水声综合测控系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声跟踪定位、导航以及水声通信是水声系统的基础应用领域,在海洋科学领域应用广泛,但将水声精确跟踪定位、导航和水声通信融为一体的应用尤有重要价值。我国某试验场原有的水声跟踪定位、导航和通信系统都是单独工作的,其功能比较单一,多系统共同作业时,还会经常出现不能兼容工作的问题,且海上试验过程中目前还难于实现对水下航行目标的指挥通信功能,因此,难以满足试验使用需求。本文针对某海上试验场的大型水声综合测控系统装备预研项目的立项要求,结合我国大陆架延伸距离远、试验海域离岸远的特点,在分析研究了相关技术的基础上,研究了基于浮标式活动阵元的具有水下多目标跟踪、导航和试验指挥水声通信功能的水声综合测控系统体系。着重研究了低速率高清晰度指挥语音水声通信技术、系统定位精度校验技术、浮标水下阵元坐标测量校准技术、水声通信与跟踪导航系统整合等关键技术。
     讨论了采用可折叠式多功能浮标实现多目标水声跟踪定位、水声导航和水声通信功能的系统整合技术,并对可将水声定位、跟踪监测、水下导航和水声通信相结合的水声及无线电通信传输协议、系统的声兼容等技术进行了研究探讨。其中水声定位精度校验技术、精确自定位可折叠式浮标结构和低速率高清晰度指挥语音水声通信技术是系统研究的独特之处,使系统可以实现大范围、多目标高精度跟踪定位、导航和高清晰度指挥语音水声通信功能。
     在水声精确定位方面,从定位数据处理方法入手,分析研究了影响系统定位误差的相关因素,研究了自带短基线组合定位功能的浮标阵元水下精确自定位及校准技术和平均声速精确测量技术,并结合同步测时技术来提高系统定位精度的方法,还对系统定位精度和浮标水下阵元的定位精度进行了仿真研究。
     在指挥通信方面,概要地分析比较了国内外相关水声及无线电数据通信体制及其技术发展状况,研究了基于多媒体信息代码转换的极低速率高清晰度指挥语音水声通信方法。通过对文字及语音等信息的联合编码和解码,可将复杂的语音水声通信转变成简单的水声代码传输。另外,对时频编码水声通信技术和基于扩频水声通信的语音信息代码传输技术也进行了理论探讨和海上试验研究。
     系统定位精度海上校验方面,研究了水下位置基准建模方法,研制了水声定位精度标定系统,并进行了陆上和海上应用试验测试,验证了该方法的有效性。
     最后,通过对浮标阵元自定位精度、系统定位精度的实验室仿真,以及通过对模拟目标的标准位置陆上校验、文字及其语音联合编码水声通信海上试验,证实主要关键技术的解决方法合理可行,理论与仿真及海试结果合理地一致,应用这些技术能实现该水声综合测控系统所需的功能和技术要求。
Underwater acoustic positioning, navigating and communicating are the basic applications of underwater system and widely used in ocean science field. But it is a more valuable application to combine underwater acoustic positioning, navigating and communicating. Original underwater acoustic positioning, navigating and communicating systems worked separately, had simplex function and low precision. When multi-system worked together, they usually cannot work compatibly with each other. Further more, they cannot perform commanding and communicating function to the underwater target during sea test and cannot meet the requirement of the test range. In order to meet the prestudy need of the large hydroacoustic synthetic measurement and control system of a test range of our country, considering the characteristics of long continental shelf and long distance from test sea area to coast, on the basis of analyzing and researching several correlative technologies, this paper lays emphasis on analysis of such key technologies as high definition command speech underwater acoustic communication at low bit rate, system positioning precision verify, array element coordinate measuring calibration, integration of underwater acoustic communication and navigation system etc, brings forward a general design philosophy about comprehensive underwater acoustic measurement and control system, which, based on active array element of buoyage, can perform the functions of underwater multi-target tracking, navigation and test commanding and underwater acoustic communication.
     The system conformity technologies are discussed, which adopted folding multifunction buoy to carry out multiobjective underwater acoustic positioning, navigating and communicating. By discussing such technologies as underwater acoustic and wireless communication protocol and system sound compatibility which are combined with underwater acoustic positioning, tracing and navigation, and underwater acoustic communication, a new underwater acoustic system is put forward. What is unusual in the system design is the accoustic positioning accuracy verifying technique, the self positioning buoyage structure and low rate but high definition command speech underwater acoustic communicating technology, which can realize large-scale and multi-target tracking and positioning with high accuracy, accurately navigating for underwater targets and high definition command speech communication.
     For the underwater acoustic positioning, beginning from the positioning data processing method, this paper analyzes and researches the correlative factors which influences system positioning error, brings forward a technology of buoyage array element underwater exactly self-positioning and calibration with short baseline combination positioning function, in which the average sound velocity is taken place by equivalent one measured practically, by combining with synchronization measuring technology, the positioning precision is improved, and the system dynamic positioning precision verifying technology on the sea is analyzed and researched.
     For the communication, domestic system and developing status of correlative underwater acoustic technology and wireless communication technology were briefly compared with abroad ones, a high definition command speech underwater acoustic communication method at very low rate is proposed. By researching on coding and decoding multimedia information of character and voice, the complicated sound underwater acoustic communication is turned into simple underwater acoustic code transfer. In addition, time frequency coding underwater acoustic communication technology and spread spectrum underwater acoustic communication were also discussed theoretically and researched by the test at sea.
     For the system positioning accuracy verifying, underwater position reference modeling method was reseached. An underwater acoustic positioning calibration system was developed. It's performance test on land and on the sea was carried out, and the results prove the efficiency of the method.
     Finally, through the laboratory emulation of buoyage array element self-positioning and system positioning precision, land verification of simulative targets' accurate position, sea test of united coding of message and voice, the main key technologies and solving method are proved to be reasonable and feasible, theoretical value, emulation value and test result coincide well. These technologies can realize the function and request of underwater acoustic comprehensive measure and control system.
引文
[1]尤立克著,洪申译.声学原理.哈尔滨船舶工程学院出版社,1990:1-9页
    [2]Underwater tracking ranges for weapon evaluation.Thorn EMI Company.1988:233-236P
    [3]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社,2004:247-261页
    [4]生雪莉.被动式三维水声定位技术研究.哈尔滨工程大学硕士学位论文,2001:6-7页
    [5]U.S.naval underwater ordnance station.Underwater Technology,Nov.1963:24-25P
    [6]Underwater missile and torpedo test evaluation.Missiles and Rockets,May.1957:122-125P
    [7]Torpedo launching range.Ocean'80:316-318P
    [8]Underwater tracking ranges for weapon evaluation.Thorn EMI Company.1988:233-236P
    [9]Time delay estimation for passive sonar signal processing.IEEE Trans.Vol.ASSP-29,No.3,Mar.1981
    [10]Portable deep underwater tracking systems.Ocean'72:447-450P
    [11]Portable acoustic tracking system(PATS).Thorn EMI Electronics Limited.1988:448-450P
    [12]Special issue on positioning,localization,and tracking.IEEE Journal of Oceanic Engineering.Vol.OE-8,No.3.June.1983:110-112P
    [13]殷冬梅.无线电水声浮标阵多目标跟踪定位系统.哈尔滨工程大学博士学位论文.2003:25-40页
    [14]http://www.kongsberg-simrad.com
    [15]News Oceano.www.ixsea-oceano.com/news/20020125.html.
    [16]Posidonia-Transponder User's Manual www.oceano.co.uk/tech.
    [17]李启虎.水声信号处理领域若干专题研究进展.应用声学.2001, Vol.20(1):1-5页
    [18]2003高技术发展报告.科学出版社,2003:195-197页
    [19]美海军应用水下全球定位系统技术.www.gischina.com.
    [20]Time delay estimation for passive sonar signal processing.IEEE Trans.Vol.ASSP-29,No.3,Mar.1981
    [21]An overview on the time delay estimate in active and passive systems for target localization.IEEE Trans,Vol.ASSP.29,No.3,1981:7P
    [22]Passive source tracking using sonar time delay data.IEEE Trans,Vol.ASSP.29,No.3,1981:22-26P
    [23]A parameter estimation approach to time delay estimation.IEEE Trans,Vol.ASSP-20,No.6,1984:6P
    [24]Solutions for DP Reference.http://www.sonardyne.co.uk/products
    [25]http://www.levin.com.cn/firm/sonardyne.htm
    [26]Solutions for DP Reference.www.sonardyne.co.uk/dp.htm.
    [27]http://www.levin.com.cn/firm/sonardyne.htm
    [28]Ultra-Short Baseline Acoustic Reference.Sonardyne Navigation Systems.
    [29]Aleksandar Dogandzic and Arye Nihorai,Space-Time Fading Channel Estimation and Symbol Detection in Unknown Spatially Correlated Noise,IEEE Transactions on Signal Processing,2002,50(3):457-474P
    [30]刘孟庵,连立民编著.水声工程.浙江科学技术出版社,2002
    [31]Fabienne Proree,Thierry Chonavel,Thierry Terre,Multipath Time-Delay Detection and Estimation for Ocean Acoustic Tomography:A Bauesian Approach:1587-1590P
    [32]李启虎.声呐信号处理引论.第2版.海洋出版社,2000
    [33]樊昌信等编著.通信原理.国防工业出版社,2001
    [34]Marvin K.Simon,Jim K.Omura等编著.扩频通信技术教程.人民邮电出版社,2002
    [35]Jone G.Proakis著.张力军,张宗橙等译.数字通信.第4版.电子工业出版社,2003
    [36]Lester R.LeNlanc and Pierre-Philippe J.Beaujean,Spatio-Temporal Processing of Coherent Acoustic Communication Data in Shallow Water,2000,IEEE:40-51P
    [37]Simon Haykin著.通信系统.第4版.电子工业出版社,2003.
    [38]G.B.Henderson,A.Tweedy,G.S.Howe,O.Hinton,A.E.Adams,Investigation of Adaptive Beamformer Performance and Experimental Verification of Applications in High Fata Digital Underwater Communications,1994.IEEE,I-296-I-301P
    [39]张贤达,保铮著.通信信号处理.国防工业出版社,2000
    [40]殷敬伟.多途信道中Pattern时延差编码水声通信研究.哈尔滨工程大学博士学位论文.2007:8-10页,18-39页
    [41]冯建利.FH/DS混合扩频技术在水声通信重的应用研究.西北工业大学硕士学位论文.2007:1-3页
    [42]张玉良等.高速数字水声通信系统的研究.声学与电子工程.2002年第4期:6-12页
    [43]Benoft Geller,Vitttorio Capellano,Jean-Marc Brossier,Abderrnhman Essebbar,and Gene Vieve Jourdain.Equalizer for Video Rate Transmissions.IEEE Journal of Oceanic Engineering,1996,21(2):150-155P
    [44]Geller,J.M Brossier,V.Capellano,Equalizer for High Data Rate Transmission in Underwater Communications,Proc.of Oceans IEEE,1994:302-306P
    [45]Georgios B.Giannakis,Highlighs of Signal Processing for Communications,IEEE Signal Processing Magazine,Match 1999:14-50P
    [46]Lee Freitag,Milica Stojanovic,Sandipa Singh,and Mark Johnson,Analysis of Channel Effects on Direct-Sequence and Frequency-Hopped Spread-Spectrum Acoustic Communication,IEEE Journal of Oceanic Engineering,2001,26(4):586-593P
    [47]R.A.Scholtz,"The Origins of Spread-Spectrum Communications",IEEE TRANSACTIONS ON COMMUNICATIONS,VOL.COM-30,NO.5,MAY 1982:822-854P
    [48]R.L.Pickholtz,D.S.Schilling,and L.B.Milstein,"Theory of Spread-Spectrum Communications-A Tutorial," IEEE TRANSACTIONS ON COMMUNICATIONS,VOL.COM-30,NO.S,MAY 1982:855-884F
    [49]杨倬.基于扩频技术的水下通信技术研究.西北工业大学硕士学位论文.2006:3-4页.
    [50]J.Fischer,K.Bennett,S.Reible,J.Cafarella,and J.Yao,"A high rate underwater acoustic data communications transceiver," in Proc.OCEANO'92,Newport,RI,Oct.1992:571-576P
    [51]Ethem.M.Sozer,Milica Stojanovic,and John G.Proakis."Underwater Acoustic Networks" Oceanid Engineering,IEEE Journal of Volume 25,Issue 1,Jan.2000:72-83P
    [52]Tsimenidis,C.C.;Hinton,O.R.;Adams,A.E.;Shari,B.S."Undrewater acoustic receiver employing direct-sequence spread spectrum and spatial diversity combining for shallow-water multiaccess networking," Oceanic Engineering,IEEE.journal Volume 26,Issue 4,Oct.2001:594-603P
    [53]M Fink,C Prada,F Wu,D Casserean.Self focusing in inhomogeneous media with "time reversal" acoustic mirrors.IEEE Ultrason.Syrup.,1989,2:681-686P
    [54]M Fink.Time reversal of ultrasonic fields-Part Ⅰ:Basic principles.IEEE Trans.Ultrason.,Ferroelec.,Freq.Contr.,1992,39(5):555-566P
    [55]F Wu,J-L Thomas,M Fink.Time reversal of ultrasonic fields-Part Ⅱ:Experimental results.IEEE Trans.Ultrason.,Ferroelec.,Freq.Contr.,1992,39(5):567-578P
    [56]M Fink.Tune reversed acoustics.Scientific American,1999,9:91-97P
    [57]N Chakroun,M Fink,F Wu.Time reversal processing in nondestructive testing.IEEE Trans.Ultrason.,Ferroelec.,Freq.Contr.,1995,42(6):1087-1098P
    [58]N Charkroun,M Fink,F Wu.Ultrasonic nondestructive testing with Time Reversal Mirrors.IEEE Ultrasonic Syrup.,1992,2:809-814P
    [59]N Charkroun,F Wu,M Fink.Improvement of time reversal mirror in detection of small cracks and metallurgical defects in sample with ultrasonic speckle noise level. IEEE Ultrasonic Symp., 1993,2: 705-710P
    [60] J-L Thomas, F Wu, M Fink. Self focusing on extended objects with time reversal mirror, applications to lithotripsy. IEEE Ultrasonic Symp., 1994, 3:1809-1813P
    [61] J-L Thomas, M Fink. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy.ffiEE Trans. Ultrason., Ferroelec, Freq. Contr., 1996,43(6): 1122-1129P
    [62] P Roux, M Fink. Vorticity measurements with an acoustic time-reversal mirror. ffiEE Ultrasonic Symp., 1996,2:1249-1254P
    [63] M Fink. Time reversal and phase conjugation with acoustic waves: industrial and medical applications. ffiEE Lasers and lectro-Optics Conf., 2005, 3:2334-2335P
    [64] Fink, M. Time reversal and phase conjugation with acoustic waves:ndustrial and medical applications. ffiEE Conference on Lasers and Electro-Optics, 2005,3: 2334-2335P
    [65] S Catheline, M Fink. Acoustic source localization model using in-skull reverberation and time reversal. Applied Physics Letters, 2007, 90(6):063902.1-063902.3P
    [66] Kuperman W A, Hodgkiss W S, Hee Chun Song, et al. Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror. J.Acoust. Soc. Am., 1998,103(1): 25-40P
    [67] H C Song, W A Kuperman, W S Hodgkiss. A time-reversal mirror with variable range focusing. J. Acoust. Soc. Am., 1998,103(6): 3234-3240P
    [68] W S Hodgkiss, H C Song, W A Kuperman. A long-range and variable focus phase-conjugation experiment in shallow water. J. Acoust. Soc. Am., 1999,105(3): 1597-1604P
    [69] H C Song, W A Kuperman, W S Hodgkiss, et al. Iterative time reversal in the ocean. J. Acoust. Soc. Am., 1999,105(6): 3176-3184P
    [70] Seongi Kim, G. F Edelmann, W A Kuperman, et al. Spatial resolution of time-reversal arrays in shallow water. J. Acoust. Soc. Am., 2001, 110(2): 820-829P
    [71]Seongil Kim,W A Kuperman,W S Hodgkiss,et al.Robust time reversal focusing in the ocean.J.Acoust.Soc.Am.,2003,114(1):145-157P
    [72]H Song,W A Kuperman,W S Hodgkiss,et al.Demonstration of a high-fTequency acoustic barrier with a time-reversal mirror.IEEE J.Oceanic Eng.,2003,28(2):246-249P
    [73]W J Higley,Philippe Roux,W A Kuperman,et al.Synthetic aperture time-reversal communications in shallow water Experimental demonstration at sea.J.Acoust.Soc.Am.,2005,118(4):2365-2372P
    [74]H C Song,W S Hodgkiss,W A Kuperman,et al.Spatial diversity in passive time reversal communications.J.Acoust.Soc.Am.,2006,120(4):2067-2076P
    [75]Daniel B.Kifoyle and Arthur B.Baggeroer,The State of the Art Underwater Acoustic Telemetry,IEEE Journal of Oceanic Engineering,2000,25(1):4-26P
    [76]乔钢.基于矢量传感器的水声通信技术研究.哈尔滨工程大学博士学位论文.2004:2-8页
    [77]梁南元.书面汉语自动分词系统-CDWS.中文信息学报.1987,2:101-106页
    [78]秦文,苑春法.基于决策树的汉语未登录词识别.中文信息学报.2003年,第18卷第1期
    [79]Fuchun Peng,Fangfang Feng,Andrew McCallum,Chinese Segmentation and New Word Detection using Conditional Random Fields.In Proceedings of COLING:562-568P
    [80]Gob,Chooi-Ling,Masayuki Asahara,and Yuji Matsumoto.2004.Chinese Word Segmentation by Classification of Characters.In Proceedings of Third SIGHAN Workshop.
    [81]王思力.面向大规模信息检索的中文分词技术研究.中国科学院研究生院硕士学位论文.2006:9-21页
    [82]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术.西安电子科技大 学出版社,2004:1-6,109-113页
    [83]王亥,胡健栋.Logistic-Map混沌扩频序列.电子学报.1997,25(1):19-23页
    [84]王海斌,吴立新.混沌调频M-ary方式在远程水声通信中的应用.声学学报.2004,29(2):161-166页
    [85]江南,黄建国等.实时广义相关时延估计器.同济大学学报.2002,30(10):1277-1280页
    [86]孙进才,朱维杰等.基于信号相位匹配原理的广义相关时延估计.自然科学进展.2005,15(1):103-109页
    [87]Champagne B,Eizenman M,Champagne B,et al.Exact maximum likelihood time delay estimation.IEEE Transactions,1989(4):2633-2636P
    [88]陈华伟,赵俊渭,郭业才.一种频域自适应最大似然时延估计算法.系统工程与电子技术.2003,25(11):1355-1357,1361页
    [89]G.Clifford Carter.Ocean effects on time delay estimation requiring adaptation.IEEE J.Oceanic Eng.,1993,18(4):367-378P
    [90]P C Ching,H C Song.Two adaptive algorithms for multipath time delay estimation.IEEE J.Oceanic Eng.,1993,19(3):458-463P
    [91]蔡惠智,李启虎.自适应滤波技术在水声信号处理中的应用.应用声学.1993,12(2):14-18页
    [92]王劲林,李启虎.自适应滤波器在时延估计中的应用-广义二次内插时延估计法.声学学报.1992,17(3):208-216页
    [93]Hinich M J,Wilson G.R.Time delay estimation using the cross bispectrum.IEEE Transactions on Signal Processing,1992,40(1):106-113P
    [94]Guetbi C,Kouame D,Ouahabi A,Chemla J P.Methods based on wavelets for time delay estimation of ultrasound signals.IEEE International Conference on Electronics,Circuits and Systems,1998(3):113-116P
    [95]行鸿彦,刘照泉等.基于小波变换的广义相关时延估计算法.声学学报.2002,27(1):88-93页
    [96]惠俊英编著.水下声信道.国防工业出版社,1992:13-26,30-55页
    [97]丁士圻.对水下目标的大地坐标测量.海洋工程.1996,2:23-29页
    [98]定位标定系统定位精度分析报告.中科院声学所东海站,2007
    [99]梁国龙,惠俊英,常明.瞬时频率序列及其低阶矩的应用研究.声学学报.1995,20(4):28-288页
    [100]倪维桢.语音编码综述.江苏通信技术,2000,16(2):1-4页
    [101]李军林等.高质量的0.8kb/s声码器算法.清华大学学报(自然科学版).2003,43(1):12-15页
    [102]王洪,唐凯.低速率语音编码.国防工业出版社,2006:45页
    [103]韩纪庆等.语音信号处理.清华大学出版社,2004:18页
    [104]张建伟等.高质量的0.6kb/s声码器算法.清华大学学报(自然科学版).2003,43(4):449-452页
    [105]张科.多次Hash快速分词算法.计算机工程与设计.2007,28(7):1716-1718页
    [106]刘来暘等.基于变长编码集合扩展的中文文本压缩算法.北京理工大学学报.2001,21(4):480-484页
    [107]华强.中西文文本压缩的LZWCH算法.计算机工程与应用.1999,3:22-35页
    [108]王忠效,范植华.动态字母表算术编码.软件学报.2001,12(2):283-292页
    [109]Fuchun Peng,Fangfang Feng and Andrew McCallum.Chinese segmentation and new word detection using conditional random fields.In:COLING 2004:562-568P
    [110]李培峰等.多文种环境下汉字内码识别算法的研究.中文信息学报.2004,18(2):73-79页
    [111]王礼广等.多叉树Huffman算法.南华大学学报(自然科学版).2004,18(4):29-48页
    [112]王忠效.汉语文本压缩研究及其应用.中文信息学报.11(3):57-64页
    [113]杨震,毕厚杰.语音信号的数字压缩技术与标准.上海交通大学学报.1998,32(4):114-120页
    [114]张继东,郑宝玉.语音压缩编码标准.通信技术.2002,125(5):8-9页
    [115]梁国龙,惠俊英.瞬时频率方差检测器(VIFD)及其性能评价.声学学报.1999,24(2):183-190页
    [116]W.Manners.Hydrodynamic force on moving circular cylinder submerged in a genenal fluid flow Cylinders.Proceedings:Mathmatic and Physical Sciences.Vol.438,No.1903(Aug.8,1992):331-339P
    [117]W.Manners,R.C.T.Rainy.Hydrodynamic force on fixed submerged cylinders.Proceedings:Mathmatic and Physical Sciences.Vol.436,No.1896(Jan.8,1992):13-32P
    [118]Trumars J.M.V.,Tarp-Johansen Niels Jacob,Krogh Thomas.(2005) The effect of wave modelling on offshore wind turbine fatigue loads.Proceedings of Copenhagen Offshore Wind 2005,October 26-28,2005,Copenhagen,Denmark.
    [119]叶春生,沈国光.海洋内波对小尺度圆柱体作用力的分析与计算.天津大学学报.38(2005)(2):102-108页
    [120]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海交通大学出版社,1992:37-56页
    [121]李孟国.用波浪弥散关系确定波长的方法.中国港湾建设.2002,(6):33-34页
    [122]黄锡荃.水文学.高等教育出版社,1993:166-172页
    [123]刘德辅,王超,林欣.波浪力系数Cd、Cm的不确定性分析.中国造船.1991,(2):29-37页
    [124]单辉祖.材料力学(Ⅰ).高等教育出版社,1999:308页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700