仿人型假手多运动模式的肌电控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌电假手是一种面向截肢患者康复,由人体肌肉电信号(Electromyography,EMG)进行控制的仿人型机器手。它是集机械电子、计算机与生物等多学科领域的集成化系统,具有多自由度、多传感器、高集成化及小型化等发展趋势。目前,多功能仿人型假手的肌电控制方法远远滞后于其本体的发展,面临控制模式少、精度低、控制感官性差等缺点。本文针对多自由度假手,以多种人手运动模式的高效识别为主要目标,兹建立新型的肌电控制方法。主要研究内容包括:基于模式识别方法的肌电控制总体结构,人手预抓取模式的识别,手指姿态动作模式的识别,以及识别系统的在线学习等方面。
     文中首先对国内外新型的仿人型多自由度假手、典型假手肌电控制方法进行了细致的综述。随后建立了基于模式识别方法的多功能性假手控制系统的总体结构,将其划分为人体层、生物信息采集层、模式识别层、假手本体层和反馈层5个重要组成部分,给出了各层次内相关关键技术的具体实现方法。具体地,由人体解剖学原理确定每个手指运动的功能性肌肉,以确定识别各运动模式所需的肌电电极安放位置。选用独立式模块化表面肌肤肌电电极进行肌电信号的采集。验证模式识别算法的不同搭配以获得经验最优的分类率,并建立假手虚拟操作环境进行控制算法演示及肌能训练。
     确定了人手的4种基本预抓取模式,将对预抓取肌电模式的识别应用于假手抓取控制策略,使得在人手实际抓取动作未实施时即能判断假手所需采用的抓取模式。采用Teager-Kaiser Energy(TKE)算子增幅肌肉收缩时肌电信号的变化,通过判断信号统计值和引入在线后处理步骤,得到准确的预抓取肌电信号。详细验证了多种预抓取肌电信号分段方法、特征提取方法以及特征分类方法对于模式识别成功率的影响。最终采用波形长度与支持向量机作为最优的信号特征及分类器,进行预抓取模式的在线识别。假手抓取肌电控制实验表明,预抓取模式识别成功率高、延迟小,假手能正确地、快速地按规定模式抓取物体。
     除了抓取模式的识别,人手手指动作的识别在假手肌电控制中也同样重要。基于对人手姿态模式的重新配置,文中采用6通道肌电信号实现了多种姿态模式的可靠识别。使用阈值决策同支持向量机决策相结合的双层决策规则,增加了参与训练的肌电瞬态特征,有效提高了人手手指在动作发生时的识别成功率。提出波动式训练方法(肌肉快节奏收缩时的样本作为各模式肌电训练数据),以提高单组次训练数据的完备性。进行了基于PC机的虚拟假手控制实验、基于DSP的嵌入式假手控制实验、以及截肢患者肌电控制实验。实验结果表明人手各运动模式识别正确,识别速度较快,控制的直观感觉较为强烈。
     由于肌电信号具有时变特性,会引起识别系统识别率的下降。文中建立了正、负样本同时训练的多类数据描述分类算法,通过引入遗忘因子对惩罚因子进行加权,建立了基于超球支持向量机多类分类的剥壳增量算法。定义动作序列,并基于动作序列进行肌肉模式的在线持续性学习。对预抓取模式以及动作模式的在线学习实验表明:预抓取模式的持续性学习可以看成是其模式描述逐渐完备的过程,因此识别成功率会越来越高;而对于动作模式的学习,使用多组次的样本进行训练并不能得到识别率的提升。剥壳算法能有效的控制支持向量机复杂度的增加,且使得各组次内部分类成功率分布较高,表明融合在线学习的肌电模式识别算法具有长期稳定工作的能力。
The myoelectric hand is a type of anthropomorphic robotic hand that driven by the human electromyography (EMG) signals for amputee rehabilitation. As a multi- discipline system, it integrates the subjects of mechatronics, computer and biology together, trends to develop with more degree-of-freedoms (DOFs) and sensors, higher integration and miniaturization. However, the EMG control of the multifunctional prosthetic hand has been studied deficiently comparing with the hand bodies, which performs with a few motion modes, low accuracy and bad intuitive control feelings. Focus on the multi-DOFs prosthetic hand, this paper presents a new EMG control method aiming at efficiently recognizing more hand motion modes. The contents of this paper includes: the overall structure of the pattern recognition (PR) based EMG control; the hand prehension recognition; the hand gesture and finger motion recognition; and the online learning strategy for the recognition system, et al.
     Overviews about newly developed multi-DOFs prosthetic hands and typical EMG control methods are given in detail. Then, the general structure of the PR-based EMG control system of the multifunctional prosthetic hand is established, which can be subdivided as the human layer, the biologic signal acquisition layer, the pattern recognition layer, the prosthetic hand layer and the feedback layer. Methods of implementing the critical techniques in each layer are presented. In detail, the placement of the myo-electrodes used for detecting each motion mode is determined by the muscles taking charge of the motion of each finger with the knowledge of the human biological anatomy. The modularized active EMG electrodes are adopted to acquire the surface myoelectric signals. The algorithm verification is performed to get the empirical highest recognition accuracy, and a virtual hand environment is established to demonstrate the EMG control effectiveness and give the amputee an online discipline on his muscle functionality.
     Four basic preshaping modes of the hand are determined, and the recognition of the preshaping EMG modes is adopted in the hand’s grasping strategy when it attempts to hold objects. Although the grasping motion is not actually performed by the human hand, the proper strategy about the prosthetic hand how to grasp the object has been defined. The amplitude change of the EMG signal is reinforced by the Teager-Kaiser Energy (TKE) operator when the muscle contracts, then the accurate preshaping EMG data can be obtained through statistically comparing the signal’s statistical values and adding two post-processing approaches. Multifarious methods of the data segmentation, feature extraction and classification are tested and verified on their influence to the recognizability of the PR system. Ultimately, the wavelength of the signal and the support vector machine (SVM) are adopted as the empirical optimum EMG feature and classifier, respectively, to realize the online recognition of the preshaping modes. The experimental results show that the recognition algorithm can reach on both a high accuracy and a low time delay, and the prosthetic hand can grasp objects complying with the predefined prehension modes correctly and swiftly.
     The recognition of the hand gestures (or finger motions) is with the same importance to the preshaping mode in the EMG control of the prosthetic hand. Based on the reconfiguration of the hand gesture modes, multiple gesture modes are recognized reliably by decoding six channels of EMG signals. The proposed double-decision strategy, which combined the threshold decision with the SVM decisions, can increase the number of the transient samples of the EMG signals, thus to improve the recognition accuracy at the time of the finger motion taking place. A new sample collecting method named“vibrating training”(collect the EMG samples while the muscle is contracting at a fast rhythm) is suggested to improve the completeness of the training samples in each EMG mode. The experiments of a PC-based online multi-mode EMG control of a virtual hand, a DSP-embedded real-time control of a five-fingered prosthetic hand, and an implementation of the EMG control method to an amputee are performed. The results show that the classification accuracy of the EMG modes is relatively high, the recognition speed is fast, and the intuitive feeling of the EMG control is intensive.
     The stochastic character of the EMG will lead to a accuracy decline of the recognition system. A new multi-class data description method, which trains the positive and negative samples at the same time, is proposed. An new sample updating method named“husking”algorithm is proposed, based on the multi-class hypersphere SVM through weighting the penalty factor by a suggested forgotten factor. The“action sequence”is defined and then adopted for the on-line continual learning of the EMG modes. Experiments about the online learning of the preshaping and finger motion EMG modes show that, the persisting learning of the hand preshaping mode can be regarded as a completive process of the mode description function. For the learning process of the hand motion modes, it cannot achieve a higher recognition accuracy even using more groups of training samples. The“husking”algorithm can efficiently control the increasing number of the support vectors and make a good intragroup discriminating rate. It indicates that the EMG pattern recognition system is capable of working on a long-term stability by fusing the online learning method to it.
引文
1 M. Zecca, S. Micera, M. C. Carrozza, et al. Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal. Critical Reviews in Biomedical Engineering. 2002, 30(4-6):459~485
    2 A. Bicchi. Hand for Dexterous Manipulation and Robust Grasping: A Difficult Road Toward Simplicity. IEEE Trans. Robot. Autom. 2000, 16(6):652~662
    3 L. Biagiotti, F. Lotti, C. Melchiorri, G. Vassura. How Far Is the Human Hand? A Review on Anthropomorphic Robotic End-effectors. Italy:University of Bologna.[2009-04-05].http://www-lar.deis.unibo.it/woda/data/deis-lar-publications/3cbd.Document.pdf
    4 C. S. Lovchik, M. A. Difler. The Robonaut Hand: A Dextrous Robotic Hand for Space. Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, Michigan, USA. 1999:907~912
    5 Y. W. Liu, M. H. Jin, R. Wei. Embedded FPGA-based Control of the HIT/DLR Hand. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey, California, USA. 2005:582~587
    6 C. M. Light, P. H. Chappell. Development of a lightweight and adaptable multiple-axis hand prosthesis. Medical Engineering and Physics. 2000, 22 (10):679~684
    7 M. Zecca, G. Cappiello, F. Sebastiani, et al. Experimental Analysis Of The Proprioceptive and Exteroceptive Sensors of an Underactuated Prosthetic Hand. International Journal of Human-friendly Welfare Robotic Systems. 2003, 4(4):1~10
    8 J. L. Pons, E. Rocon, R. Ceres. The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects. Autonomous Robots. 2004, 16:143–163
    9 A. Kargov, T. Werner, C. Pylatiuk, et al. Development of a Miniaturised Hydraulic Actuation System for Artificial Hands. Sensors and Actuators A: Physical. 2008, 141(2):548~557
    10 S. Micera, J. Carpaneto, M. A.Umilta, et al. Preliminary Analysis of Multi-Channel Recordings for the Development of a High-Level Cortical Neural Prosthesis. 2nd International IEEE EMBS Conference on Neural Engineering. Washington D.C., USA. 2005:136~139
    11 Dawn M. Taylor, Stephen I. Helms Tillery, Andrew B. Schwartz. Direct Cortical Control of 3D Neuroprosthetic Devices. SCIENCE. 2002, 296(7):1829~1832
    12 K. Mirfakhraei, K. Horch. Recognition of Temporally Changing Action Potentials in Multiunit Neural Recordings. IEEE Trans Biomed Eng. 1997, 44:123~131
    13 P. Dario, S. Micera, A. Menciassi, et al. Cyberhand-a Consortium Project for Enhanced Control of Powered Artificial Hands based on Direct Neural Interfaces. IEEE Trans Biomed Eng. 1997, 44:123~131
    14 D. J. Atkins, D. C. Y. Heard, W. H. Donovan. Epidemiologic Overview of Individuals with Upper-Limb Loss and Their Reported Research Priorities. Journal of Prosthetics and Orthotics. 1996, 8(1):2~11
    15 M. T. Mason, J. K. Salisbury. Robot Hands and the Mechanics of Manipulation. MIT Press, Cambridge, USA.1985:3~93
    16 S. C. Jacobsen, J. E. Wood, D. F. Knutti, et al. The UTAH/MIT Dextrous Hand: Work in Progress. The International Journal of Robotics Research. 1984, 3(4):21~50.
    17 H. Liu, J. Butterfass, S. Knoch, et al. A New Control Strategy for DLR’s Multisensory Articulated Hand. IEEE Control Systems.1999, 19(2):47~54
    18 R. Dashy, C. Yen, M. Leblanc. The Design and Development of a Gloveless Endoskeleton Prosthetic Hand. Journal of Rehabilitation Research and Development. 1998, 35(4):388~395
    19 N. Dechev, W. L. Leghorn, S. Neumann. Multiple Finger Passive Adaptive Grasp Prosthetic Hand. Mechanism and Machine Theory. 2001, 36:1157~1173
    20 P. J. Kyberd, C. M. Light, P. H. Chappel,et al. The Design of Anthropomorphic Prosthetic Hands: A Study of the Southampton Hand. Robotica. 2001, 19(6): 593~600
    21 P. J. Kyberd. The intelligent hand. IEE Review. 2000, 9:31-35
    22 M. C. Carrozza, P. Dario, F. Vecchi, et al. The Cyberhand: on the Design of a Cybernetic Prosthetic Hand Intended to be Interfaced to the Peripheral Nervous System. Proceedings of IEEE International Conference on Intelligent Robots and Systems. Las Vegas, Nevada. 2003:2642~2647
    23 L. Zollo, S. Roccella, E. Guglielmelli, et al. Biomechatronic Design and Control of an Anthropomorphic Artificial Hand for Prosthetic and Robotic Applications. IEEE/ASME Transactions on Mechatronics, 2007, 12(4):418-429
    24 C. Pylatiuk, S. Mounier, A. Kargov, et al. Progress in the Development of a Multifunctional Hand Prosthesis. The 26th IEEE Annual International Conference on Engineering in Medicine and Biology Society. San Francisco, USA. 2004:4260~4263
    25 A. H. Arieta, R. Katoh, H. Yokoi, et al. Development of a Multi-DOF Electromyography Prosthetic System Using the Adaptive Joint Mechanism.ABBI. 2006, 3(2):1~10
    26 Y. Ishikawa, W. Yu, H. Yokoi, et al. Development of Robot Hands with an Adjustable Power Transmitting Mechanism. Intelligent Engineering Systems Through Neural Networks. 2000, 18:71~72
    27 F. Lotti, P. Tiezzi, G. Vassura, et al. Development of UB Hand 3. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain. 2005:4499~4503
    28 Stellin G, Cappiello G, Roccella S, et al. Preliminary Design of an Anthropomorphic Dexterous Hand for a 2-Years-Old Humanoid: towards Cognition. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Tuscany, 2006:290-295
    29余昌东.仿人型残疾人假手机构和传感器系统的研究.哈尔滨工业大学硕士学位论文. 2007
    30 Y. Kamikawa, T. Maeno. Underactuated Five-finger Prosthetic Hand Inspired by Grasping Force Distribution of Humans. The IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France. 2008:717~722
    31茅一春,朱向阳,李顺冲,扬飞鸿.一种新型欠驱动拟人机械手的设计.机械设计与研究. 2008, 24(3):33-38
    32 S. Y. Jung, I. Moon. Grip Force Modeling of a Tendon-Driven Prosthetic Hand. 2008 International Conference on Control, Automation and Systems. Seoul, Korea. 2008:2006~2009
    33 S. A. Dalley, T. E. Wiste, T. J. Withrow, et al. Design of a Multifunctional Anthropomorphic Prosthetic Hand With Extrinsic Actuation. IEEE/ASME Transactions on Mechatronics. 2009, 14(6):699~706
    34 C. Cipriani, M.Controzzi, M. C. Carrozza. Towards the Development of the SmartHand Transradial Prosthesis. Proceeding of IEEE 11th International Conference on Rehabilitation Robotics. Kyoto, Kyoto. 2009:682~687
    35 M. Controzzi, C. Cipriani, M. C. Carrozza. Mechatronic Design of a Transradial Cybernetic Hand. IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France. 2008: 576~580
    36 N. Dechev, W. L. Cleghorn, S. Naumann. Multiple finger, passive adaptive grasp prosthetic hand. Mechanism and Machine Theory. 2001, 36(10): 1157~1173
    37 The i-Limb system. [2010-5-27]. www.touchbionics.com
    38 Otto Bock Michelangelo hand. [2009-03-27]. http://www.swisswuff.ch/tech /?p=145
    39 H. Huang, P. Zhou, S. Member, et al. An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural MachineInterface. IEEE Trans. Neural Systems and Rehabilitation Engineering. 2008 16(1):37~46
    40 T. A. Kuiken, G. Li, B. A. Lock, et al. Targeted Muscle Reinnervation for Real-time Myoelectric Control of Multifunction Artificial Arms. Journal of the American Medical Association. 2009, 301(6):619~628
    41杨大鹏.特定心理作业多通道脑电信号识别系统研究.哈尔滨工业大学硕士学位论文. 2006
    42 A. K. Engel, C. K. E. Moll, I. Fried, et al. Invasive Recordings from the Human Brain: Clinical Insights and Beyond. NATURE. 2005, 6:35~47
    43 Meel Velliste, Sagi Perel, M. Chance Spalding, et al. Cortical control of a prosthetic arm for self-feeding. Nature. 2008, 453(19):1098~1101
    44 J. H. Blok, J. P. van Dijk, G. Drost, et al. A High-density Multichannel Surface Electromyography System for the Characterization of Single Motor Units. Review of Scientific Instruments. 2002, 73(4):1887-1897
    45 D. Graupe, W. K. Cline. Functional Separation of EMG Signal via ARMA Identification Methods for Prosthesis Control Purposes. IEEE Transactions on Systems, Man, and Cybernetics.1975:15~252
    46 M. F. Kelly, P. A. Parker, R. N. Scott. The Application of Neural Networks to Myoelectric Signal Analysis: A Preliminary Study. IEEE Transaction on Biomedical Engineering. 1990, 37:221~230
    47 B. Hudgins, P. Parker, R. N. Scott. A New Strategy for Multifunction Myoelectric Control. IEEE Transaction on Biomedical Engineering. 1993, 40(1):82~94.
    48 S. H. Park, S. P. Lee. EMG Pattern Recognition based on Artificial Intelligence Techniques. IEEE Transaction on Rehabilitation Engineering. 1998, 6:400~405
    49 O. Fukuda, T. Tsuji, A. Ohtsuka, et al. EMG-based Human-robot Interface for Rehabilitation Aid. Proceedings of the IEEE International Conference on Robotics and Automation. Leuven, Belgium. 1998:3492~3497
    50 D. Nishikawa, Y. Ishikawa, W. Yu, et al. Online Learning based EMG Prosthetic Hand. Electrophysiology and Kinesiology. 2000, 575~580
    51 P. Parker, K. Englehart, B.Hudgins. Myoelectric Signal Processing for Control of Powered Limb Prostheses. Journal of Electromyography and Kinesiology. 2006, 16:541~548
    52 J. L. Pons, R. Ceres, E. Rocon, et al. Virtual Reality Training and EMG control of the MANUS Hand Prosthesis. Robotica. 2005, 23:311~317
    53 M. Reischl, R. Mikut, C. Pylatiuk, et al. Control and Signal Processing Concepts for a Multifunctional Hand Prosthesis. Proceeding of Myoelectric ControlsSymposium. Fredericton, NB, CDN. 2002:116~119
    54 C. M. Light, P. H. Chappell, B. Hudgins, et al. Intelligent Multifunction Myoelectric Control of Hand Prosthesis. Journal of Medical Engineering & Tecnology. 2002, 26(4):139~146
    55 D. C. Simpson. The Choice of Control System for the Multimovement Prothesis: Extended Physiological Proprioception (E. P. P.). The Control of Upper-Extremity Prostheses and Orthoses. 1974:146~150
    56 M.B.I. Raez, M.S. Hussain, F. Mohd-Yasin. Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications. Biological Procedures Online (BPO). 2006, 8:11~35
    57赵京东.基于肌电信号的假手运动模式识别及控制系统的研究.哈尔滨工业大学博士学位论文. 2006:15-16
    58 M. A. Oskoei, H. Hu. Myoelectric control systems—A survey. Biomedical Signal Processing and Control. 2007, 2(4):275~294
    59 A. Merlo, D. Farina, R. Merletti. A Fast and Reliable Technique for Muscle Activity Detection from Surface EMG Signals. IEEE Transaction on Biomedical Engineering. 2003, 50:316~323
    60 E. A. Clancy, E. L. Morin, R. Merletti. Sampling, Noise-reduction and Amplitude Estimation Issues in Surface Electromyography. J. Electromyogr. Kinesiol. 2002, 12 :1~16
    61 D. Farina, R. Merletti. Comparison of Algorithms for Estimation of EMG Variables During Voluntary Isometric Contractions. J. Electromyogr. Kinesiol. 2000, 10:337~349
    62 P. Shenoy, K. J. Miller, B. Crawford, et al. Online Electromyographic Control of a Robotic Prosthesis. IEEE Trans. Biomedical Engineering. vol. 2008, 55:1128~1135
    63 A. B. Ajiboye, R. F.Weir. A Heuristic Fuzzy Logic Approach to EMG Pattern Recognition for Multifunctional Prosthesis Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13(3):280~291
    64 S. Karlsson, J. Yu, M. Akay. Enhancement of Spectral Analysis of Myoelectric Signals During Static Contractions Using Wavelet Methods. IEEE Trans. Biomed. Eng. 1999, 46(6):670~684
    65 S. Karlsson, J. Yu, M. Akay. Time–frequency Analysis of Myoelectric Signals During Dynamic Contractions: A Comparative Study. IEEE Trans. Biomed. Eng. 2000, 47 (2):228~238
    66 R. Merletti, M. Knaflitz, C. J. De Luca. Electrically Evoked Myoelectric Signals. Crit. Rev. Biomed. Eng. 1992, 19:293~340
    67 D. Graupe. Multifunctional Prothesis and Orthosis Control via Microcomputer Identification of Temporal Pattern Differences in Single Site Myoelectricsignals. J. Biomed. Eng. 1982, 4:17
    68 N. Chaiyaratanal, A.M.S. Zalzala, D. Datta. Myoelectric Signals Pattern Recognition for Intelligent Functional Operation of Upper-Limb Prosthesis. Proceedings of the First Euro Conference Disability, Virtual Reality&Associated Technology. Maidenhead, UK. 1996:151~160
    69 E. Lamounier, A. Soares, A. Andrade, et al. A Virtual Prosthesis Control based on Neural Networks for EMG Pattern Classification. 6th IASTED International Conference on Artificial Intelligence and Soft Computing, Banff, Alberta, Canada. 2002:425~430
    70 B. Karlik, M.O. Tokhi, M. Alci, A Fuzzy Clustering Neural Network Architecture for Multifunction Upper-limb Prosthesis. IEEE Trans. Biomed. Eng. 2003, 50 (11):1255~1261
    71 K. Englehart, B. Hudgins, P. A. Parker, et al. Classification of the Myoelectric Signal Using Time-frequency based Representations. Med. Eng. Phys. 1999, 21:431~438
    72 K. Englehart, B. Hudgins, P.A. Parker. A Wavelet-Based Continuous Classification Scheme for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 2001, 48 (3):302~310
    73 J. Chu, I. Moon, S. Kim, et al. Control of Multifunction Myoelectric Hand Using a Real Time EMG Pattern Recognition. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alberta, Canada. 2005:3957~3962
    74 S. Du, M. Vuskovic. Temporal Vs. Spectral Approach to Feature Extraction from Prehensile EMG Signals. Proceedings of the IEEE International Conference on Information Reuse and Integration. Las Vegas, USA. 2004:344~350
    75 Y. Huang, K. Englehart, B. Hudgins, et al. A Gaussian Mixture Model based Classification Scheme for Myoelectric Control of Powered Upper Limb Prostheses. IEEE Trans. Biomed. Eng. 2005, 52 (11):1801~1811
    76 A.D.C. Chan, K. Englehart. Continuous Myoelectric Control for Powered Prostheses Using Hidden Markov Models. IEEE Trans. Biomed. Eng. 2005, 52 (1):121~124
    77 N. Bu, J. Arita, and T. Tsuji. A Novel Pattern Classification Method for Multivariate EMG Signals Using Neural Network. ICNC 2005. Changsha, China. 2005:165~174
    78 B. Hudgins, P. Parker, R. Scott, Control Of Artificial Limbs Using Myoelectric Pattern Recognition. Med. Life Sci. Eng. 1994, 13:21~38
    79 J. Zhao, Z. Xie, L. Jiang, H. Cai, H. Lio, G. Hirzinger. EMG Control for a Five-fingered Interactuated Prosthetic Hand based on Wavelet Transform and Sample Entropy. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. 2006:3215~3220
    80 A.T.C. Au, R.F. Kirsch. EMG-Based Prediction of Shoulder and Elbowkinematics in Able-Bodied and Spinal Cord Injured Individuals. IEEE Trans. Rehabil. Eng. 2000, 8 (4):471~480
    81 K. Kiguchi, R. Esaki, T. Tsuruta, et al. An Exoskeleton System for Elbow Joint Motion Rehabilitation. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Kobe, Japan. 2003:1228~1233
    82 F. H. Y. Chan, Y. S. Yang, F. K. Lam, et al. Fuzzy EMG Classification for Prosthesis Control. IEEE Trans. Rehabil. Eng. 2000, 8 (3):305~311
    83 M. Vuskovic, S. J. Du. Classification of Prehensile EMG Patterns with Simplified fuzzy ARTMAP networks. Proceedings of the International Joint Conference on Neural Networks. Honolulu, Hawaii. 2002, 3:2539~2544
    84 A.D.C. Chan, K. Englehart. Continuous Classification of Myoelectric Signals for Powered Prostheses Using Gaussian Mixture Models. Proceedings of 25th Annual International Conference of the Engineering in Medicine and Biology Society. Cancun, Mexico. 2003:2841~2844
    85 O. Fukuda, T. Tsuji, M. Kaneko, et al. A Human-Assisting Manipulator Teleoperated by EMG Signals and Arm Motions. IEEE Trans. Robot. Autom. 2003, 19 (2):210~222
    86 S. Bitzer and P. van der Smagt. Learning EMG Control of a Robotic Hand: towards Active Prostheses. Proc. of ICRA, International Conference on Robotics and Automation. Orlando, Florida, USA. 2006:2819~2823
    87 C. Castellini and P. Smagt. Surface EMG in advanced hand prosthetics. Biological Cybernetics. 2009, 100: 35~47
    88 M. A. Oskoei, H. Hu. Support Vector Machine- Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Transactions on Biomedical Engineering. 2008, 55(8):1956~1965
    89 M. Reischl, L. Groll, and R. Mikut. Optimized Classification of Multiclass Problems Applied to EMG Control of Hand Prostheses. ICANN 2004. Budapest, Hungary. 2004:1941~1946
    90 D. Nishikawa, W. Yu, H. Yokoi, et al. EMG Prosthetic Hand Controller Discriminating Ten Motions Using Real-Time Learning Method. IEEE/RSJ IROS. Kyongju, Korea. 1999:1952~1957
    91 F. Sebelius, M. Axelsson, N. Danielsen, et al. Real-Time Control of a Virtual Hand. Technol. Disabil. 2005, 17(3) :131~141
    92 K. Englehart, B. Hudgins. A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control. IEEE Transactions on Biomedical Engineering. 2003, 50(7): 848~854
    93 M. J. Zwarts, G. Bleijenberg, and B.G.M. Engelen. Clinical Neurophysiology of Fatigue. Clinical Neurophysiology. 2008, 119(1):2~10
    94 R. Kato, H. Yokoi, T. Arai. Real-Time Learning Method for Adaptable Motion-Discrimination Using Surface EMG Signal. Proceedings of the IEEE/RSJ International Conference on intelligent Robots and Systems. Beijing China. 2006:2127~2132
    95 M. A. Oskoei, H. Hu. Adaptive Myoelectric Human-Machine Interface for Video Games. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation. Changchun,China. IEEE; 2009:1015~1020
    96 S. Bordes, J. Ertekin, J. Weston, et al. Fast Kernel Classifiers with Online and Active Learning. Journal of Machine Learning Research, 2005, 6:1579~1619
    97 C-C. Chang and C-J Lin. LIBSVM: a library for support vector machines. [2010-5-27]. http://www.csie.ntu.edu.tw/~cjlin/libsvm
    98汤奇荣.基于语音及肌电信号的嵌入式假手控制器的研制.哈尔滨工业大学硕士学位论文. 2008.
    99 L. Eriksson, F. Sebelius, and C. Balkenius. Neural Control of a Virtual Prosthesis. Proceedings of the 8th International Conference on Artificial Neural Networks. Skovde, Sweden. 1998.
    100张玉茹,李继婷,李剑锋.机器人灵巧手—建模、规划与仿真.机械工业出版社, 2007:36~72
    101卢祖能,曾庆杏,李承晏,等.实用肌电图学.人民卫生出版社, 2000: 500~ 508, 8~12
    102 D. M. Serlin, M. H. Schieber. Morphologic Regions of the Multitendoned Extrinsic Finger Muscles in the Monkey Forearm. Acta Anat. 1993, 146:255~266
    103 L. E. Bickerton, A. M. Agur, P. Ashby. Flexor Digitorum Superficialis: Locations of Individual Muscle Bellies for Botulinum Toxin Injections. Muscle Nerve. 1997, 20:1041~1043
    104 R.F.ff. Weir, P. R. Troyk, G. DeMichele, et al. Technical Details of the Implantable Myoelectric Sensor (IMES) System forMultifunction Prosthesis Control. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China. 2005:7337~7340
    105 J. L. Hargrove, K. Englehart, B.Hudgins. A Comparison of Surface and Intramuscular Myoelectric Signal Classification. IEEE Transactions onBiomedical Engineering. 2007, 54(5):847~853
    106 C. J. De Luca. A Practicum on the Use of Surface EMG Signals in Movement Sciences. [2010-5-27]. http://nmrc.bu.edu/fac_staff/director/cv.html
    107 C. J. De Luca. Surface Electromyography: Detection and Recording. [2010-5-27]. http://www.delsys.com/Attachments_pdf/WP_SEMGintro.pdf
    108 S. H. Roy, G. De Luca, M. S. Cheng, et al. Electro-mechanical stability of surface EMG sensors. Med Bio Eng Comput. 2007, 45:447~457
    109 Freriks and Hermens. SENIAM Recommendations for Bipolar sEMG Electr- odes. [2010-5-27]. http://www.rrd.nl/projects/content/fil_100.htm.
    110 S. Day. Important Factors in Surface EMG Measurement. Bortec Bio- medical. [2010-5-27]. http://www.bortec.ca
    111 H. Broman, G. Bilotto, and C.J. De Luca. A Note on Non-Invasive Estimation of Muscle Fiber Conduction Velocity. IEEE Transactions on Biomedical Engineering. 1985, 32:341~344
    112 R.P.W. Duin, P. Juszczak, P. Paclik, et al. PRTools4 A Matlab Toolbox for Pattern Recognition. [2010-5-27]. http://prtools.org/
    113 R. E. Fan, P. H. Chen, and C.-J. Lin. Working Set Selection Using the Second Order Information for Training SVM. Journal of Machine Learning Research. 2005, 6:1889~1918
    114 A. C. Dupont, E. L. Morin. A Myoelectric Control Evaluation and Trainer System. IEEE Transactions on Biomedical Engineering. 1994, 2(2):100~107
    115 Y. Tanaka, S. Noda. T. Tsuji, et al. A Virtual Prosthetic Hand Using EMG Signals for fMRI Measurements. Proceedings of 2004 IEEE/RJS International Conference on Intelligent Robots and Systems. Sendal Japan. 2004:2954~2959
    116 Y. Tsepkovskiy, L. Antonov, C. Kocev, et al. Development of a 3D and VRML Virtual Hand Models for Different Mechanical Gripper. Journal of the University of Chemical Technology and Metallurgy. 2008, 43(1):159~164
    117 A. Soares, A. Andrade, E. Lamounier, et al. The Development of a Virtual Myoelectric Prosthesis Controlled by an EMG Pattern Recognition System Based on Neural Networks. Journal of Intelligent Information Systems. 2003, 21(2):127~141
    118 R. Boian, A. Sharma, C. Han, et al. Virtual Reality-Based Post-Stroke Hand Rehabilitation. Proceedings of Medicine Meets Virtual Reality 2002 Conference. Newport Beach CA. 2002:64~70
    119 C. Y. Shing, C. P. Fung, T. Y. Chuang, et al. The Study of Auditory and Haptic Signals in a Virtual Reality-Based Hand Rehabilitation System. Robotica. 2003, 21:211~218
    120 J. Burck, M. J. Zeher, R. Armiger, et al. Developing the World’s Most AdvancedProsthetic Arm Using Model-Based Design. [2010-5-27]. http://www.mathworks.com
    121姜洪洲,赵慧,韩俊伟,等. VRML在六自由度并联机器人设计中的应用.中国机械工程. 2003, 14(11):920~923
    122 J. R. Napier. The Prehensile Movements of the Human Hand. The Journal of Bone and Joint Surgery. 1956, 38(4):902~913
    123 T. Iberall. Grasp planning for human prehension. In Proceedings of IJCAZ-87a, 1159-1156, 1987
    124 M. I. Vuskoviv, A. L. Pozos, R. Pozos. Classification of Grasp Modes based on Electromyographic Patterns of Preshaping Motions. IEEE International Conference on Systems, Man and Cybernetics. Vancouver, BC, Canada. 1995:89~95
    125 M. Vuskovic, D. Sijiang. Classification of Prehensile EMG Patterns With Simplified Fuzzyartmap Networks. International Joint Conference on Neural Networks. Honolulu, HI, USA. 2002, 3:2539~2544
    126 1 C. Sollerman, Assessment of grip function- Evaluation of a new test method, MITAB,1980
    127 C. L. Taylor, R. J. Schwarz. The anatomy and mechanics of the human hand. Artificial Limbs. 1955, 2:22~35.
    128 R. P. Difabio. Reliability of Computerised Surface Electromyography for Determining the Onset of Muscle Activity. Phys. Ther..1987, 67:43~48
    129 P. W. Hodges, B. H. Hui. A Comparison of Computer-based Methods for the Determination of Onset Muscle Contraction Using Electromyography. Electroencephalography and Clinical Neurophysiology. 1996, 101:511~519
    130 P. Bonato, T. D. Alessio, M. Knaflitz. A Statistical Method for the Measurement of Muscle Activation Intervals from Surface Myoelectric Signal During Gait. IEEE Transaction on Biomedical Engineering. 1998, 45:287~298
    131 G. H. Staude. Precise Onset Detection of Human Motor Responses Using a Whitening Filter and the Log~likelihood-ratio Test. IEEE Transaction on Biomedical Engineering. 2001, 48:1292~1305
    132 H. M. Teager, S M Teager. Evidence for Nonlinear Sound Reduction Mechanisms in the Vocal Tract. Kluwer Acad. Publ.. 1990:241~261
    133 X. Li, P. Zhou, A. S. Aruin. Teager-Kaiser Energy Operation of Surface EMG Improves Muscle Activity Onset Detection. Annals of Biomedical Engineering, 2007, 35(9):1532~1538
    134 M. Lidierth. A Computer based Method for Automated Measurement of the Periods of Muscular Activity from an EMG and its Application to LocomotorEmgs. Electroenceph.Clin. Neurophysiol., 1986, 64:378~380
    135 C. Paolini. Feature Extraction of Myoelectric Data. Technical Report, Department of Mathematical Sciences, San Diego Sate University. San Diego, CA, 1994.
    136 N. U. Uchida, A. Hiraiwa, N. Sonehara, et al. EMG Pattern Recognition by Neural Networks for Multi Fingers Control. The Annual International Conference of the Engineering in Medicine and Biology Society. Paris, France. 1992, 14:1016~1018
    137 K. A. Farry and I.D. Walker. Myoelectric Teleoperation of a Complex Robotic Hand. Proceeding of the 1993 IEEE International Conference on Robotics and Automation. Atlanta, GA .1993:502~509
    138 Ronager. Power Spectrum Analysis of EMG Pattern in Normal and Diseased Muscles. J. Neurol. Sci. 1989, 94(1-3):283~294
    139 E. Park. Fatigue Compensation of the Electromyographic Signal for Prosthetic Control and Force Estimation. IEEE Transaction on Biomedical Engineering. 1993, 40(10):1019~1023
    140胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计——小波分析.西安电子科技出版社. 2006:13~23
    141 I. T. Jolliffe. Principal Component Analysis. 2nd edition, Springer, 2002.
    142 T. Lissack and K. S. Fu. Error Estimation in Pattern Recognition via L-Distance between Posterior Density Functions. IEEE Trans. Inform. Theory. 1976, 22:34~45
    143 N. Cristianini, J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University Press, 2000.
    144 S. S. Keerthi, C. J. Lin. A Symptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Computation. 2003, 15 (7):1667~1689
    145 C. W. Hsu, C. J. Lin. A Comparison of Methods for Multi-Class Support Vector Machines. IEEE Transactions on Neural Networks. 2002, 13(2):415~425
    146王敬章.表面肌电信号检测分析系统及其在手指动作识别中的应用.清华大学硕士论文. 2005:18~19.
    147 G. Staude, C. Flachenecker, M. Daumer, et al. Onset Detection in Surface Electromyographic Signals: A Systematic Comparison of Methods. EURASIP Journal on Applied Signal Processing. 2001, 2:67~81
    148 A. W. Bowman, A. Azzalini. Applied Smoothing Techniques for Data Analysis. Oxford University Press, New York, 1997.
    149 K. Engleharta, B. Hudginsa, A. Chanb. Continuous Multifunction Myoelectric Control Using Pattern Recognition. Technology and Disability. 2003, 15:95~103
    150 Y. Wu, T. S. Huang. Hand Modeling, Analysis, and Recognition: For Vision-Based Human Computer Interaction. IEEE Signal Processing Magazine, 2001, 18(3):51~60
    151 J. Lee, T. Kunii. Model-Based Analysis of Hand Posture. IEEE Computer Graphics and Applications. 1995, 15(5):77~86
    152 T. Okada. Computer Control of Multijointed Finger System for Precise Object-Handling. IEEE Transactions on Systems, Man and Cybernetics. 1982, 12:289~299
    153 C. Melchiorri, G. Vassura. Mechanical and Control Features of the University of Bologna Hand Version 2. Proceedings of the 1992 lEEE/RSJ International Conference on Intelligent Robots and Systems. Raleigh, USA. 1992:187~193
    154 J. W. Li, H. Liu, H. G. Cai. On Computing Three-Finger Force-Closure Grasps of 2-D and 3-D Objects. IEEE Transactions on Robotics and Automation. 2003, 19:155~161
    155 H. Huang, L. Jiang, Y. Liu, et al. The Mechanical Design and Experiments of HIT/DLR Prosthetic Hand. IEEE International Conference on Robotics and Biomimetics. Kunming, China. 2006:896~901
    156 M. C. Carrozza, B. Massa, S. Micera, et al. The Development of a Novel Prosthetic Hand—ongoing research and preliminary results. IEEE/ASME Transactions on Mechatronics. 2002, 7(2):108~114
    157 K. Ito, M. Tsukamoto, T. Kondo. Discrimination of Intended Movements based on Nonstationary EMG for A Prosthetic Hand Control. The 3rd International Symposium on Communications, Control and Signal Processing. St. Julians, Malta. 2008:14~19
    158 R. O. Schmid. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans. Antennas Propagation. 1986, 34:276~280
    159 J. Platt. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, USA. 1999:41-65
    160 G. Hinton and T. J. Sejnowski. Unsupervised Learning. MIT Press, 1999.
    161 M. Asghari Oskoei and H. Hu. Manifestation of Fatigue in Myoelectric Signals of Dynamic Contractions Produced During Playing PC Games. Proc. of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Canada. 2008:315~318
    162 B. Scholkopf, J. Platt, J. Shawe-Taylor, et al. Estimating the Support of a High-Dimensional Distribution. Neural Computation. 2001, 13:1443~1471
    163 C. W. Hsu, C. C. Chang, and C. J. Lin. A Practical Guide to Support Vector Classification.[2010-5-27].http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
    164 B. Scholkopf, C. Burges, V. Vapnik. Extracting Support Data for a Given Task. First International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA. 1995:252~257
    165 D. Tax, R. Duin. Data Domain Description Using Support Vectors. Proceeding of European Symposium Artificial Neural Networks. Brussel, Belgium. 1999:251~256
    166 G. Cauwenberghs and T. Poggio. Incremental and Decremental Support Vector Machine Learning. Neural Information Processing Systems (NIPS 2000). Cambridge, MA, USA, MIT Press. 2001(13). [2010-05-28]. http://www.biology. ucsd.edu/~gert/papers/ nips00_inc.pdf
    167 N. A. Syed, H. Liu, K. K. Sung. Incremental Learning with Support Vector Machines. Proceedings of Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence. Stockholm, Sweden. 1999:272~276
    168 E. Osuna, R. Freund, F. Girosi. Improved Training Algorithm for Support Vector Machines. Proceedings of. Neural Networks in Signal Processing. Amelia Island, Florida USA. 1997:276~285
    169 T. Joachims. Making Large-Scale SVM Learning Practical. Advances in Kernel Methods- Support Vector Learning. MIT Press, Cambridge, MA, USA. 1998.
    170 T. F. Wu, C. J. Lin, and R. C. Weng. Probability Estimates for Multiclass Classification by Pairwise Coupling. J. Mach. Learn. Res., 2004, 5:975~1005
    171 B. B. Peng, Z. X. Sun, X. Y. Jin. Study of SVM-based Incremental Learning for User Adaptation in Multi_class Classification Environment. Journal of Nanjing University (Natural Sciences). 2004, 40(2):257~266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700