非等径垂直管道机器人控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道机器人的研究有着广泛的应用前景和社会需求,可以应用于石油、天然气、化工、核工业、楼宇等管道。因此,研究在非结构环境下,具有运行平稳、适应性强等特点的管道机器人具有重要的意义和研究价值。
     首先,针对管道机器人管内运动力学的有关问题进行了详细的分析研究,包括机器人的管内运动阻力、管径主动适应、牵引力与径向调节运动控制及电机选用等问题
     其次,结合机器人功能需求、机械系统特性和控制系统可行性分析,确定了基于“PC+DSP运动控制板+驱动器”的开放式控制系统总体设计方案。它将控制系统的规划+伺服闭环+放大器有层次、模块化地体现出来,在决策规划、任务分级控制、实时性等方面优势明显。
     根据控制系统的整体架构,设计了机器人控制系统的硬件平台,包括控制部件的选型和底层控制系统电路设计,并提出了模块化的软件设计思想,完成了上位机控制决策软件、DSP运动控制软件及RS485通信流程设计。
     针对机器人在管道中的弯道通过及其控制问题,在基于机器人在转弯过程中的阻力负载特性分析的基础上,提出了独立协调转弯的控制策略。
     最后,对管道机器人系统进行了相关实验,实验结果证明了机器人的硬件系统和软件系统的有效性,同时验证了管道机器人的各项运行指标基本达到任务要求。
The studies of in-pipe robots have broad application fields and social needs.In-pipe robots can be used to oil, gas, chemical, nuclear plant, building and so on. For this reason, research of mobile robots under unstructured environment which have the characteristics of running smoothly, and adaption has great significance and research values.
     First, some topics of in-pipe kinetic character of pipelinerobot are analyzed and discussed deeply, including its in-pipe moving resistant, radial adjusting capability.
     Then Considering robot function, mechanical characteristic and control system feasibility analysis, open control system general design scheme based on PC+DSP motion control board+motion driver is confirmed. It reveals the control system in aspects of planning, servo closed loop control and amplifier in a hierarchical and modular way, and has obvious advantages on strategy-making, hierarchically assignment-controlling and real-time performance.
     Hardware platform is designed according to hierarchical control characteristic, including selecting control unit and designing base control system circuit.Meanwhile, design ideas of modularized software is proposed, control strategy software of PC, motion control software and RS485 communication process of DSP are designed successfully.
     Aiming at the robot passing through elbow pipe steering control in pipeline,Based on the analysis of resistance load characteristics,the specifics of robot independent coordinated motion control strategy in typical arc elbow pipe is presented.
     Finally we make experiments of the mobile robot. The experiments prove that the hardware and software is competent for the robot and the mobile robot can fill for the request of the design.
引文
[1]毕德学,邓宗全.管道机器人[J].机器人技术与应用,1996,(06):12-14.
    [2]蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工,2000,11(1-2):58-60.
    [3]蔡自兴.机器人学的发展趋势和发展战略[J].中南工业大学学报,2000,31:1-9.
    [4]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [5]Schempf H.Mutschler E,Chemel B.Evolution of Urban Robotic System Developments[A].In IEEE/ASME International Conference on Advanced Intelligent Mechatronics,1999:389-694.
    [6]Akeel H A, Holland S W.Product and Technology Trends for Industrial Robots.In IEEE Inter.Conf.On Robotics and Automation,2000:696-700.
    [7]郑克宁.管道机器人的研制[D].浙江大学学位论文,2006.
    [8]Morimitsu T,Sakata H,Nomura Y.A Study on a vibrating bristled vehicle for small pipes[J].Transactions of the Japan Society of Mechanical Engineers,1987,53(489):1022-1027.
    [9]Morimitsu T, Sakata H,Tsujimura T.Driving mechanism for vibrating bristled vehicle for small pipes[J]. Transactions of the ASME,1988,110:86-91.
    [10]Morimitsu T,Sakata H.A Study of a vibrating bristled vehicle for small pipes[J].JSME International Journal,SeriesⅡ,1988,31(1):15-21.
    [11]http://mozu.mes.titech.ac.jp/research/mobile/thes/thes.html.
    [12]http://ais.gmd.de/projects/Makro/makro-engl/makro-e.html.
    [13]Bernhard Klaassen, Hermann Streich, Frank Kirchner, Erich Rome.Modeling, simulation, and control of a segmented inspection robot.
    [14]Scholl K U,Kepplin V,Berns K,Dillmann R.Controlling a multi-joint robot for autonomous sewer inspection.Robotics and Automation[A].2000.Proceedings.ICRA'00.IEEE International Conference on,Volume:2,24-28 April 2000,Pages:1701-1706 vol.2.
    [15]Ilg W,Berns K,Cordes S,Eberl M,Dillmann R. A wheeled multijoint robot for autonomous sewer inspection[A].Intelligent Robots and Systems.1997.IROS'97.,Proceedings of the 1997 IEEE/RSJ International Conference on,Volume:3,7-11 Sept.1997,Pages:1687-1693. vol.3.
    [16]Dipl.-Ing. Andreas Zagler.Refined Control for the Tube Crawling Robot.
    [17]Dipl.-Ing.Andreas Zagler.Joint Design and Sensors for a Pipe Crawler.
    [18]Zagler A, Pfeiffer F."MORITZ"a pipe crawler for tube junctions [A].Robotics and Automation,2003.Proceedings.ICRA'03.IEEE International Conference on,Volume:3,14-19 Sept.2003 Pages:2954-2959 vol.3.
    [19]Choi H R,Ryew S M.Robotic system with active steering capability for internal inspection of urban gas pipelines[J].Mechatronics,2002,16(12):713-736.
    [20]Sungmoo Ryew,Hyoukryeol Choi.Double Active Universal Joint(DAUJ):Robotic Joint Mechanism for Humanlike Motions[A].IEEE Transactions On Robotics and Automation, Vol.17,No.3,pp.290-300,2001.
    [21]Se-gon Roh,Hyoukryeol Choi,Proc.Strategy for Navigation Inside Pipelines with Differential-drive Inpipe Robot[A].IEEE Int.Conf.on Robotics and Automation,pp.2575-2580,2002.
    [22]http://www.nygas.org/publications/735-01.pdf.
    [23]http://www.taris.ru/e_index.html.
    [24]Ian Clarke.俄罗斯机器人管道检测装置[J].非开挖技术.2004,21(3-4).
    [25]Horodinca M,Dorftei I,Mignon E,et al.A simple architecture for in-pipe inspection robots[A].In:International Colloquium on Mobile and Autonomous Systems,2002:61-64.
    [26]龚进峰,袁商贤.履带式可变结构管道机器人及其双控制系统的研究[J].高技术通讯,2001,11(12):70-72.
    [27]姜生元,邓宗全.三轴差速器及其在管道机器人驱动系统中的应用研究[J].中国机械工程,2002,13(10):877-879.
    [28]毕德学,邓宗全.管道机器人[J].机器人技术与应用,1996,(6):12-14.
    [29]张永顺.国外微型管内机器人的发展[J].机器人,2000,22(6):506-513.
    [30]徐长龙,徐君书,徐得名.管道探测微机器人微波输能系统激励装置[J].上海大学学报(自然科学版),2000,6(5):403-407.
    [31]兰凤崇,陈吉清,王望玉.汽车垂直越障能力的计算及试验[J].汽车工程1997,19(2):116-120.
    [32]姜生元,邓宗全等.管内拖缆作业机器人拖线力计算方法研究[J].管道技术与设备.1999(5):39-41页.
    [33]姜生元.管内X射线探伤机器人技术及理论研究[D].哈尔滨工业大学工学博士学位论文.2001(5).
    [34]姜生元,陈明,邓宗全等.管内拖缆作业机器人拖线力计算方法研究[J].管道技术与装备,1999,(5):39-41.
    [35]郭凤,许冯平,邓宗全,彭敏.管道机器人弯道处驱动力研究[J].哈尔滨工业大学学报,2006,38(8):1264-1266.
    [36]陈美查,侯红伟.双履带行走机构对地附着力矩的研究[J].煤矿机电.1999.4(1):76-78.
    [37]maxon08/09手册[Z].2008.
    [40]段星光,黄强,李京涛等.多运动模式的小型地面移动机器人设计与实现[J].中国机械工程,2007,18(1):8-12.
    [41]欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究[J].机器人,2000,22(6):519-525.
    [42]宋坤,刘锐宁,李伟明.Visual C++开发技术大全[M].北京.人民邮电出版社.2007.
    [43]许春山,王建平,曹广益等.基于Visual C++6.0的机器人控制系统软件实现[J].计算机应用与软件.2003,5(10):12-14.
    [44]刘和平.TMS320LF240x DSP C语言开发应用[M].北京.北京航天航空大学出版社.2002.
    [45]王晓明,王玲.电动机的DSP控制—TI公司DSP应用[M].北京:北京航空航天大学出版社,2004.
    [46]Se-gon Roh and Hyouk Ryeol Choi,Differential-Drive In-Pipe Robot for Moving Inside Urban Gas Pipelines[A]. IEEE Transactions On Robotics, Vol.21, No.1, February pp.1552-30982005.
    [47]S.Dixon, C.Edwards, S.B.Palmer, A laser-EMAT system for ultrasonic weld inspection[J].Ultrasonics,37(4)(1999)273-281.
    [48]陈维山,赵杰.机电系统计算机控制[M].哈尔滨土业大学出版社.2001.7:57-58.
    [49]http://www.dowcorning.com.cn/zh_CN/content/rubber/rubberprop/mech_friction. asp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700