MIMO系统中的检测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO: Multiple Input Multiple Output)技术给我们指出了一条利用空间维度来提高系统容量和(或)可靠性的有效途径,而MIMO系统接收端的设计最终会极大地影响系统的传输速率、误码率性能和系统复杂度。本文从性能和复杂度两方面的考量中,针对适用于各种信道条件(缺秩和满秩信道;相关性和非相关性信道)和天线配置下的MIMO接收信号的检测问题进行了研究。其主要工作概括如下:
     1.针对迭代检测解码MIMO系统中软输入软输出MMSE检测算法进行研究。提出了一种简化算法,它利用矩阵求逆引理和信道矩阵的奇异值分解,避免了大量的求逆运算,适用于各种调制方式。
     2.针对高维调制下的MIMO检测,提出了比特级的树搜索算法。该算法使用MMSE准则的信道预处理方法,同时考虑格雷和自然映射的QAM信号的比特映射结构可以得到一个比特级上三角分层结构。使用这样的上三角结构,并结合树搜索算法,可以得到比特级的树搜索算法。这样的树搜索算法适用于缺秩MIMO系统,相对于原始的树搜索算法,在高维调制时其度量更新和排序算法的计算量获得了明显降低,而且该算法还可以进一步利用反馈的先验信息来降低度量更新的计算复杂度。
     3.针对树搜索算法中的检测顺序进行研究,给出了在树搜索算法下利用对数似然比信息进行排序的算法。该算法充分利用接收信号、信道信息和先验信息来决定信号的检测顺序,能有效提高树搜索算法性能。
     4.利用分组检测结构和迭代反馈思想,提出了迭代分组最大后验概率检测算法。信号分组将高维检测问题分割为多个低维检测问题,未检测分组可以利用已检测分组得到的后验信息,在所有分组信号检测完成之后可以将其它分组的后验信息传递给第一个分组,重新进行一次检测过程,从而完成一次迭代。迭代分组最大后验概率算法可以充分利用检测器得到的后验信息,性能相对于分组最大后验概率算法有较大提高,而其复杂度可以由分组大小和迭代次数控制。
     5.提出了一种基于降格算法(LR: Lattice Reduction)的软输出栈检测算法。LR算法将等效信道矩阵转换为一个良态矩阵,在转换域内LR能够提供一个很好的发射信号估计。降格之后的每层信号的上下界可以计算出来。在得到初始序列估计和信号的边界之后就可以使用最佳优先的栈算法来进行转换域内的序列搜索,得到最有可能的发射序列集合,由此可以计算得到信号的软信息。仿真结果表明基于LR的软输出栈算法与其它算法相比能以较低的复杂度获得相同的误码率性能。
Multiple-Input Multiple-Output (MIMO) technique is an effective way to achieve high capacity and (or) to improve the reliability. The design of MIMO detector can greatly affect the data rate, bit error ratio and the computational complexity. Based on the tradeoff between the performance and the complexity, this dissertation is intended to design effective and efficient MIMO detectors that are applicable for different channel conditions (full-rank or rank-deficient channel; correlated or uncorrelated channel) with any antenna configurations. The main results are summarized as followed.
     1. Investigate the efficient implementation of the soft-input soft-output MMSE detector for Turbo-MIMO systems and a simplified MMSE detector is proposed. By employing the matrix inversion lemma and the singular value decomposition of the channel matrix, the proposed algorithm decreases complexity greatly and can be applicable for any constellation.
     2. Based on the successive interference cancellation algorithm using QR decomposition, the MMSE preprocessing is introduced to form an equivalent upper triangular channel. By employing the MMSE preprocessing and exposing the underlying bit mapping structure of QAM signals, a bit-level tree structure can be obtained. When tree search algorithm is applied to this bit-level tree structure, a bit-level tree search algorithm is obtained. The proposed bit-level tree search algorithm can be employed in the rank-deficient MIMO systems. Compared with the original tree-search algorithm, the proposed algorithm can greatly reduce the computational complexity when high order constellation is employed. In addition, the proposed algorithm can utilize the a priori information from the decoder to further reduce the computational complexity.
     3. The detection ordering algorithm in the tree search detection is investigated and the ordering algorithm employing log-likelihood ratio information in the tree search detection is proposed. The novel algorithm can fully utilize the received signal, channel state information and a prior information to determine the detection order. The performance of the tree search detection can be improved by the ordering algorithm.
     4. The group detection strategy operates by dividing the set of transmitted symbols into small groups. In the proposed iterative group MAP detection algorithm, information obtained by the detected groups is shared by other groups. After all the groups are detected, the information about all the transmitted signals can be feed back to the first detected group to improve the performance; all the other groups are detected again. The algorithm works in an iterative way. The iterative group MAP detection can fully utilize the information obtained by the detectors and it achieves a better performance compared with the group MAP detection. Its complexity can be controlled by the group number and iteration number.
     5. A soft-output detector with lattice-reduction (LR) is proposed. LR can transform the system model into an equivalent one with better condition. LR algorithm provides a good initial estimation of the transmitted signals. The boundary of signals in the reduced lattice for each layer can be obtained. After the boundary and the initial estimation are obtained, the stack algorithm can be employed to search the candidate list. When the list is generated, the soft bit of the transmitted signals can be calculated. Simulation results show that compared with other detectors, the proposed algorithm can provide the same performance with significantly reduced computational complexity.
引文
[1] C. E. Shannon,“A mathematical theory of communication,”Bell Syst. Tech. J., vol. 27, pp. 379-423, July 1948; vol. 27, pp. 623-656, Oct. 1948.
    [2] R. G. Gallager, Information Theory and Reliable Communication, NY: Wiley, 1968.
    [3] R. G. Gallager,“A simple derivation of the coding theorem and some applica- tions,”IEEE Trans. Inform. Theory, vol. IT-11, pp. 3-18, Jan. 1965.
    [4] J. G. Proakis, Digital Communications, 4th edition, NY: McGraw-Hill, 2001.
    [5] S. G. Wilson, Digital Modulation and Coding, Englewood Cliffs, NJ: Prentice- Hall, 1996.
    [6] A. R. Calderbank,“The art of signaling: fifty years of coding theory,”IEEE Trans. Inform. Theory, vol. 44, pp. 2561-2595, Oct. 1998.
    [7] G. D. Forney, Jr. and G. Ungerboeck,“Modulation and coding for linear Gaussian channels,”IEEE Trans. Inform. Theory, vol. 44, pp. 2384-2415, Oct. 1998.
    [8] C. Berrou, A. Glavieux, and P. Thitimajshima,“Near Shannon limit error-correction coding and decoding: Turbo-codes,”in Proc. IEEE ICC’93, vol. 2, Geneva, Switzerland, May, 23-26, 1993, pp. 1064-1070.
    [9] J. Hagenauer, E. Offer, and L. Papke,“Iterative decoding of binary block and convolutional codes,”IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429-445, Mar. 1996.
    [10] B. Sklar.“A primer on turbo code concepts,”IEEE Commun. Mag. vol. 35, pp. 94-102, Dec. 1997.
    [11] R. G. Gallager,“Low-density parity-check codes,”IRE Trans. Info. Theory, vol. 7, pp. 21-28, Jan. 1962.
    [12] D. J. C. MacKay,“Good error correcting codes based on very sparse matrices,”IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.
    [13] P. A. Bello,“Characterization of randomly time-variant linear channels,”IEEETrans. Commun. Syst., vol. 11, pp. 360-393, Dec. 1963.
    [14] J. A. C. Bingham,“Multicarrier modulation for data transmission: an idea whose time has come,”IEEE Commun. Mag., vol. 28, no. 5, pp. 5-14, May 1990.
    [15] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House Publisher, 2000.
    [16] S. B. Weinstein and P. M. Ebert,“Data transmission by frequency division multiplexing using discrete Fourier transform,”IEEE Trans. Commun., vol. COM-19, no. 10, pp. 628-634, Oct. 1971.
    [17] L. J. Cimini,“Analysis and simulation of a digital mobile channel using orthogo- nal frequency-division multiplexing,”IEEE Trans. Commun., vol. COM-33, no. 7, pp. 665-675, July 1985.
    [18] L. Yang, G. B. Giannakis,“Ultra-wideband communications: an idea whose time has com,”IEEE Signal Process. Mag., vol. 4, no. 2, pp. 36-47, 2003.
    [19] A. J. Goldsmith and S. G. Chua,“Variable-rate variable-power MQAM for fading channels,”IEEE Trans. Commun., vol. 45, no. 10, pp. 1218-1230, Oct. 1997.
    [20] A. J. Goldsmith and S. G. Chua,“Adaptive coded modulation for fading channels,”IEEE Trans. Commun., vol. 46, no. 5, pp. 595-602, May 1998.
    [21]杨小牛,软件无线电原理与应用,电子工业出版社,2001.
    [22] J. Mitola,“Cognitive radio: making software radios more personal,”IEEE Personal Commun., vol. 6, Apr. 1999.
    [23] E. Telatar,“Capacity of multi-antenna Gaussian channels,”Europ. Trans. Telecomm., vol. 10, pp. 585-595, Nov./Dec. 1999.
    [24] G. J. Foschini and M. J. Gans,“On limits of wireless communications in a fading environment when using multiple antennas,”Wireless Personal Commun., vol. 6, pp. 311-334, Mar. 1998.
    [25] G. J. Foschini,“Layered space-time architecture for wireless communication in a fading environment when using multielement antennas,”Bell Labs Tech. J., pp. 41-59, Autumn 1996.
    [26] G. Ungerboeck,“Trellis-coded modulation with redundant signal sets part I:introduction,”IEEE Commun. Mag., vol. 25, no. 2, pp. 5-11, Feb. 1987.
    [27] G. Ungerboeck,“Trellis-coded modulation with redundant signal sets part II: state of the art,”IEEE Commun. Mag., vol. 25, no. 2, pp. 12-21, Feb. 1987.
    [28] J. Hagenauer,“The turbo principle: tutorial introduction and state of the art,”in Proc. Int. Symp. Turbo Codes, Related Topics, Brest, France, Sep. 1997, pp. 1-11.
    [29] S. B. Weinstein , P. M. Ebert,“Data transmission by frequency division multiplexing using the discrete Fourier transform”, IEEE Trans. Commun., vol. 9, pp. 628-634, Oct. 1971.
    [30] ETSI,“Radio broadcasting systems: digital audio broadcasting (DAB) to mobile, portable and fixed receivers,”ETS 300-401 ed.2, May 1997.
    [31] ETSI,“Digital video broadcasting: framing structure, channel coding and modulation for digital terrestrial television,”EN 300-744, Aug. 1997.
    [32] ANSI/IEEE Std 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, 1999.
    [33] T. Pollet, M. V. Bladel and M. Moenecaey,“BER sensitivity of OFDM system to carrier frequency offset and Wiener phase noise,”IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 191-193, Feb./Mar./Apr. 1995.
    [34] M. Russell and G. L. Stuber,“Interchannel interference of OFDM in mobile environment,”in Proc. IEEE VTC’95-fall, Chicago, IL, Jul. 2000, pp. 706-710.
    [35] X. K. Zhao and X. D. Zhang,“Peak-to-average power ratio analysis in multicarrier DS-CDMA,”IEEE Trans. Veh. Tech., vol. 52, no. 3, pp. 561-568, May, 2003.
    [36] G. D. Golden, C. J. Foschini, R. A. Valenzuela and P. W. Wolniansky,“Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,”IEE Electron. Lett., vol. 35, no. 1, pp. 14-15, 1999.
    [37] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, New York: Cambridge University Press, 2005.
    [38] V. Kuhn, Wireless Communications over MIMO Channels, Chichester, England: John Wiley & Sons Ltd, 2006.
    [39] L. Zheng and D. Tse,“Diversity and multiplexing: a fundamental trade-off in multiple antenna channels,”IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.
    [40] K. Azarian and H. El Gamal,“The throughput-reliability tradeoff in block-fading MIMO channels,”IEEE Trans. Inform. Theory, vol. 53, no. 2, pp. 488-501, Feb. 2007.
    [41] S. M. Alamouti,“A simple transmit diversity technique for wireless communica- tions,”IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [42] V. Tarokh, H. Jafarkhani and A. R. Calderband,“Space-time block codes from orthogonal design,”IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, Jul. 1999.
    [43] H. Jafarkhani,“A quasi-orthogonal space-time block code,”IEEE Trans. Com- mun., vol. 49, pp. 1-4, Jan. 2001.
    [44] V. Tarokh, N. Seshadri and A. R. Calderbank,“Space-time codes for high data rate wireless communications: performance criterion and code construction,”IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    [45] Z. Chen, J. Yuan and B. Vucetic,“An improved space-time trellis coded modulation scheme on slow Rayleigh fading channels,”in Proc. IEEE ICC’01, vol. 4, Helsinki, Finland, 2001, pp. 1110-1116.
    [46] G. J. Foschini, et al.,“Analysis and performance of some basic space-time architecture,”IEEE J. Select. Areas Commun., vol. 21, no. 3, pp. 303-320, Apr. 2003.
    [47] G. J. Foschini, et al.,“Simplified processing for high spectral efficiency wireless communication employing multi-element arrarys,”IEEE J. Select. Areas Commun., vol. 17, no. 11, pp. 1841-1852, Nov. 1999.
    [48] B. Hassibi and B. M. Hochwald,“High-rate codes that are linear in space and time,”IEEE Trans. Inform. Theory, vol. 48, no. 7, pp. 1804-1824, July 2003.
    [49] H. El Gamal and M. O. Damen,“Universal space-time coding,”IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1097-1119, May 2003.
    [50] B. Vucetic and J. Yuan, Space-time coding, Chichester, England: John Wiley &Sons Ltd, 2003.
    [51] F. Oggier, G. Rekaya, J. C. Belfiore and E. Viterbo,“Perfect space-time block codes,”IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 3885-3902, Sep. 2006.
    [52] P. Elia, B. A. Sethuraman and P. V. Kumar,“Perfect space-time codes for any number of antennas,”IEEE Trans. Inform. Theory, vol. 53, no. 11, Nov. 2007.
    [53] V. Tarokh and H. Jafarkhani,“A differential detection scheme for transmit diversity,”IEEE J. Select. Areas Commun., vol. 18, no. 7, pp. 1169-1174, July 2000.
    [54] B. M. Hochwald and T. L. Marzetta,“Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,”IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 543-564, Mar. 2000.
    [55] D. J. Love and W. H. J. Robert,“Limited feedback unitary precoding for orthogonal space-time block codes,”IEEE Trans. Signal Process., vol. 53, no. 1, pp. 64-73, 2005.
    [56] P. Xia, S. Zhou and G.. B. Giannakis,“Adaptive MIMO-OFDM based on partial channel state information,”IEEE Trans. Signal Process., vol. 52, no. 1, pp. 202-213, Jan. 2004.
    [57] Q. H. Spencer, A. L. Swindlehurst and M. Haardt,“Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels,”IEEE Trans. Siganl Process., vol. 52, no. 2, pp. 461-471, Feb. 2004.
    [58] M. Jankiraman, Space-time Codes and MIMO Systems, Norwood, MA: Artech House, 2004.
    [59] W. H. Chin, A. G.. Contantinides and D. B. Ward,“Parallel multistage detection for multiple antenna wireless systems,”IEE Electron. Lett., vol. 38, no. 12, pp. 597-599, June 2002.
    [60] S. W. Kim and K. P. Kim,“Log-likelihood-ratio-based detection ordering in V-BLAST,”IEEE Trans. Commun., vol. 54, no. 2, pp. 302-307, Feb. 2006.
    [61]张贤达.现代信号处理,北京:清华大学出版社,1995.
    [62]王新梅,肖国镇.纠错码—原理与方法,西安:西安电子科技大学出版社,2001.
    [63] S. Benedetto, et al.,“Soft-output decoding algorithms in iterative decoding of turbo codes,”TDA Progress Report 42-124, pp. 63-87, Feb. 1996.
    [64] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv,“Optimal decoding of linear codes for minimizing symbol error rate,”IEEE Trans. Inform. Theory, vol. 49, pp. 284-287, Mar. 1974.
    [65] J. Hagenauer and P. Hocher,“A Viterbi algorithm with soft-decision outputs and its applications,”in Proc. IEEE Globecom’89, Dallas, TX, Nov. 1989, pp. 1680-1686.
    [66] C. Douillard, et al.,“Iterative correction of intersymbol interference: turbo equalization,”European Trans. Telecomm., vol. 6, pp. 507-511, Sept.-Oct. 1995.
    [67] S. Benedetto, et al.,“Serial concatenated trellis coded modulation with iterative decoding: design and performance,”in Proc. IEEE ISIT 1997, Ulm, Germany, June 1997, pp. 8.
    [68] X. Wang and H. V. Poor,“Iterative (turbo) soft interference cancellation and decoding for coded CDMA,”IEEE Trans. Commun., vol. 47, no. 7, pp. 1046- 1061, July 1999.
    [69] S. Haykin, M. Sellathurai, Y. de Jone and T. Willink,“Turbo-MIMO for wireless communications,”IEEE Commun. Mag., vol. 42, pp. 48-53, Oct. 2004.
    [70] M. Sellathurai and S. Haykin,“Turbo-BLAST for wireless communications: theory and experiments,”IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2538-2546, Oct. 2002.
    [71] B. M. Hochwald and Stephen ten Brink,“Achieving near-capacity on a multiple-antenna channel,”IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.
    [72] N. Gresset,“New space-time coding techniques with bit-interleaved coded modulations,”ENST PhD report, ENST, Paris, Dec. 2004.
    [73] A. Tomasoni, et al.,“A low complexity turbo MMSE receiver for W-LAN MIMO systems,”in Proc. IEEE ICC’06, Istanbul, Turkey, June 2006, pp. 4119- 4124.
    [74] J. Wang, O. Y. Wen and S. Li,“Soft-output MMSE OSIC MIMO detector withreduced-complexity approximations,”in Proc. 8th IEEE SPAWC, Helsinki, Finland, June 2007, pp. 1-5.
    [75] J. Choi,“MIMO-BICM iterative receiver with the EM based channel estimation and simplified MMSE combining with soft cancellation,”IEEE Trans. Signal Process., vol. 54, pp. 3247-3251, Aug. 2006.
    [76]张贤达.矩阵分析与应用,北京:清华大学出版社,2004.
    [77] Y. C. Liang, S. Sun and C. K. Ho,“Block-iterative generalized decision feedback equalizers for large MIMO systems: algorithm design and asymptotic performance analysis,”IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2035- 2048, June 2006.
    [78] A. D. Hesham, H. El Gamal, M. O. Damen and G. Caire,“A unified framework for tree search decoding: rediscovering the sequential decoder,”IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 933-953, Mar. 2006.
    [79] C. Schlegel and L. Perez, Trellis and Turbo Coding, Piscataway, NJ: Wiley- IEEE, 2004.
    [80] F. Jelinek,“A fast sequential decoding algorithm using a stack,”IBM J. Res. Devel., vol. 13, pp. 675-685, Nov. 1969.
    [81] R. M. Fano,“A heuristic discussion of probabilistic decoding,”IEEE Trans. Inform. Theory, vol. IT-9, no. 2, pp. 64-74, Apr. 1963.
    [82] M. O. Damen, H. El Gamal and G.. Caire,“On maximum-likelihood detection and the search for the closest lattice point,”IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2389-2401, Oct. 2003.
    [83] J. Hagenauer and C. Kuhn,“The list-sequential (LISS) algorithm and its application,”IEEE Trans. Commun., vol. 55, no. 5, pp. 918-928, May 2007.
    [84] S. Baro, J. Hagenauer and M. Witzke,“Iterative detection of MIMO transmission using a list-sequential (LISS) detector,”in Proc. IEEE ICC’03, Anchorage, AK, May 2003, pp. 2653-2657.
    [85] B. Dong, X. Wang and A. Doucet,“A new class of soft MIMO demodulation algorithms,”IEEE Trans. Signal Process., vol. 51, no. 11, pp. 2752-2763, Nov. 2003.
    [86] Y. Huang, J. Zhang and P. M. Djuric,“Bayesian detection for BLAST,”IEEE Trans. Signal Process., vol. 53, no. 3, pp. 1086-1096, Mar. 2005.
    [87] B. Steingrimsson, Z. Q. Luo and K. M. Wong,“Soft quasi-maximum-likelihood detection for multiple-antenna wireless channels,”IEEE Trans. Signal Process., vol. 51, no. 11, pp. 2710-2719, Nov. 2003.
    [88] Y. L. C. de Jong and T. J. Willink,“Iterative tree search detection for MIMO wireless systems,”IEEE Trans. Commun., vol. 53, no. 6, pp. 930-935. June 2005.
    [89] B. Hassibi,“An efficient square-root algorithm for BLAST,”in Proc. IEEE ICASSP’00, Istanbul, Turkey, June 2000, pp. 737-740.
    [90] S. J. Hwang and P. Schniter,“On the optimality of MMSE-GDFE pre-processed sphere decoding,”in Proc. The 43rd Allerton Conf. on Communication, Control and Computing, Monticello, IL, Sep. 2005.
    [91] H. El Gamal, G. Caire and M. O. Damen,“Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels,”IEEE Trans. Inform. Theory, vol. 50, no. 6, pp. 968-985, June 2004.
    [92] J. Choi,“Iterative receivers with bit-level MIMO detection and cancellation,”in Proc. IEEE ICC’05, Seoul, Korea, May 2005, pp. 2006-2010.
    [93] Y. Jiang, J. Li and W. W. Hager,“Uniform channel decomposition for MIMO communications,”IEEE Trans. Signal Process., vol. 53, no.11, pp. 4283-4294, Nov. 2005.
    [94] D. Wubben, R. Bohnke, V. Kuhn and K. D. Kammeyer,“MMSE extension of V-BLAST based on sorted QR decomposition,”in Proc. IEEE VTC’03-fall, Orlando, FL, Oct. 2003, pp. 508-512.
    [95] J. Akhtman, A. Wolfgang, S. Chen and L. Hanzo,“An optimize-hierarchy- aided approximate log-MAP detector for MIMO systems,”IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1900-1909, May 2007.
    [96] T. Cui and C. Tellambura,“An efficient generalized sphere decoder for rank- deficient MIMO systems,”IEEE Commun. Lett., vol. 9, no. 5, pp. 423-425, May 2005.
    [97] A. Elahazin, K. N. Plataniotis and S. Pasupathy,“Reduced-dimension MAPturbo-BLAST detection,”IEEE Trans. Commun., vol. 54, no. 1, pp. 108-118. Jan. 2006.
    [98] J. Choi,“On the parial MAP detection with applications to MIMO channels,”IEEE Trans. Signal Process., vol. 53, no. 1, pp. 158-167, Jan. 2005.
    [99] W. Choi, R. Negi and J. Cioffi,“Combined ML and DFE decoding for the V-BLAST system,”in Proc. IEEE ICC’00, New Orleans, LA, June 2000, pp. 1243-1248.
    [100] S. Sfar and K. B. Letaief,“Layered group detection for multiuser MIMO wireless CDMA systems,”IEEE Trans. Wireless Commun., vol. 5, no. 9, pp. 2305-2311, Sep. 2006.
    [101] M. O. Damen, K. Abed-Meraim and S. Burykh,“Iterative QR detection for BLAST,”Wireless Personal Commun., vol. 19, no. 3, pp. 179-190, Dec. 2001.
    [102] Y. Li and Z. Q. Luo,“Parallel detection for V-BLAST system,”in Proc. IEEE ICC’02, New York, NY, May 2002, pp. 340-344.
    [103] D. Wubben, R. Bohnke, V. Kune and K. D. Kammeyer,“Near-maximum- likelihood detection of MIMO systems using MMSE-based lattice-reduction,”in Proc. IEEE ICC’04, Paris, France, June 2004, vol. 2, pp. 798-802.
    [104] H. Yao and G.. W. Wornell,“Lattice-reduction-aided detectors for MIMO communication systems,”in Proc. IEEE Globecom’02, Taipei, Taiwan, Nov. 2002, pp. 424-428.
    [105] X. F. Qi and K. Holt,“A lattice-reduction-aided soft demapper for high-rate coded MIMO-OFDM systems,”IEEE Signal Process. Lett., vol. 14, no. 5, pp. 305-308, May 2007.
    [106] O. Damen, A. Chkeif and J. C. Belflore,“Lattice code decoder for space-time codes,”IEEE Commun. Lett., vol. 4, no. 5, pp. 161-163, May 2000.
    [107] K. Lee, J. Chun and L. Hanzo,“Optimal lattice-reduction aided successive interference cancellation for MIMO systems,”IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2438-2443, July 2007.
    [108] C. P. Schnorr and M. Eucher,“Lattice basis reduction: improved practical algorithms and solving subset sum problems,”Mathematical Programming, vol.66, pp. 181-191, 1994.
    [109] A. K. Lenstra, H. W. Lenstra and L. Lovasz,“Factoring polynomials with rational coefficients,”Math. Ann., vol. 261, pp. 515-534, 1982.
    [110] P. Silvola, K. Hooli and M. Juntti,“Suboptimal soft-output MAP detector with lattice reduction,”IEEE Signal Process. Lett., vol. 13, no. 6, pp. 321-324, June 2005.
    [111] W. Xu, Y. Wang Z. Zhou and J. Wang,“A computationally efficient exact ML sphere decoder,”in Proc. IEEE Globacom’04, Dallas, TX, Nov. 2004, pp. 2594-2598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700