人体下肢运动力学分析与建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研制下肢假肢是为了改善残疾人的生活质量和促进医疗福利事业的发展,同时智能假肢也是机器人学和生物医学工程领域深受关注的研究方向。智能下肢假肢通过检测穿戴者的运动状态来控制假肢运动,从而提高步态的灵活性、协调性和安全性。我国下肢残疾者人数众多,国内在智能下肢假肢的研究水平上也明显落后于欧美发达国家,因此为肢体残疾人提供性能优良、价格低廉的假肢器械是残疾人事业发展的重要任务。
     人体下肢运动分析和建模是研究假肢的重要内容,本文紧密围绕国家自然科学基金资助项目“膝上假肢的运动力学信息获取与多运动模式控制方法研究(60705010)”,主要做了以下几个方面的工作:
     建立人体下肢运动生物力学信息获取系统,利用表面电极获取下肢运动肌电信号;利用多轴加速度传感器来检测大腿和小腿的倾角,获取肢体的姿态以及膝关节角度和角速度;下肢的脚与地面之间接触状态和作用力等信息采用足底安装压力传感器的方式检测。
     根据人体的结构和运动学的分析,建立人体下肢运动数学模型。比较动力学建模中通常采用的拉格朗日法、牛顿-欧拉法等的优缺点,选用拉格朗日建模方法,从系统能量角度出发构建人体下肢的动力学模型,并进行动力学分析,得到关节力矩。
     基于Matlab/SimMechanics仿真工具箱人体下肢运动系统建模,选取了平地行走、上坡、上阶梯三种不同的运动模式,每种运动模式下分为摆动期和支撑期两个阶段,建立相应的模型,以各关节的角位移、角速度、角加速度为输入,仿真得到各种运动模式下髋关节和膝关节力矩。在平地行走模式下,将求解拉格朗日方程所得到的关节力矩与Matlab/SimMechanics建模仿真所得的力矩进行比较,两者基本吻合,证明了建立的模型比较合理。
     运用数学统计方法对下肢运动参数进行分析,首先应用新阈值消噪方法对肌电信号进行消噪处理,用平均值法提取特征向量,利用回归分析的方法研究表面肌电信号与关节力矩之间的关系,通过数据分析,表明关节力矩与表面肌电信号近似成线性关系,在此基础上得出了关节力矩与表面肌电信号的表达式。运用回归分析中多项式拟合方法对力矩与时间的关系进行建模,得出了各种运动模式下关节力矩与时间的关系,为下肢假肢的控制方法研究提供了实验与理论的依据。
To improve the living quality and welfare benefits of amputees, researches have been made on lower limb prostheses, which is also an attentive research project in the fields of robotics and biomedical engineering. Intelligent lower limb prosthesis control the prosthetic movement by detecting the movement state of the wearer, thereby enhancing the flexibility of gait, coordination and security. As to the research progress, the level of domestic research has lagged behind developed countries in Europe and America, However, there are a good number of people with disabilities on lower limbs, Therefore, to provide high-performance and low-cost prosthetic devices for the disabled is the important task.
     The analysis and modeling of human lower limb is an important content of study of the prosthesis, The article closely around the National Natural Science Foundation-funded project (60705010) ,mainly doing the following areas:
     Human lower limb biomechanics information retrieval system is established, surface electrodes are used to obtain lower limb movement EMG; multi-axis acceleration sensor is used to detect the inclination of the thigh and calf, access to physical gestures as well as the knee angle and angular velocity; the plantar pressure sensor is used to detect Inter-contact state and force and other information between the foot and the ground.
     According to the human body structure and movement mechanics analysis, to make the mathematical model of human lower limb movement, As to the advantages and disadvantages of dynamic modeling method in the commonly used, including Lagrangian method, Newton-Euler law, Lagrangian modeling method is chosen, from the view of the system energy to build a dynamic model of human lower limb, and also dynamic analysis to gain the joint torques.
     Based on Matlab / SimMechanics simulation toolbox, to make the human lower limb motor system model, select flat walk, uphill and on the ladder three different sports modes, each sports mode is divided into swing phase and support phase two stages, the establishment of the corresponding model, angular, angular velocity, angular acceleration as input, a variety of hip, knee torque are gained as simulation of models. In the plains walking mode, the comparison of the torque derived from Lagrangian method solving equation and the torque derived from modeling and simulation Matlab /SimMechanics, they are similar, that establishment the reasonable of the model.
     The mathematical statistical methods are used for analysis of lower limb movement parameters, first EMG signal de-noised by the new threshold de-noising method, with the feature vector extracted by average method, the relationship between surface EMG and joint torque are analyzed, we found joint torque and surface EMG are approximate linear relationship, on this basis, expressing joint torque and surface relation. Using regression analysis polynomial fitting method to find the relationship between torque and time in a variety of exercise modes for the lower limb, all of these providing experimental and theoretical basis to the study of human lower limb control method.
引文
[1]刘志泉.我国肢体残疾人概况[J].中国康复医学杂志,2003,18(8):493-494.
    [2]王向东,刘学贞.动生物力学方法学研究现状及发展趋势[J].中国体育科技,2003;39(2):15-16.
    [3]王人成.假肢技术的研究热点及发展趋势[J].中国康复医学杂志,2005,20(2):483.
    [4]张更林,金宝士,张宇光.人体下肢假肢发展概况[J].佳木斯大学学报,2002,20(3):336-339.
    [5]谭冠政,吴立明.国内外人工腿研究的进展及发展趋势[J].机器人,2001,23(1):91-96.
    [6]王斌锐,徐心和.智能仿生腿的研究[J] .控制与决策,2004,19(2):122-127.
    [7] Scientists discover how to bent it like Beckham [Eb/OL].http://www.shef.ac.uk /p r/press_releases.html.
    [8] Moeinzadeh MH, Engin AE, Akkas N. Two dimensional dynamic modeling of human knee joint [J]. Journal of Biomechanical Engineering Transactions of the ASME,2003,20(2):129-143.
    [9] Tumer ST, Engin AE, Three-body segment dynamicmodel of the human knee[J].Journal of Biomechanical Engineering Transactions of the ASME,1993,19(2):13-14.
    [10] Richard A. The biomechanics and motor control of human gait[M].Ontario: University of Waterloo Press,1991:14-15.
    [11]王今越.国内运动生物力学发展现状思考[J].天津体育学院学报,2003,18(4):33-3.
    [12]刘小明,庄越挺,潘云鹤.基于模型的人体运动跟踪[J].计算机研究与发展,1999,36(10):1268-1273.
    [13]朱强,庄越挺,陈家实等.基于色块的人体运动跟踪[J].模式识别与人工智能,2001,14(4):486-452.
    [14] Pandy.M, Levine.W.S, An optimal control model for maximum-height human jumping[J]. Journal of Biomechanics , 2005, 12(3): 1185–1198
    [15]刘卫国,李强,刘学贞.跳板跳水的生物力学研究进展[J].运动人体科学,2006,25(4):63-65.
    [16]林嘉,陈小平.肌电与足底压力同步测量在对我国优秀速滑运动员蹬冰单步周期研究中的应用[J].天津体育学院学报,2006,21(3):201-204.
    [17] T. Spagele, A.Kistner, A.Gollhofer. Modeling,simulation and optimization of a human vertical jump[J].Journal of Biomechanics, 1999,5(5):521-530.
    [18]沈有道,鲍红光,蒋勇等.人—板方程初值条件与约束条件[J].山东体育学院学报,1995(2):30-33.
    [19]沈有道,蒋春林,蒋勇等.人—板系统模型基本运动方程[J].山东体育学院学报,1995(2):26-29.
    [20]李小珠.拉格朗日方程研究[J].韶关大学学报(自然科学版),1998,2(6):15-16.
    [21]杨以明.双足步行机器人仿真[D].清华大学硕士学位论文,2005.
    [22]郑秀媛等.现代运动生物力学第二版[M].北京:国防工业出版社,2007: 237-252.
    [23]袁士杰,吕哲勤.多刚体系统动力学[M] .北京理工大学出版社,1992:61-63.
    [24]覃正.多提系统动力学压缩建模[M] .科学出版社,2000:85-89.
    [25]梅品高.基于最优小波包肌电信号消噪[D].杭州电子科技大学硕士论文,2005.
    [26]张瑞红,王人成,金德闻,张济川.人体下肢表面肌电信号的检测和分析[J].清华大学学报(自然科学版),2000,40(8):73-76.
    [27]鹿麟,林凌,李刚.ADXL203型双轴加速计在倾斜度测量中的应用[J].新特器件应用,2007,7:61-64.
    [28] Anolg Devices, Inc. ADXL203 Data Sheet [DB/OL]. http://www.analog.com/UploadedFiles/Data_Sheets/ADXL103_203.pdf.2006.
    [29]彭涛,姚伯威.基于DSP的数字式MEMS加速度传感器ADXL203的设计与应用[J].微计算机信息,2006,22(10-2):308-309.
    [30]王岚,张今瑜,王劲松.人体步态相位检测实验研究[J].传感器与微系统, 2006, 25(5):42-44.
    [31] ]F. Pelisse, F. Marie, BouzidiD. Microcontroller Use For The Assistance Of A Prosthesis For Above-knee Amputees. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.1992,Vol.14:35-36.
    [32] J. D. Carlson, W. Matthis, J. R. Toscano. Smart prosthetics based on magnetorheological fluids[J]. Proceedings of SPIE.2001, Vol. 4332:308-316.
    [33]从德宏,徐心和.磁流变液智能假腿的摆动相控制[J].系统仿真学报,2006, 18(2):916-922.
    [34]王斌锐,谢华龙,高成,徐心和.含闭链异构双腿行走机器人动力学建模与求解[J].东北大学学报(自然科学版),2005,26(9):832-835.
    [35] Pratt J,Chew C C,Torres A,Dilwotth P, Pratt G. Virtual model vontrol:An intuitive approach for bipedal locomotion[J].The International Journal of RoboticsResearch.2001,20(2):129-143.
    [36]丁学恭.机器人智能控制研究[M] .浙江大学出版社,2006.
    [37]侯国柱.关节型机器人的结构设计及其运动学分析[D].内蒙古工业大学硕士论文,2007.
    [38]杨以明.双足步行机器人仿真[D].清华大学硕士学位论文,2005.
    [39]蔡自兴.机器人学[M] .清华大学出版社,2000:52-57.
    [40]袁士杰,吕哲勤.多刚体系统动力学[M] .北京理工大学出版社,1992:61-63.
    [41]覃正.多提系统动力学压缩建模[M] .科学出版社,2000:85-89.
    [42]黄永安,马路,刘慧敏.MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005:262-280.
    [43]马大勇,仝崇楼,龚小平等.基于SimMechanics摆式输送机构运动仿真[J].组合机床与自动化加工技术,2006(11):42-44.
    [44] Yuan Shaoqiang, Liu Zhong, Li Xingshan. Modeling and Simulation of Robot Based on Matlab/SimMechanics. Proceedings of the 27th Chinese Control Conference.2008:161-165.
    [45]卢德名,王云德,严波涛.运动生物力学测量方法[M] .北京体育大学出版社,2001:65-66.
    [46]杨广映,罗志增.小波变换在肌电信号预处理中的应用[J] .杭州电子科技大学学报,2005,25(1):14-17.
    [47]刘希强,周蕙兰等.基于小波包变换的滤波方法[J] .西北地震学报,1999,21(3):248-253.
    [48] CHANG S,KWON Y,YANG S,et al.Speech enhancement for non-stationary noise environment by adaptive wavelet packet [C]// Proceedings of IEEE International Conference on Acoustics.Speech:Signal Processing,2002:561-564
    [49] DONOHO D L,De-noising by soft–thresholding [J].IEEE Trans on Information Theory,1995,41(3):613-627
    [50]王黎明,陈颖,杨楠.应用回归分析[M].复旦大学出版社,2008:1-5.
    [51]闻新等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [52]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M].北京:科学出版社,2007:20-25.
    [53]朱大奇,史慧.人工神经网络原理及其应用[M].北京:科学出版社,2006:164-178.
    [54]郑德如.回归分析和相关分析[M] .上海人民出版社1984:10-13
    [55]贝达特,皮索尔合著;凌福根译.相关分析和谱分析的工程应用[M] .国防工业出版社,1983:15-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700