微波多通带滤波器的综合与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代通信的快速发展,WCDMA、WLANs等新技术层出不穷。无线通信系统对多通带滤波器的需求也越来越多。由于现代通信系统应用频段均聚集在射频及微波频段的低频段,这使得频谱资源特别拥挤,多频段通信的重要地位日益凸显。在多频通信系统中应用多通带滤波器能够有效地减少整个系统设备的体积和整体电路的复杂度,从而达到简化系统、降低设备造价成本的目的,因此研究多通带滤波器的设计理论具有极为重要的意义。
     本文主要从滤波器的综合理论和结构分析两个方面研究了多通带滤波器的设计,在如何实现多通带滤波器的小型化及高带外抑制度方面进行了自己的研究工作。使用各种结构形式,如开口谐振环(包括微带开口谐振环、缺陷地开口谐振环、缺陷开口谐振环)、加载枝节谐振器(包括加载开路、短路、SIR枝节)等去设计多通带滤波器。本文的工作主要包括以下几个方面:
     1.系统的研究了双通带滤波器的频率变换法,在此基础上推导了三通带滤波器的频率变换法。在给出基于频率变换法的双、三通带滤波器等效电路的同时,还给出了实现等效电路所需的腔间耦合系数、外部Q值等参数的求解公式。为了证明综合理论的正确性,给出了电路模型设计实例以及由等效电路得出的多通带滤波器理想频率响应。
     2.系统的研究了加载开路、短路、SIR枝节的谐振器的特性。对加载枝节的谐振器的谐振特性及相关的耦合特性也进行了详细的分析,基于三种加载枝节谐振器分别设计了双、三通带滤波器,通过零度馈电、使用双平行馈线等方法在带外引入传输零点,使这些滤波器在实现了多通带响应的同时还具有小型化、高带外抑制的优点。
     3.基于对双、三通带频率变换法理论的分析,用微带、SIW形式设计了多通带滤波器实例。通过引入交叉耦合、加载开路枝节提取零点等方法,在实现多通带滤波器响应的同时引入了传输零点,提高了带外抑制度。用一种新型的奇偶模耦合可控的双模谐振器去代替频率变化法拓扑结构中的双通带谐振模块(包含两个并联谐振腔),将谐振腔的整体个数减少了一半,可以大大减小滤波器整体尺寸,达到小型化的目的,同时基于频率变换法设计的双模双通带滤波器有综合理论的指导,可以减少设计的盲目性和仿真的复杂度。
     4.系统的研究了开口谐振环(Split-ring resonator, SRR)的谐振特性,这里的开口谐振环包括了微带开口谐振环及地面缺陷开口谐振环。提出了长度可控微带开口谐振环(Controllable-length split-ring resonator, CLSRR)和折叠缺陷地开口谐振环(Folded defected ground structure split ring resonator,FDGS SRR)两种结构形式的谐振器。通过详细分析两种谐振器的谐振特性以及不同耦合结构(电、磁、混合耦合)下的特性,利用CLSRR和FDGS SRR设计了不同的多通带滤波器
     5.相对于刻蚀在地板上的FDGS SRR,提出了刻蚀在微带上表面的折叠缺陷开口谐振环(Folded defected structure split ring resonator,FDS SRR),基于对FDSSRR谐振器的理论分析,给出了其等效电路模型。研究了加载FDS SRR的SIW谐振单元的谐振特性,并详细分析了两个加载FDS SRR的SIW谐振单元的耦合特性。应用这种FDS SRR和SIW相结合的谐振单元设计了具有小型化特性的SIW带通滤波器,在此基础上,应用半模理论对其进行改进,分别设计了体积减小约一半的半模SIW带通滤波器、双通带滤波器。
Recently, the rapid development in wireless communication has created a largedemand of filters with multi-band response in the modern wireless communication, suchas the wireless code-division multiple-access(WCDMA), wireless local areanetworks(WLANs) and so on. In multi-band communication systems, multi-band filterscan reduce the volume and mass of the circuit, make the system simple and decrease themanufacture cost. Therefore, it is significant to investigate the theory on designingmulti-band microwave filters.
     Based on the analysis of synthesis method and structure for multi-band microwavefilters, such as, defected ground structure split ring resonator(DGS SRR), foldeddefected structure split ring resonator(FDS SRR), resonators with stub loaded and soon. Some multi-band filters working at the wireless communication band are designed.The main contributions of this paper are how to achieve the miniaturization and highout-of-band suppression of multi-band filters. The author’s work mainly consists of:
     1. Systematically study on the frequency transformation for dual-band filters, basedon which the frequency transformation for triple-band filter is presented. Both of theequivalent circuits are constructed。The coupling coefficients and external qualityfactors for analytical equations are derived. Based on the proposed synthesis theory,several examples of theoretical filter equivalent circuits and examples of theoreticalfrequency responses are also presented.
     2. Systematically study on the resonators with open stub, short stub, SIR stubloaded, respectively. Several novel types of dual-band and triple-band filters aredesigned based on the stub loaded resonator. The multi-resonance frequencies of theresonator with stub loaded are carefully studied and used to design multi-band filterswith high selectivity. The high out-of-band suppression filtering responses of themulti-band filters using stub-loaded resonators are achieved by introducing transmissionzeros with0-degree feed structure and dual parallel coupling feedline.
     3. Based on frequency transformation method, the theoretical design of multi-bandfilter is then realized by a group of multi-band resonators as the building block of thefilter. High out-of-band suppression filtering responses are achieved by cross-couplingand resonators with the different lengths open stubs loaded. A novel dual-moderesonator is used to replace the building block consisting of two common resonators.Due to the decrease in number of resonators, the size can be reduced by half. Thefrequency transformation method can reduce the complexity of simulation and avoid the blindness of design, when the dual-mode resonator is used to realize dual-band filter.
     4. Systematically study on the split ring resonator(SRR), which includingmicrostrip split ring resonator and defected ground structure split ring resonator(DGSSRR). Controllable-length split ring resonator(CLSRR) and folded defected groundstructure split ring resonator(FDGS SRR) are presented. The analysis on the resonantand coupling properties of the two resonators has been done. The coupling intensitybetween resonators with different position is analyzed. The coupling properties betweenresonators are firstly studied with the detail of position. Based on the analysis, themulti-band filters are designed by CLSRR and FDGS SRR.
     5. Respecting FDGS SRR, folded defected structure split ring resonator(FDSSRR) etched on the top surface of microstrip is presented. Based on the analysis of FDSSRR, the analytical equivalent-circuit models are proposed for the isolated and coupledFDS SRR. A substrate integrated waveguide(SIW) with FDS SRRs etched on thewaveguide surface is investigated. The application of this waveguide and FDS SRRcombination technique to the design of miniaturized SIW bandpass filters is improvedby half-mode theory. The method of filter design is verified. These proposed filtersexhibit high selectivity and compact size due to the employment of the FDS SRR.
引文
[1] R. J. Cameron, General coupling matrix synthesis methods for Chebychev filteringfunction, IEEE Trans. Microw. Theory Tech., Apr.1999,47(4), pp.433-442.
    [2] S. Amari, Synthesis of cross-coupled resonator filters using an analyticalgradient-based optimization technique, IEEE Trans. IEEE Trans. Microwave TheoryTech., Sep.2000,48(9), pp.1559-1564.
    [3] S. Amari, Direcy synthesis of folded symmetric resonator filters with source-loadcoupling, IEEE Microwave Wireless Compon. Lett., June.2001,11(6), pp.264-266.
    [4] R. Levy and Peter Petre, Design of CT and CQ filters using approximation andoptimization, IEEE Trans. Microwave Theory Tech., Dec.2001,49(12), pp.2350-2355.
    [5] G. Macchiarella, Accurate synthesis of inline prototype filters using cascadedtriplet and quadruplet sections, IEEE Trans. Microwave Theory Tech., July.2002,50(7), pp.1779-1783.
    [6] R. J. Cameron, A. R. Harish and C. J. Radcliffe, Synthesis of advanced microwavefilters without diagonal cross-couplings, IEEE Trans. Microwave Theory Tech., Dec.2002,50(12), pp.2862-2871.
    [7] R. J. Cameron, Advanced coupling matrix synthesis techniques for microwavefilters, IEEE Trans. Microwave Theory Tech., Jan.2003,51(1), pp.1-10.
    [8] J. Brian Thomas, Cross-coupling in coaxial cavity filters-A tutorial overview,IEEE Trans. Microwave Theory Tech., April.2003,51(4), pp.1368-1376.
    [9] R. J. Cameron, J.C. Faugere, F. Seyfert, Coupling matrix synthesis for a new classof microwave filter configuration, IEEE MTT-S Int. Microwave Symp. Dig., June2005, pp.119-122.
    [10] J. D. Rhodes and R. J. Cameron, Extractd pole filter, United States Patent, Nov.1982, Appl. No.:250,115.
    [11] R. J. Cameron, H. Gregg, C. J. Radcliffe and J. D. Rhodes, Extracted-pole filtermanifold multiplexing, IEEE Trans. Microwave Theory Tech., July.1982,30(7), pp.1041-1050.
    [12] S. Amari and U. Rosenberg, The doublet: A new building block for modulardesign of elliptic filters, in Eur. Microwave Conf., Sep.2002, vol.1, pp.405-407.
    [13] U. Rosenberg, S. Amari and J. Bornemann, Inline TM110-mode filters with highdesign flexibility by utilizing bypass coupling of nonresonating TE10/01modes,IEEE Trans. Microwave Theory Tech., June.2003,51(6), pp.1735-1742.
    [14] S. Amari and U. Rosenberg, New building blocks for modular design of ellipticand self-equalized filters, IEEE Trans. Microwave Theory Tech., Feb.2004,52(2),pp.721-736.
    [15] S. Amari and U. Rosenberg, Synthesis and design of novel in-line filters with oneor two real transmission zeros, IEEE Trans. Microwave Theory Tech., May.2004,52(5), pp.1464-1478.
    [16] S. Amari and G. Macchiarella, Synthesis of inline filters with arbitrarily placedattenuation poles by using nonresonating nodes, IEEE Trans. Microwave TheoryTech., Oct.2005,53(10), pp.3075-3081.
    [17] S. Amari and U. Rosenberg, New in-line dual-and triple-mode cavity filters withnonresonating nodes, IEEE Trans. Microwave Theory Tech., April.2005,53(4), pp.1272-1279.
    [18] S. Amauri, U.Rosenberg and Renbin Wu, In-line pseudoelliptic band-reject filterswith nonresonating nodes and/or phase shifts, IEEE Trans. Microwave Theory Tech.,Jan.2006,54(1), pp.428-436.
    [19] L. C. Tsai and C. W. Huse,“Dual-band bandpass filters using equal-lengthcoupled-serial-shunted lines and Z-transform techniques,” IEEE Trans. MicrowaveTheory Tech., Apr.2004, vol.52, no.4, pp.1111-1117.
    [20] C. Y. Chen, C. Y. Hsu, and H. R. Chuang,“Design of miniature planar dual-bandfilter using dual-feeding structures and embedded resonators,” IEEE Microw. Wirel.Compon. Lett., Dec.2006, vol.16, no.12, pp.669-671.
    [21] C. Y. Chen and C. Y. Hsu,“A simple and effective method for microstripdual-band filters design,” IEEE Microw. Wirel. Compon. Lett., May.2006,vol.16,no.3, pp.246-248,.
    [22] J. X. Chen, T. Y. Yum, J. L. Li, and Q. Xue,“Dual-mode dual-band bandpassfilter using stacked-loop structure,” IEEE Microw. Wirel. Compon. Lett., Sep.2006,vol.16, no.9, pp.502-504,.
    [23] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang and M. P. Houng,“A novel compact ring dual-mode filter with adjustable second-passband fordual-band applications,” IEEE Microw. Wirel. Compon. Lett., Jun.2006, vol.16,no.6, pp.360-362,.
    [24] S. Sun and L. Zhu,“Compact dual-band microstrip bandpass filter withoutexternal feeds,” IEEE Microw. Wirel. Compon. Lett., Oct.2005, vol.15, no.10,pp.644-646,.
    [25] S. F Chang, Y.-H. Jeng, and J. L. Chen,“Dual-band step-impedance bandpassfilter for multimode wireless LANs,” Electronics. Letters, Jan.2004, vol.40, no.1,pp.38-39,.
    [26]陈付昌,新型平面多频带滤波器研究,广州:华南理工大学博士论文,2010.
    [27] G. Macchiarella and S. Tamiazzo, Design techniques for dual-passband filters,IEEE Trans. Microwave Theory Tech., Nov.2005, vol.53, no.11, pp.3265-3271.
    [28] Giuseppe Macchiarella, Stefano Tamiazzo, Design Techniques for Dual-PassbandFilters, IEEE Trans. Microwave Theory Tech.,2005,53(11),3265-3271.
    [29] R. J.Cameron, M. Yu and Y. Wang, Direct-coupled microwave filters with singleand dual stopbands, IEEE Trans. Microw. Theory and Tech.,2005,53(11):3288-3279.
    [30] X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, Synthesis ofdual-band bandpass filters using successive frequency transformations and circuitconversions, IEEE Microw. Wireless Compon. Lett.,2006,16(3),110–112.
    [31] R. Levy, Generalized rational function approximation in finite intervals usingZolotarev functions, IEEE Trans. Microw. Theory Tech.,1970,18(12),1052–1064.
    [32] H. C. Bell, Zolotarev bandpass filters, in IEEE MTT-S Int. Microwave Symp. Dig.,Phoenix, AZ, May2001, pp.1495–1498.
    [33] J. Lee, M. S. Uhm, and I. B. Yom, A dual-passband filter of canonical structurefor satellite applications, IEEE Microw.Wireless Compon. Lett.,2004,14(6),271–273.
    [34] S. Holme, Multiple passband filters for satellite applications, in Proc.20th AIAAInt. Communications Satellite Systems Conf. and Exhibit, Montreal, QC, Canada,May2002, pp.1993–1996.
    [35] M. Makimoto,S. Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002.
    [36] S Sun and L Zhu, Compact dual-band microstrip bandpass filter without externalfeeds, IEEE Microw. Wireless Compon. Lett.,2005,15(10),644–646.
    [37]褚庆昕,微波网络讲义,西安:西安电子科技大学,1999.
    [38] S. Fu, B. Wu, J. Chen, S. J. Sun, C. H. Liang,“Novel Second-Order Dual-ModeDual-Band Filters Using Capacitance Loaded Square Loop Resonator”, IEEE Trans.Microwave Theory Tech.,2012,60(3),477-483.
    [39] J. T. Kuo, T. H. Yeh and C. C. Yeh, Design of microstrip bandpass filter with adual-passband response, IEEE Trans. Microw. Theory Tech.,2005,53(4),1331–1337.
    [40] Y. P. Zhang and M. Sun, Dual-band microstrip bandpass filter usingstepped-impedance resonators with new coupling schemes, IEEE Trans. Microw.Theory Tech.,2006,54,(10), pp.3779–3885.
    [41] X. Y. Zhang, J. X. Chen and X. Quan, Dual-band bandpass filter usingstub-loaded resonators, IEEE Microw. Wirel. Compon. Lett.,2007,17,(8),583–585.
    [42] P. Mondal and M. K. Mandal, Design of dual-band bandpass filters usingstub-loaded open-loop resonators, IEEE Trans. Microw. Theory Tech.,2008,56,(1),150–155.
    [43] H. M. Lee, C. R. Chen, C. C. Tsai and C. M. Tsai, Dual-band coupling and feedstructure for microstrip filter design, in IEEE MTT-S Int. Microw. Symp. Dig.,2004,3,1971–1974.
    [44] M. L. Chuang, Concurrent dual band filter using single set of microstrip open-loopresonators, Electron. Lett.,2005,41,1013–1014.
    [45] J. T. Kuo and H. S. Cheng, Design of quasi-elliptic function filters with adual-passband response, IEEE Microw.Wireless Compon. Lett.,2004,14,472–474
    [46] M. Q Zhou, X.-H Tang and F Xiao, Compact Dual Band Bandpass Filter UsingNovel E-Type Resonators With Controllable Bandwidths, IEEE Microw.WirelessCompon. Lett.,2008,18(12),779-781.
    [47] C. H Lee, C. I. G Hsu and H.K Jhuang, Design of a new Tri-band microstrip BPFusing combined quarter-wavelength SIRs, IEEE Microw. Wire. Compon. Lett.,2006,16,(11),594–596.
    [48] C. I. G. Hsu, C. H Lee, and Y. H. Hsieh, Tri-band bandpass filter with sharppassband skirts designed using tri-section SIRs, IEEE Microw. Wirel. Compon.Lett.,2008,18,(1),19–21.
    [49] Q. X. Chu and X. M. Lin, Advanced triple-band bandpass filter using tri-sectionSIR, Electron. Lett.,2008,44,(4),295–296.
    [50] F. C. Chen, Q. X. Chu, and Z. H. Tu,“Tri-band bandpass filter using stub loadedresonators,” Electron. Lett.,2008,44(12),747–749.
    [51] C. Quendo, E. Rius, A. Manchec, Y. Clavet, B. Potelon, J. Favennec and C.Person, Planar tri-band filter based on dual behavior resonator (DBR), in Proc.35th Eur. Microw. Conf., Oct.2005,269–272.
    [52] H. Zhang and K. J. Chen, A tri-section stepped-impedance resonator forcross-coupled bandpass filters, IEEE Microw. Wireless Compon. Lett.,2005,15(6),401–403.
    [53] D. Packiaraj, M. Ramesh and A. T. Kalghatgi, Design of a tri-section folded SIRfilter, IEEE Microw. Wireless Compon. Lett.,2006,16(5),317–319.
    [54] C. M. Tsai, S.Y. Lee, and C.C. Tsai, Performance of a planar filter using a0feedstructure, IEEE Trans. Microw. Theory Tech.,2002,50(10),2362–2367.
    [55] C. F. Chen, T. Y. Huang and R.-B Wu, Design of dual-and triplepassband filtersusing alternately cascaded multiband resonators’, IEEE Trans. Microw. TheoryTech.,2006,54,(9),3550–3558.
    [56] B. J. Chen, T. M. Shen and R. B. Wu, Design of Tri-Band Filters WithImproved Band Allocation,IEEE Trans. Microw. Theory Tech.,2009,57(7),1790-1797.
    [57] C. Y. Chen and C.-Y Hsu, A simple and effective method for microstrip dual-bandfilters design, IEEE Microw. Wireless Compon. Lett.,2006,16(5),246–248.
    [58] F. C. Chen and Q. X. Chu, Design of Compact Tri-Band Bandpass Filters UsingAssembled Resonators, IEEE Trans. Microw. Theory Tech.,2009,57(1),165-171.
    [59] M. H Weng, H. W. Wu, K Shu, J. R. Chen, R. Y. Yang and Y. K. Su, A noveltriple-band bandpass filter using Multilayer-based substrates for WiMAX, EuropeanMicrowave Conference, Oct.2007,325–328.
    [60]吴边,无线通信中微波滤波器的比较设计法与应用研究,西安:西安电子科技大学博士论文,2008.
    [61] B Wu, C. H. Liang, Q Li, and P. Y. Qin, Novel Dual-Band Filter IncorporatingDefected SIR and Microstrip SIR, IEEE Microw. Wirel. Compon. Lett.,2008,18(6),392–394.
    [62] J. Lee and K. Sarabandi, A synthesis method for dual-passband microwave filters,IEEE Transactions on microwave theory and techniques, Jun.2007, vol.55, no.6,pp.1163-1170.
    [63] J. Lee and K. Sarabandi, Synthesizing microwave resonator filters, IEEEMicrowave magazine, Feb.2009, pp.57-65.
    [64] J. Lee and K. Sarabandi, Design of triple-passband microwave filters usingfrequency transformations, IEEE Trans. Microwave Theory Tech.,, Jan.2008, vol.56, no.1, pp.187-193.
    [65] G. Macchiarella and S. Tamiazzo, Design techniques for dual-passband filters,IEEE Trans. Microwave Theory Tech.,, Nov.2005, vol.53, no.11, pp.3265-3271.
    [66] X. Guan, Z. Ma, P. Cai, et al, Synthesis of dual-band bandpass filters usingsuccessive frequency transformations and circuit conversions, IEEE Microw.Wireless Compon. Lett., Mar.2006, vol.16, no.3, pp.110-112.
    [67] A. S. Liu, T. Y. Huang and R. B. Wu,“A dual wideband filter design usingfrequency mapping and stepped-impedance resonators,” IEEE Trans. MicrowaveTheory Tech., Dec.2008, vol.56, no.12, pp.2921-2929.
    [68] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P.Houng,“A Novel Compact Ring Dual-Mode Filter With AdjustableSecond-Passband for Dual-Band Applications”, IEEE Microw. Wireless Compon.Lett., Volume16, No.6, June2006, Page(s):360-362
    [69] S. Luo, L. Zhu,“A Novel Dual-Mode Dual-Band Bandpass Filter Based on aSingle Ring Resonator”, IEEE Microw. Wireless Compon. Lett., Volume19, No.8,August2009, Page(s):497-499
    [70] C. Y. Chen, Cheng-Ying Hsu, and Huey-Ru Chuang,“Design of miniature planardual-band filter using dual-feeding structures and embedded resonators,” I IEEEMicrow. Wireless Compon. Lett., vol.16, no.12, Dec.2006,pp.669-671.
    [71] S. F. Chang, Y. H. Jeng, and J. L. Chen,“Dual-band step-impedance bandpassfilter for multimode wireless LANs,” Electron. Lett., vol.40, no.1,2004, pp.38–39.
    [72] G. L. Matthaei, L. Young, E. M. T. Jones,“Microwave filtersImpedance-matching networks and coupling structures,” New York: McGraw-Hill,1964.
    [73] S. B. Cohn,“Direct Coupled Cavity Filters,” Proc.IRE,Feb.1957,45(2), pp.187-196.
    [74] L. Young,“Direct-coupled cavity filters for wide and narrow bandwidths,” IEEETrans. Microwave Theory Tech., May.1963,1l(5), pp.162—178.
    [75] R. Levy,“Tables of element values for the distributed low-pass prototype filter,”IEEE Trans. Microwave Theory Tech., Sep.1965,13(9), pp.514—536.
    [76] R. Levy,“Theory of Direct-Coupled Cavity Filters,” IEEE Trans. MicrowaveTheory Tech., June.1967,15(6),pp.340—348.
    [77] S. O. Scanlan, and J. D. Rhodes,“Microwave networks with constant delay,”IEEE Trans. Circuit Systems, Sep.1967,14(9),pp.280—297.
    [78] S. B. Cohn,“Generalized design of band-pass and other filters by computeroptimization,” IEEE MTT-S Int. Microwave Symposium Dig.,1974, pp.272—274.
    [79] H. J. Orchard,“Filter design by iterated analysis,” IEEE Trans. Circuit Systems,Nov.1985vol. CAS-32,pp.1089—1096.
    [80] R. M. Kurzrok, General three-resonator filters in waveguide, I IEEE Trans.Microwave Theory Tech., Jan.1966,14(1), pp.46-47.
    [81] J. D. Rhodes and R. J. Cameron, General extracted pole synthesis technique withapplications to low lossTE011mode filters, IEEE Trans. Microwave Theory Tech.,Sep.1980,28(9), pp.1018-1028.
    [82] R. Levy, Generalized rational function approximation in finite intervals usingZolotarev functions, IEEE Trans. Microwave Theory Tech.,1970,18(12),1052-1064.
    [83] H. C. Bell, Zolotarev bandpass filters, IEEE MTT-S Int. Microwave Symp. Dig.,2001,1495-1498.
    [84] J. Lee, M. S. Uhm, and I. B. Yom, A dual-passband filter of canonical structurefor satellite applications, IEEE Microw. Wireless Compon. Lett.,2004,14(6),271-273.
    [85] S. Holme, Multiple passband filters for satellite applications, Proc.20th AIAA Int.Communications Satellite Systems Conf. and Exhibit, Montreal, QC, Canada,2002,1993-1996.
    [86] L. C. Tsai and C. W. Hsue, Dual-band bandpass filters using equallength coupledserial-shunted lines and Z-transform technique, IEEE Trans.Microw.Theory andTech.,2004,52(4),1111-1117.
    [87] R. J. Cameron, M. Yu, and Y. Wang, Direct-coupled microwave filters with singleand dual stopbands, IEEE Trans. Microw. Theory and Tech.,2005,53(11),3288-3279.
    [88] X. H. Guan Z. W. Ma P. Cai Y. Kobayashi, T. Anada and G. Hagiwara, Synthesisof dual-band bandpass filters using successive frequency transformations and circuitconversions, IEEE Microw. Wireless Compon. Lett.,2006,16(3),110-112.
    [89] J. T. Kuo and H.-S. Cheng, Design of quasi-elliptic function filters with adual-passband response, IEEE Microw. Compon. Lett.,2004,14(10),472-474.
    [90] J. T. Kuo and E. Shih, Microstrip stepped impedance resonator bandpass filterwith an extended optimal rejection bandwidth, IEEE Trans. Microw. Theory Tech.,2003,51(5),1554-1559.
    [91] C. Monzon, A small dual-frequency transformer in two sections, IEEE Trans.Microw. Theory Tech.,2003,51(4),1157-1161.
    [92] J. T. Kuo and H. S. Cheng, Design of quasi elliptic function filters with a dualpassband response, IEEE Microw.Wireless Compon. Lett.,2004,14(10),472-474.
    [93] R.J.Cameron, General Coupling Matric Synthesis Methods for ChebyshevFiltering Function, IEEE Trans. Microw. Theory and Tech.,1999,47(4):433-442.
    [94] R. J. Cameron, Advanced coupling matrix synthesis techniques for microwavefilters, IEEE Trans. Microwave Theory Tech.,2003,51(1),1-10.
    [95]G. Macchiarella and S. Tamiazzo, Design techniques for dual-passband filters,IEEE Trans. Microwave Theory Tech., Nov.2005, vol.53, no.11, pp.3265-3271.
    [96] X. Guan, Z. Ma, P. Cai, et al, Synthesis of dual-band bandpass filters usingsuccessive frequency transformations and circuit conversions, IEEE Microw.Wireless Compon. Lett., Mar.2006, vol.16, no.3, pp.110-112.
    [97] A. S. Liu, T. Y. Huang and R. B. Wu,“A dual wideband filter design usingfrequency mapping and stepped-impedance resonators,” IEEE Trans. MicrowaveTheory Tech., Dec.2008, vol.56, no.12, pp.2921-2929.
    [98] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications.New York: Wiley,2001.
    [99]甘本袚,吴万春,现代微波滤波器的结构与设计,科学出版社,1973。
    [100] E. Albert Williams and E. Ali. Atia,“Dual-Mode Canonical Waveguide Filters,”IEEE Trans. Microwave Theory Tech., Vol. MTT-25. No.12, Dec,1997, pp.1021-1026.
    [101] M. Makimoto, S. Yamashita Bandpass filter using parallel coupled striplinestepped impedance resonators[J]. IEEE Trans. Microwave Theory Tech.,1980,28(12):1413-1417.
    [102] M. Makimoto, S. Yamashita, Geometrical structures and fundamentalcharacteristics of microwave stepped-impedance resonators[J]. IEEE Trans.Microwave Theory Tech.,1997,45(7):1078-1085
    [103] S. F. Chang, Y. H. Jeng, J. L. Chen, Dual-band step-impedance bandpass filter formultimode wireless LANs[J]. Electronics Letters,2004,40(1):38-39.
    [104]清华大学《微带电路》编写组,微带电路.人民邮电出版社,1976.
    [105] H. Lee, C. Tsai, Dual-band filter design with flexible passband frequency andbandwidth selections[J]. IEEE Trans. Microwave Theory Tech.,2007,55(5):1002-1009
    [106] H. Zhang, K. J. Chen, A second-order dual-band bandpass filter using a dual-bandadmittance inverter[J]. Microwave and Optical Technology Letters,2008,50(5):1184-1187
    [107] P. Mondal, M. K. Mandal, Design of dual-band bandpass filters using stub-loadedopen-loop resonators[J]. IEEE Trans. Microwave Theory Tech.,2008,56(1):150–155
    [108] X. Y. Zhang, Q. Xue, Novel centrally loaded resonators and their applications tobandpass filter[J]. IEEE Trans. Microwave Theory Tech.,2008,56(4):913-921
    [109] F. C. Chen, Q. X. Chu, Z. H. Tu Tri-band bandpass filter using stub loadedresonators[J]. Electronics Letters,2008,44(12):747-748
    [110] Y. Hsieh, C. Lee, C. G. Hsu. Design of spur-line-loaded cross-coupled dual-bandbandpass filter with wide upper-end stopband[J]. Microwave and OpticalTechnology Letters,2008,50(3):691-694
    [111] L. Li, T. An, W. Wang, et al. A square ring dual-band filter with adjustablesecond-passband by the open stubs[C]. International Conference on Microwave andMillimeter Wave Technology,2008:291-293
    [112] M. Zhou, X. Tang, F. Xiao, Compact dual band bandpass filter using novelE-type resonators with controllable bandwidths[J]. IEEE Microw. Wireless Compon.Lett.,2008,18(12):779-781
    [113] K. M. Cheng, C. Law, A new approach to the realization of a dual-bandmicrostrip filter with very wide upper stopband[J]. IEEE Trans. Microwave TheoryTech.,2008,56(6):1461-1467
    [114] K. Satoh, Y. Takagi, S. Narahashi, New CPW quarter-Wavelength resonator withopen stubs for multipole dual-band bandpass filter[C]. European MicrowaveConference,2008:850-853
    [115] L. Li, Z. Li, Design of a new dual-band microstrip bandpass filter with multipletransmission zeros[J]. Microwave and Optical Technology Letters.2008,50(11):2874-2877
    [116] Y. Chang, C. Kao, M. Weng, et al. Design of the Compact Dual-Band BandpassFilter With High Isolation for GPS/WLAN Applications[J]. IEEE Microw. WirelessCompon. Lett.,2009,19(4):780-782
    [117] G. L. Dai, M. Y. Xia, Design of compact dual-band switchable bandpass filter[J].Electronics Letters,2009,45(10):506-536
    [118] W. He, Z. Ma, C. Chen, et al. A compact dualband bandpass filter usingstub-loaded two-mode resonators and direct source-load coupling to obtainimproved stopband characteristics[J]. Microwave and Optical Technology Letters,2009,51(3):618-621
    [119] Y. Cho, H. Baek, H. Lee, et al. A Dual-Band Combline Bandpass Filter Loadedby Lumped Series Resonators[J]. IEEE Microw. Wireless Compon. Lett.,2009,19(10):626-628
    [120] F. C. Chen, Q. X. Chu, Z. H. Tu, Design of compact dual-band bandpass filterusing short stub loaded resonator[J]. Microwave and Optical Technology Letters,2009,51(4):959-963.
    [121] J. Y. Lee, J. H. Cho, S. W. Yun, New compact bandpass filter using microstripλ/4resonators with open stub inverter[J]. IEEE Microwave and Guided WaveLetters,2000,10(12):526-527
    [122] S. Amari, K. Hamed, Y Antar, New elliptic microstrip lambda/4-resonatorfilters[C]. Asia-Pacific Microwave Conference,2001:755-758
    [123] L. Zhu, M. Menzel, Compact microstrip bandpass filter with two transmissionzeros using a stub-tapped half-wavelength line resonator[J]. IEEE Microw. WirelessCompon. Lett.,2003,13(1):16-18
    [124] C. Liao, P. Chi, C. Chang, Microstrip realization of generalized Chebyshev filterswith box-like coupling schemes[J]. IEEE Trans. Microwave Theory Tech.,2007,55(1):147-153.
    [125] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y.-H. Wang and M. P. Houng,A novel compact ring dual-mode filter with adjustable second-passband fordual-band applications, IEEE Microw. Wireless Compon. Lett.,2006,16(6),360–362.
    [126] S. Sun and L. Zhu, Compact dual-band microstrip bandpass filter without externalfeeds, IEEE Microw. Wireless Compon. Lett.,2005,15(10),644–646.
    [127] S. F Chang, Y. H Jeng, and J.-L Chen, Dual-band step-impedance bandpass filterfor multimode wireless LANs, Electron. Lett.,2004,40(1),38–39.
    [128] J. Wang, Y. X. Guo, B. Z. Wang, L. C. Ong, and S. Xiao, High-selectivitydual-band stepped-impedance bandpass filter, Electron. Lett.,2006,42(7),538–539.
    [129] J. T Kuo, T. H. Yeh and C. C. Yeh, Design of microstrip bandpass filter with adual-passband response, IEEE Trans. Microw. Theory Tech.,2005,53(4),1331–1337.
    [130] Y. P. Zhang and M. Sun, Dual-band microstrip bandpass filter usingstepped-impedance resonators with new coupling schemes, IEEE Trans. Microw.Theory Tech.,2006,54,(10), pp.3779–3885.
    [131] X. Y. Zhang, J. X. Chen and X. Quan, Dual-band bandpass filter usingstub-loaded resonators, IEEE Microw. Wirel. Compon. Lett.,2007,17,(8),583–585.
    [132] P. Mondal and M. K. Mandal, Design of dual-band bandpass filters usingstub-loaded open-loop resonators, IEEE Trans. Microw. Theory Tech.,2008,56,(1),150–155.
    [133] H. M. Lee, C. R. Chen, C. C. Tsai and C. M. Tsai, Dual-band coupling and feedstructure for microstrip filter design, in IEEE MTT-S Int. Microw. Symp. Dig.,2004,3,1971–1974.
    [134] M. L. Chuang, Concurrent dual band filter using single set of microstripopen-loop resonators, Electron. Lett.,2005,41,1013–1014.
    [135] J. T. Kuo and H. S. Cheng, Design of quasi-elliptic function filters with adual-passband response, IEEE Microw.Wireless Compon. Lett.,2004,14,472–474
    [136] M. Q. Zhou, X. H. Tang and F. Xiao, Compact Dual Band Bandpass Filter UsingNovel E-Type Resonators With Controllable Bandwidths, IEEE Microw.WirelessCompon. Lett.,2008,18(12),779-781.
    [137] C. F. Chen, T. Y. Huang and R. B. Wu, Design of dual-and triplepassband filtersusing alternately cascaded multiband resonators, IEEE Trans. Microw. Theory Tech.,2006,54,(9),3550–3558.
    [138] B. J. Chen, T. M. Shen and R. B. Wu,Design of Tri-Band Filters With ImprovedBand Allocation,IEEE Trans. Microw. Theory Tech.,2009,57(7),1790-1797.
    [139] C. Y. Chen and C. Y. Hsu, A simple and effective method for microstripdual-band filters design, IEEE Microw. Wireless Compon. Lett.,2006,16(5),246–248.
    [140] F. C. Chen and Q. X. Chu, Design of Compact Tri-Band Bandpass Filters UsingAssembled Resonators, IEEE Trans. Microw. Theory Tech.,2009,57(1),165-171.
    [141] M. H. Weng, H. W. Wu, K. Shu, J. R. Chen, R. Y. Yang and Y. K. Su, A noveltriple-band bandpass filter using Multilayer-based substrates for WiMAX, EuropeanMicrowave Conference, Oct.2007,325–328.
    [142] B. C. Chen, T. M. Shen, T. Y. Huang and R. B. Wu, A Dual Pass Band Filter withEmbedded CPW Resonator, Asia-Pacific Microwave Conference, Dec.2007,1-4.
    [143] B. Wu, C. H. Liang, Q. Li, and P. Y. Qin, Novel Dual-Band Filter IncorporatingDefected SIR and Microstrip SIR, IEEE Microw. Wirel. Compon. Lett.,2008,18(6),392–394.
    [144] J. X. Chen, T. Y. Yum, J. L. Li and Q. Xue, Dual-mode dual-band bandpass filterusing stacked-loop structure, IEEE Microw. Wireless Compon. Lett.,2006,16(9),502–504.
    [145] B. J. Chen, T. M. Shen and R. B. Wu,Design of Tri-Band Filters With ImprovedBand Allocation,IEEE Trans. Microw. Theory Tech.,2009,57(7),1790-1797.
    [146] C. Y. Chen and C. Y. Hsu, A simple and effective method for microstripdual-band filters design, IEEE Microw. Wireless Compon. Lett.,2006,16(5),246–248.
    [147] F. C. Chen and Q. X. Chu, Design of Compact Tri-Band Bandpass Filters UsingAssembled Resonators, IEEE Trans. Microw. Theory Tech.,2009,57(1),165-171.
    [148] M. H. Weng, H. W. Wu, K. Shu, J. R. Chen, R. Y. Yang and Y. K. Su, A noveltriple-band bandpass filter using Multilayer-based substrates for WiMAX, EuropeanMicrowave Conference, Oct.2007,325–328.
    [149] B. C. Chen, T. M. Shen, T. Y. Huang and R. B. Wu, A Dual Pass Band Filter withEmbedded CPW Resonator, Asia-Pacific Microwave Conference, Dec.2007,1-4.
    [150] J. X. Chen, T. Y. Yum, J. L. Li and Q. Xue, Dual-mode dual-band bandpassfilter using stacked-loop structure, IEEE Microw. Wireless Compon. Lett.,2006,16(9),502–504.
    [151] R. J. Cameron, M. Yu, and Y. Wang, Direct-coupled microwave filters withsingle and dual stopbands, IEEE Trans. Microw. Theory and Tech.,2005,53(11):3288-3279.
    [152] X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, Synthesis ofdual-band bandpass filters using successive frequency transformations and circuitconversions, IEEE Microw. Wireless Compon. Lett.,2006,16(3),110–112.
    [153] D. Deslandes, K. Wu, Substrate integrated waveguide dual-mode filters forbroadband wireless systems [C]. Proc. IEEE Radio Wireless Conf.(RAWCON),Boston:2003.385-388.
    [154] T. H. Huang, C. S. Chang, H. J. Chen, et al. Simple Method for A K-Band SIWFilter with Dual-Mode Quasi-Elliptic Function Response.Microwave and opticalTechnology Letters,2007,49(6):1246-1248.
    [155]张玉林,基片集成波导传播特性及滤波器的理论与实验研究,南京:东南大学博士论文,2005.
    [156] A. G rür,“Description of Coupling Between Degenerate Modes of a Dual-ModeMicrostrip Loop Resonator Using a Novel Perturbation Arrangement and ItsDual-Mode Bandpass Filter Applications,” IEEE Trans. Microwave Theory Tech.,vol.52, no.2, pp.671-677, Feb.2004.
    [157] B. T. Tan, J. J. Yu, S. T. Chew, M. S. Leong and B. L. Ooi,“A MiniaturizedDual-Mode Ring Bandpass Filter With a New Perturbation,” IEEE Trans.Microwave Theory Tech., vol.53, no.1, pp.343-348, Jan.2005.
    [158] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: Theface centered cubic case employing nonspherical atoms, Physical Review Letters,1991,67(17):2295-2298.
    [159] J. I. Park, C. S. Kim, J. Kim, et al, Modeling of a photonic bandgap and itsapplication for the low-pass filter design, Singapore: Asia Pacific MicrowaveConference,1999.
    [160] C. S. Kim, J. I. Park, A. Dal, et al, A novel1-D periodic defected ground structurefor planar circuits, IEEE Microwave Guided Wave Lett.,2000,10(4):131–133.
    [161] J. B.Pendry, A. J. Holden, D.J. Robbins, et al, Magnetism from Conductors andEnhanced Nonlinear Phenomena, IEEE Trans. Microwave Theory Tech.,1999,47(11):2075-2084.
    [162] P.Gay-Balmaz, O. J. F. Martin, Electromagnetic resonances in individual andcoupled split-ring resonators, Journal of Applied Physics,2002,92(5):2929-2936.
    [163] P.Markos, C.M. Soukoulis, Numerical studies of left-handed materials and arraysof split ring resonators, Physical Review E.,2002,65,036622-1~036622-8.
    [164] H.Y.Yao, L.W.Li, Q. Wu, et al, Macroscopic performance analysis ofmetamaterials synthesized from macroscopic2-D isotropic cross split-ring resonatorarray, Progress in Electromagnetics Research,2005, PIER51,197–217.
    [165] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/MicrowaveApplications. New York: Wiley,2001.
    [166] A. Abdel-Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar, Compact StubType Microstrip Bandpass Filter Using Defected Ground Plane, IEEE Microw.Wireless Compon. Lett.,2004,14(4):136-138.
    [167] D.Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, A Design of theLow-Pass Filter Using the Novel Microstrip Defected Ground Structure, IEEE Trans.Microwave Theory Tech.,1999,49(1),86–93.
    [168] J.-S. Lim, C.-S. Kim, D. Ahn, et al, Design of Low-Pass Filters Using DefectedGround Structure, IEEE Trans. Microwave Theory Tech.,2005,53(8),2539-2545.
    [169] H.-W. Liu, Z.-F. Li, X.-W. Sun, and J.-F. Mao, An Improved1-D PeriodicDefected Ground Structure for Microstrip Line, IEEE Microw. Wireless Compon.Lett.,2004,14(4):180-182.
    [170] J.-S. Park, J.-S. Yun, and D. Ahn, A Design of the Novel Coupled-Line BandpassFilter Using Defected Ground Structure With Wide Stopband Performance, IEEETrans. Microwave Theory Tech.,2002,50(9):2037-2043.
    [171] A. Abdel-Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar, Compact StubType Microstrip Bandpass Filter Using Defected Ground Plane, IEEE Microw.Wireless Compon. Lett.,2004,14(4):136-138.
    [172]李奇,无线通信中微带滤波器的研究与设计,西安:西安电子科技大学博士论文,2011
    [173] A. A-Rahman, A. R. Ali, S. Amari, and A. S. Omar, Compact bandpass filtersusing defected ground structure (DGS) coupled resonators, in IEEE MTT-S Int. Dig.,2005,1479–1482.
    [174] F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla,“Effective negative-epsilon stopband microstrip lines based on complementary splitring resonators,” IEEE Microw.Wireless Compon. Lett., vol.14, no.6, pp.280–282,Jun.2004.
    [175] J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G.Laso, J. Garcia, I. Gil, and M. Sorolla,“Equivalent-circuit models for split-ringresonators and complementary split-ring resonators coupled to planar transmissionlines,” IEEE Trans. Microw. Theory Tech., vol.53, no.4, pp.1451–1461, Apr.2005.
    [176] J. J. Garcia, F. Martin, J. D. Baena, R. Marques, and L. Jelinek,“On theresonances and polarizabilities of split rings resonators,” J. Appl.Phys., vol.98, pp.033103–033103, Aug.2005.
    [177] J. Bonache, M. Gil, I. Gil, J. Garcia, and F. Martin,“On the electricalcharacteristics of complementary metamaterial resonators,” IEEE Microw. WirelessCompon. Lett., vol.16, no.10, pp.543–545, Oct.2006.
    [178] J. Garcia, F. Martin, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, G. Laso, M.Sorolla, and R. Marques,“Spurious passband suppression in microstrip coupled lineband pass filters by means of split ring resonators,” IEEE Microw. WirelessCompon. Lett., vol.14, no.9, pp.416–418, Sep.2004.
    [179] J. Bonache, I. Gil, J. Garcia, and F. Martin,“Complementary split ring resonatorsfor microstrip diplexer design,” Electron. Lett., vol.41, no.14, Jul.2005.
    [180] J. Garcia, J. Bonache, I. Gil, F. Martin, M. Castillo, and J. Martel,“Miniaturizedmicrostrip and CPW filters using coupled metamaterial resonators,” IEEE Trans.Microw. Theory Tech., vol.54, no.6, pp.2628–2635, Jun.2006.
    [181] L. Rogla, J. Carbonell, and V. Boria,“Study of equivalent circuits for open-ringand split-ring resonators in coplanar waveguide technology,” IET Microw. AntennasPropag., vol.1, no.1, pp.170–176, Jan.2007.
    [182] M. Gil, J. Bonache, J. Garcia, J. Martel, and F. Martin,“Compositeright/left-handed metamaterial transmission lines based on complementarysplit-rings resonators and their applications to very wideband and compact filterdesign,” IEEE Trans. Microw. Theory Tech., vol.55, no.6, pp.1296–1303, Jun.2007.
    [183] S.-H. Jang and J.-C. Lee,"Design of novel cross-coupling elliptic function filterswith the miniaturized edge-coupled split ring resonators," Microwave and OpticalTechnology Letters, vol.45, no.6, June2005, pp.495-499.
    [184] J. J. Garcia Garcia, J. Bonache, I. Gil, F. Martin, M. C. Velazquez Ahumada, andJ. Martel,"Efficient area reduction in microstrip cross-coupled resonator filters byusing split rings resonators and spiral resonators," in35th European MicrowaveConference, Paris, France, October2005, pp.1235-1238.
    [185] Alejandro Garcia-Lamperez, Magdalena Salazar-Palmat,"Dual band filter withsplit-ring resonators," in Microwave Symposium Digest,2006. IEEE MTT-SInternational, June2006,pp.519–522.
    [186] J. D. Baena, J. Bonache, F. Martin, et al. Equivalent-Circuit Models forSplit-Ring Resonators and Complementary Split-Ring Resonators Coupled to PlanarTransmission Lines, IEEE Trans. Microw. Theory Tech., vol.53, no.4, pp.1451–1461, April.2005.
    [187] J. D. Baena, J. Bonache, F. Martin, et al. F. Falcone, T. Lopetegi, J. D. Baena, R.Marques, F. Martin, and M. Sorolla,“Effective negative-epsilon stopband microstriplines based on complementary split ring resonators,” IEEE Microw.WirelessCompon.Lett., vol.14, no.6, pp.280–282, Jun.2004.
    [188] Y. Zhang, W. Hong, C. Yu, Z. Kuai, Y. Dong, and J. Zhou,“Planarultra-wideband antennas with multiple notched bands based on etched slots on thepatch and/or split ring resonators on the feed line,” IEEE Trans. Antennas Propag.,vol.56, no.9, pp.3063–3068, Sep.2008.
    [189] G. Kondratev and A. I. Smirnov,“Left-handed-media simulation andtransmission of EM waves in subwavelength split ring resonator-loaded metallicwaveguides,” Phys. Rev. Lett., no.24, pp.249401–1, Dec.2003.
    [190] S. Hrabar, J. Bartolic, and Z. Sipus,“Waveguide miniaturization using uniaxialnegative permeability metamaterial,” IEEE Trans. Antennas Propag., vol.53, no.1,pp.110–119, Jan.2005.
    [191] J. Esteban, C. C. Penalosa, J. E. Page, T. M. Martin-Guerrero, and E.Marquez-Segura,“Simulation of negative permittivity and negative permeability bymeans of evanescent waveguide modes-theory and experiment,” IEEE Trans.Microw. Theory and Tech., vol.53, no.4, pp.1506–1514, Apr.2005.
    [192] P. Belov and C. Simovski,“Subwavelength metallic waveguides loaded byuniaxial resonant scatterers,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.Interdiscip. Top., vol.72, pp.0366181–03661811, Sep.2005.
    [193] G. Lubkowski, C. Damm, B. Bandlow, R. Schuhmann, M. Schubler, and T.Weiland,“Broadband transmission below the cutoff frequency of a waveguideloaded with resonant scatterer arrays,” IET Microw.Antennas Propag., vol.1, no.1,pp.165–169,2007.
    [194]梁昌洪,谢拥军,官伯然,简明微波,北京:高等教育出版社,2006。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700