications-A Key to Gigabit Wireless. Proceedings of the IEEE, vol. 92(2), Feb., 2004.
    
    [4] Yang H. A Road to Future Broadband Wireless Access: MIMO-OFDM-Based Air Interface. IEEE Communications Magazine, vol. 43 pp. 53-60, Jan., 2005.
    [5] Cai X. and Giannakis G. B. Error Probability Minimizing Pilots for OFDM with M-PSK Modulation over Rayleigh Fading Channels. IEEE Trans. Vehicular Technology, vol. 53 (1), pp. 146-155, Jan., 2004.
    
    [6] Prasad R. OFDM for Wireless Communications Systems Artech House, 2004.
    
    [7] E.Sengul, B.Can, and N.Akar. Capacity analysis of a PMR system with DAB downlink. Eighth IEEE International Symposium on Computers and Communication, pp. 1153-1158, 2003.
    [8] C.C.Wang, J.M.Huang, and H.C.Cheng. A 2K/8K mode small-area FFT processor for OFDM demodulation of DVB-T receivers. IEEE Transactions on Consumer Electronics, pp. 28-32, Feb., 2005.
    
    [9] L.X.Rong, K.Pahlavan, and M.L.Aho. Indoor geolocation using OFDM signals in HIPERLAN/2 wireless LANs. The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1449-1453, 2000.
    [10] E.Telatar. Capacity of multi-antenna Gaussian channels. AT&T-Bell Labs Internal Tech. Memo., Jun., 1995.
    [11] Foschini G. J. and Gans M. J. On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Commun., vol. 6(3),pp. 311-335, Mar., 1998.
    [12] Airgo. Airgo networks to demonstrate TRUE MIMO technology at consumer electronics. Jan., 2005.
    [13] Atheors. Atheros communications launches smart-antenna wireless chipest delivering MIMO performance to standard 802.11 products. Jan., 2005.
    [14] Linksys. Linksys announces new line of MIMO-based wireless-G products. Jan..2005.
    [15] D-Link. D-Link launches super G with MIMO wireless networking using smart antenna technology to boost speed and range. Jan., 2005.
    [16] Speth M. Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM-Part I. IEEE Trans. on communications, vol. 47 (11), pp. 1669-1673,1999.
    [17] M.Speth. S.A.Fechtel, G.Fock, et al. Optimum receiver design for wireless broad-band systems using OFDM-Part II: A Case Study. IEEE Trans. Comrau.,vol. 49 (4), pp. 571-578, Apr., 2001.
    [18] H.Kim Y., I.Song, T.Chang, et al. Performance analysis of a coded OFDM system in time-varying multipath Rayleigh fading channels. IEEE Trans. on Vehicular Technology, vol. 48 (5), pp. 1610-1615, May, 1999.
    [19] Y.Hui S. and H.Yeung K. Chanlleges in the migration to 4G mobile systems. IEEE Commu. Magazine, vol. 41(12), pp. 54-59, Dec, 2003.
    [20] Sampath H., Talwar S., Tellado J., et al. A Fourth-Generation MIMO-OFDM Broadband Wireless System: Design,Performance, and Field Trial Results. IEEE Communications Magazine, pp. 143-149, Sep., 2002.
    [21] Classen F. and Meyr H. Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels.Proceedings of the IEEE Vehicular Technology Conference (VTC'94), vol. 1 pp.655-659,Jun., 1994.
    [22] van de Beek J. J., Sandell M., and Borjesson P. O. ML estimation of time and frequency offset in OFDM systems. Signal Processing, IEEE Transactions on,vol. 45 (7), pp. 1800-1805, 1997.
    [23] Moose P. H. A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun., vol. 42 (10), pp. 2908-2914,Oct. 1994.
    [24] Pollet T., Van Bladel M., and Moeneclaey M. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. Communications, IEEE Transactions on, vol. 43 (234), pp. 191-193, 1995.
    [25] Zhang Z., Zhang W., and Tellambura C. BER of MIMO-OFDM Systems with Carrier Frequency Offset and Channel Estimation Errors. in Communications, 2007. ICC '07. IEEE International Conference on, 2007, pp. 5473-5477.
    [26] Wei Z., Zhongshan Z., and Tellambura C. Signal-to-Interference-Plus-Noise Ratio Analysis for MIMO-OFDM with Carrier Frequency Offset and Channel Estimation Errors. in Wireless Communications and Networking Conference,2007.WCNC 2007. IEEE, 2007, pp. 927-931.
    [27] A.N.Mody and G.L.Stuber. Synchronization for MIMO OFDM systems. Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE vol. 1 pp. 509 -513, Nov., 2001.
    [28] Robertson P. and Kaiser S. Analysis of the Effects of Phase-Noise in Orthogonal Frequency Division Multiplex (OFDM) Systems. Proc. ICC'95, Seattle, pp.1652-1657, 1995.
    [29] POLLET T., BLADE M. V., and MOENECLAEY M. BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise. IEEE Transactions on Communications, vol. 43 (2), pp. 191-193, Feb., 1995.
    [30] Muschallik C. Influence of RF oscillators on an OFDM signal. Consumer Electronics, IEEE Transactions on, vol. 41 (3), pp. 592-603,1995.
    [31] El-Tanany M. S. and Yiyan W. Impact of phase noise on the performance of OFDM systems over frequency selective channels. in Vehicular Technology Conference, 1997 IEEE 47th, 1997, pp. 1802-1806 vol.3.
    [32] Armada A. G. and Calvo M. Phase noise and sub-carrier spacing effects on the performance ofan OFDM communication system. vol. 2, 1998, pp. 11-13.
    [33] Piazzo L. and Mandarini P. Analysis of Phase Noise Effects in OFDM Modems. IEEE Transactions on Communications, vol. 50 (10), pp. 1696-1705, October,2002.
    [34] Wu S. and Bar-Ness Y. Performance analysis on the effect of phase noise in OFDM systems. Proc. ISSSTA '02, pp. 133 -138, Sep., 2002.
    [35] Schenk T. C. W. and Mattheijssen P. Analysis of the Influence of Phase Noise in MIMO OFDM based WLAN systems. Proceedings Symposium IEEE Benelux Chapter on Communications and Vehicular Technology, 2003.
    [36] Xu R. and Lau F. C. M. Performance analysis for MIMO systems using zero forcing detector over fading channels. IEE Proc.-Commun., vol. 153 (1), pp.74-80, Feb., 2006.
    [37] Zhang Y. and Liu H. MIMO-OFDM Systems in the Presence of Phase Noise and Doubly Selective Fading. Vehicular Technology, IEEE Transactions on, vol. 56(4), pp. 2277-2285, 2007.
    [38] Sanghyun W., Dongjun L., Kiho K., et al. Combined effects of RF impairments in the future IEEE 802. 11n WLAN systems. in Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, 2005, pp. 1346-1349.
    [39] Morlat P. F., Nunez Perez J. C, Villemaud G., et al. On the Compensation of RF Impairments with Multiple Antennas in SIMO OFDM Systems. in Vehicular Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th, 2006, pp. 1-5.
    [40] T.M.Schmidl and D.C.Cox. Robust Frequency and Timing Synchronization for OFDM. IEEE Trans. Commun., vol. 45 (12), pp. 1613-1621, 1997.
    [41] Yun Hee K., Iickho S., Seokho Y., et al. An efficient frequency offset estimator for OFDM systems and its performance characteristics. Vehicular Technology,IEEE Transactions on, vol. 50 (5), pp. 1307-1312, 2001.
    [42] Tufvesson F., Faulkner M., and Edfors O. Time and frequency synchronization for OFDM using PN-sequence preambles. Proceedings of IEEE Vehicular Technology Conference, (4), pp. 2203-2207, 1999.
    [43] Liu H. and Tureli U. A high-efficiency carrier estimator for OFDM communications. Communications Letters, IEEE, vol. 2 (4), pp. 104-106, 1998.
    [44] Lashkarian N. and Kiaei S. Class of cyclic-based estimators for frequency-offset estimation of OFDM systems. Communications, IEEE Transactions on, vol. 48(12), pp. 2139-2149, 2000.
    [45] Krongold B. S. Analysis of Cyclic-Prefix Correlation Statistics and their Use in OFDM Timing and Frequency Synchronization. in Signals, Systems and Computers, 2005. Conference Record of the Thirty-Ninth Asilomar Conference on, 2005, pp. 1466-1470.
    [46] Ko C. C., Mo R., and Shi M. A New Data Rotation Based CP Synchronization Scheme for OFDM Systems. Broadcasting, IEEE Transactions on, vol. 51 (3), pp.315-321,2005.
    [47] Stoica P. and Soderstrom T. Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies. Signal Processing, IEEE Transactions on, vol.39(8),pp. 1836-1847, 1991.
    [48] Tureli U., Liu H., and Zoltowski M. D. OFDM blind carrier offset estimation:ESPRIT. Communications, IEEE Transactions on, vol. 48 (9), pp. 1459-1461,2000.
    [49] Attallah S. Blind estimation of residual carrier offset in OFDM systems. Signal Processing Letters, IEEE, vol. 11 (2), pp. 216-219, 2004.
    [50] Gao F. and Nallanathan A. Blind maximum likelihood CFO estimation for OFDM systems via polynomial rooting. Signal Processing Letters, IEEE, vol. 13(2), pp. 73-76, 2006.
    [51] Chiavaccini E. and Vitetta G. M. Maximum-likelihood frequency recovery for OFDM signals transmitted over multipath fading channels. Communications,IEEE Transactions on, vol. 52 (2), pp. 244-251, 2004.
    [52] Merli F. Z. and Vitetta G. M. Blind Feedforward Frequency Estimation for OFDM Signals Transmitted over Multipath Fading Channels. Wireless Communications, IEEE Transactions on, vol. 6 (6), pp. 2055-2059, 2007.
    [53] Kuang L., Ni Z., and Lu J. A Time-Frequency Decision-Feedback Loop for Carrier Frequency Offset Tracking in OFDM Systems. IEEE Trans. on wireless communications, vol. 4 (2), pp. 367-373, 2005.
    
    [54] 王德刚,孙即祥,魏急波.一种非数据辅助的OFDM残余频偏跟踪方法.数据采集与处理, vol. 12 (1), pp. 63-67, 2008.
    [55] Shi K., E.Serpedin, and P.Ciblat. Decision-directed fine synchronization in OFDM systems. IEEE Trans. Commun., vol. 53 (3), pp. 408-412,2005.
    [56] Tao C. and Tellambura C. Robust joint frequency offset and channel estimation for OFDM systems. in Vehicular Technology Conference, 2004. VTC2004-Fall.2004 IEEE 60th, 2004, pp. 603-607.
    [57] Freda M. M., Weng J. F., and Le-Ngoc T. Joint Carrier Frequency Offset and Channel Estimation in OFDM Systems. 2005 International Conference on Wireless Networks, Communications and Mobile Computing, pp. 1089-1093,2005.
    [58] Minn H., Bhargava V. K., and Letaief K. B. A Combined Timing and Frequency Synchronization and Channel Estimation for OFDM. IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 54 (3), MARCH 2006.
    [59] Balamurali N. and Jalihal D. An efficient algorithm for joint carrier frequency offset and channel estimation in IEEE 802.16 OFDM systems. in Wireless Communication Systems, 2004. 1st International Symposium on, 2004, pp.428-432.
    [60] Xiaoqiang M., Kobayashi H., and Schwartz S. C. Joint frequency offset and channel estimation for OFDM. in Global Telecommunications Conference, 2003.GLOBECOM '03. IEEE, 2003, pp. 15-19.
    [61] Pun M. O., Shang-Ho T., and Kuo C. C. J. An EM-based joint maximum likelihood estimation of carrier frequency offset and channel for uplink OFDMA systems. in Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, 2004, pp. 598-602.
    [62] Lee J. H., Han J. C, and Kim S. C. Joint carrier frequency synchronization and channel estimation for OFDM systems via the EM algorithm. IEEE Trans.Vehicular Technology, vol. 55 (1), pp. 167-172, 2006.
    [63] Morelli M. and Sanguinetti L. Estimation of channel statistics for iterative detection of OFDM signals. ICC 2004, vol. 2 pp. 20-24, 2004.
    [64] Lee J. H. and Kim S. C. Residual Frequency Offset Compensation Using the Approximate SAGE Algorithm for OFDM System. IEEE Trans. on communications, vol. 54 (5), pp. 765-769, 2006.
    [65] U.Threli and P.J.Honan. Modified high-efficiency carrier estimator for OFDM communications with antenna diversity. Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers., vol. 2 pp. 1470-1474,Nov., 2001.
    [66] Meng Y., Yin Q., and Luo M. Blind Carrier Frequency Offset Estimation in MIMO-OFDM without Virtual Carriers. Consumer Communications and Networking Conference, pp. 460 - 464, Jan., 2007.
    [67] Yingwei Y. and Giannakis G. B. Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. Communications, IEEE Transactions on, vol. 53 (1), pp. 173-183, 2005.
    [68] Songping W. and Bar-Ness Y. A phase noise suppression algorithm for OFDM-based WLANs. Communications Letters, IEEE, vol. 6(12), pp. 535-537, 2002.
    [69] Petrovic D., Rave W., and Fettweis G. Common phase error due to phase noise in OFDM-estimation and suppression. in Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on,2004, pp. 1901-1905.
    [70] R V., N A., and H. A. L. Phase noise compensation for OFDM WLAN systems using superimposed pilots. IEEE Communication systems, pp. 1-5, Oct., 2006.
    [71] Schenk T. C. W., Tao X. J., Smulders P. F. M., et al. Influence and suppression of phase noise in multi-antenna OFDM. Vehicular Technology Conference, 2004.VTC2004-Fall. 2004 IEEE 60th vol. 2 pp. 1443 -1447 26-29 Sept., 2004.
    [72] Liu P., Wu S., and Bar-Ness Y. A Phase Noise Mitigation Scheme for MIMO WLANs with Spatially Correlated and Imperfectly Estimated Channels. IEEE COMMUNICATIONS LETTERS, vol. 10 (3), pp. 141-143, Mar., 2006.
    [73] Petrovic D., Rave W., and Fettweis G. Properties of the intercarrier interference due to phase noise in OFDM. in Communications, 2005. ICC 2005. 2005 IEEE International Conference on, 2005, pp. 2605-2610 Vol. 4.
    [74] Gholami M. R., Nader-Esfahani S., and Eftekhar A. A. A new method of phase noise compensation in OFDM. in Communications, 2003. ICC '03. IEEE International Conference on, 2003, pp. 3443-3446.
    [75] Liu G. and Zhu W. Compensation of phase noise in OFDM systems using an ICI reduction scheme. IEEE Trans. Broadcast., vol. 50 (4), pp. 399-407, Dec, 2004.
    [76] Songping W., Pan L., and Yeheskel B.-N. Phase Noise Estimation and Mitigation for OFDM Systems. Wireless Communications, IEEE Transactions on, vol. 5(12), pp. 3616-3625,2006.
    [77] Munier F., Eriksson T., and Svensson A. Receiver algorithms for OFDM systems in phase noise and AWGN. in Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on,2004, pp. 1998-2002 Vol.3.
    [78] Marx F. and Farah J. Iterative baseband correction of phase noise in OFDM systems for transmission over multi-path and AWGN channels. in Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd, 2005, pp.1006-1010.
    [79] Wang D., Wei J., and Sun J. A SAGE-Based Joint Parameter Estimation of OFDM System. in Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference on, 2007, pp. 246-249.
    [80] U. Tureli D. K., and H. Liu. Experimental and analytical studies on a high-resolution OFDM carrier frequency offset estimator. IEEE Trans. Veh.Technol., vol. 50 (2), pp. 629-643, Mar., 2001.
    [81] Li Y., Seshadri N., and Ariyavisitakul S. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE J.Sel. Areas Commun., vol. 17 (3), pp. 461-471, Mar., 1999.
    [82] 佟学俭,罗涛. OFDM 移动通信技术原理与应用. 2003.
    [83] Moose P. H. A technique for orthogonal frequency division multiplexingfrequency offset correction. vol. 42, 1994, pp. 2908-2914.
    [84] Roman T., Visuri S., and Koivunen V. Blind frequency synchronization in OFDM via Diagonality criterion. IEEE Trans. on signal processing, vol. 54 (8),pp. 3125-3135,2006.
    [85] Armstrong J. Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM. IEEE Trans. on communications, vol. 47 (3), pp. 365-369, 1999.
    [86] 802.11a-1999 I. S. Supplement to information technology—telecomm. and information exchange between systems—local and metropolitan-area networks-specific requirements—part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high speed physical layer (PHY) in the 5 GHz band. 1999.
    [87] Park S. Y., Seo B. S., and Kang C. G. Effects of frequency offset compensation error on channel estimation for OFDM system under mobile radio channels.Signal Processing, vol. 83 (12), pp. 2621-2630, 2003.
    [88] Jong-Ho L. and Seong-Cheol K. Residual frequency offset compensation using the approximate SAGE algorithm for OFDM system. Communications, IEEE Transactions on, vol. 54 (5), pp. 765-769,2006.
    [89] Dempster A. P., Laird N. M., and Rubin D. B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.Series B (Methodological), vol. 39 (1), pp. 1-38, 1977.
    [90] Feder M. and Weinstein E. Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36 (4), pp. 477-489,1988.
    [91] Dempster A. P., Laird N. M., and Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Series B, vol. 39 (1),pp. 1-38,1977.
    [92] Xie Y. and Georghiades C. N. Two EM-Type Channel Estimation Algorithms for OFDM With Transmitter Diversity. IEEE TRANSACTIONS ON COMMUNICATIONS vol. 51(1), JANUARY 2003.
    [93] Ma X., Kobayashi H., and Schwartz S. C. An EM-Based Estimation of OFDM Signals. 2002.
    [94] Fessler J. and Hero A. Space-alternating generalized expectationmaximization algorithm. IEEE Trans. on signal processing, vol. 42 pp. 2664-2677,1994.
    [95] Fleury B. H., Tschudin M., Heddergott R., et al. Channel parameter estimation in mobile radio environments using SAGE algorithm. IEEE J. Sel. Areas Commun.,vol. 17(3),pp. 434-450, 1999.
    [96] Man-On P., Morelli M., and Kuo C. C. J. An ECM-based receiver for OFDM signals affected by carrier frequency offsets. in Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd, 2005, pp. 640-644.
    [97] Wu S. and Bar-Ness Y. OFDM systems in the presence of phase noise: consequences and solutions. vol. 52, 2004, pp. 1988-1996.
    [98] Kay S. C. Fundamentals of Statistical Signal Processing: Estimation Theory. NJ,Prentice Hall, 1993.
    [99] Jianhua Z., Rohling H., and Ping Z. Analysis of ICI Cancellation Scheme in OFDM Systems With Phase Noise. IEEE Transactions on Broadcasting, vol. 50 (2),pp. 97-106, Jun., 2004.
    
    [100] Huber P. J. Robust Statistics. New York: Wiley, 1981.
    [101] Petrus P. Robust Huber Adaptive Filter. IEEE Transactions on Signal Processing,vol. 47 (4), pp. 1129-1133,1999.
    [102] Hunter D. R. and Lange K. A tutorial on MM algorithms. The Americal Statistician, vol. 58 (2), pp. 30-37, 2004.
    [103] Chen R., Zhang H., and Xu Y. On use of the MM algorithm for channel estimation in MIMO OFDM. International Conference on Wireless Communications, Networking and Mobile Computing, vol. 1 pp. 30-34, 2005.
    [104] 杨重骏,杨照昆.盖理论(Theory of Majorization)及其在不等式上的应用.数学传播, vol. 6 (4), pp. 13-20, 1982.
    [105] Oberli C. and Daneshrad B. Maximum likelihood tracking algorithms for MIMO-OFDM. Communications, 2004 IEEE International Conference on vol. 4 pp. 2468 - 2472 2004.
    [106] Tureli U., Kivanc D., and Liu H. Multicarrier synchronization with diversity. in Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, 2001,pp. 952-956.
    [107] Liang W., Yong R., and Xiuming S. Effect of carrier frequency offset on performance of BLAST-OFDM systems. Electronics Letters, vol. 38 (14), pp.747-748, 2002.
    [108] Speth M. and Meyr H. Synchronization Requirements for COFDM Systems with Transmit Diversity. Global Telecommunications Conference, 2001, pp.1252-1256,2003.
    [109] Donoho D. "On minimum entropy deconvolution" in Applied Time-Series Analysis II. New York: Academic, pp. 569-609, 1981.
    [110] Tugnait J. K. Identification and deconvolution of multichannel linear non-Gaussian processes using higher-order statistics and inverse filter criteria. IEEE Trans. Signal Process., vol. 45 pp. 658-672, Mar., 1997.
    [111] Schott J. Matrix Analysis for Statistics. 1996.
    [112] Roman T. and Koivunen V. Subspace method for blind CFO estimation for OFDM systems with constant modulus constellations. IEEE Vehicular Technology Conference, vol. 2 pp. 1253-1257, 2005.
    [113] Narasimhan R. Performance of Diversity Schemes for OFDM Systems With Frequency Offset,Phase Noise, and Channel Estimation Errors. IEEE Transactions on Communications, vol. 50 (10), pp. 1561-1565, Oct., 2002.
    [114] Schenk T. C. W., Tao X.-J., Smulders P. F. M., et al. On the Influence of Phase Noise Induced ICI in MIMO OFDM Systems. IEEE Communications Letters,vol. 9 (8), pp. 682-684, Aug., 2005.
    [115] Bittner S., Zimmermann E., Rave W., et al. Performance Analysis of Iterative MIMO-OFDM Receiver under the Presence of Phase Noise. IEEE Workshop on Smart Antennas (WSA'07) Feb., 2007.
    [116] Yi J., Xiayu Z., and Jian L. Asymptotic performance analysis of V-BLAST. in Global Telecommunications Conference, 2005. GLOBECOM '05. IEEE, 2005,pp. 3882-3886.
    [117] Gore D., Heath R. W., Jr., and Paulraj A. On performance of the zero forcing receiver in presence of transmit correlation. in Information Theory, 2002.Proceedings. 2002 IEEE International Symposium on, 2002, p. 159.
    [118] Xu R. and Lau F. C. M. Performance analysis for MIMO systems using zero forcing detector over fading channels. Communications, IEE Proceedings-, vol.153(1), pp. 74-80, 2006.
    [119] Chiung-Jang C. and Li-Chun W. Performance Analysis of Scheduling in Multiuser MIMO Systems with Zero-Forcing Receivers. Selected Areas in Communications, IEEE Journal on, vol. 25 (7), pp. 1435-1445, 2007.
    [120] Lu J., Letaief K. B., Chuang J. C, et al. M-PSK and M-QAM BER computation using signal-space concepts. IEEE Trans.Commun., vol. 47 (2), pp. 181-184, Feb, 1999.
    [121] Cho K. and Yoon D. On the general BER expression of one and two demensional amplitude modulations. IEEE Trans. Commun., vol. 50 (7), pp. 1074-1080, Jun.,2002.
    
    [122] Proakis J. G. Digital Communications. McGraw Hill, vol. Fourth Edition 2001.
    [123] Damen M. O., Gamal H. E., and Caire G. On maximum likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory,vol. 49 (10), pp. 2389-2402, Oct., 2003.
    [124] Vikalo H. and Hassibi B. On the Sphere-Decoding Algorithm II.Generalizations,Second-Order Statistics, and Applications to Communications. IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 53 (8), pp. 2819-2834,Aug., 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700