多模谐振器的研究及其在微波滤波器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信系统的发展日新月异,新技术如WLan、3G、4G随处可见。新技术的出现给微波器件的设计带来了极大的挑战。滤波器作为最基本的微波器件之一,对其的设计要求更加苛刻,小型化、低插损、高通带选择性、宽阻带等。为了能够使多个通信模式同时工作,宽带和多通带滤波器的使用成为必然。
     双模谐振器已经被广泛的应用在滤波器的设计中,极大的减小了滤波器的体积,并且具有高性能、低成本的特点。本文从已发表的双模谐振器出发,提出了新型的双模和多模谐振器,对它们的谐振特性和耦合特性进行了详尽的分析,并最终将其应用在了滤波器的设计中。
     本文的主要工作包括以下几个方面:
     1.详尽的阐释了奇偶模方法的应用背景及其要解决的核心问题,并且利用它对四种中心枝节加载谐振器的谐振特性进行了分析,并从中发现了新型的双模谐振器,这对本文后面的工作奠定了基础。
     2.第一次提出了新型的双端短路双模谐振器,通过等效传输线模型对该谐振器的谐振特性及耦合特性进行了详细分析;在宽带滤波器中的应用中,对外部耦合和源和负载耦合的关键参数进行了定量分析,成功的解释了带内极点分布的情况;同时源和负载耦合引入,不仅增强了通带的选择特性,而且还改善了带内波纹特性。另外,通过开路枝节的加载,实现了该谐振器的小型化,并在此基础上设计了双模双通带滤波器。在双通带滤波器的设计中,两个通带的外部耦合是可控的,因此两个通带都拥有非常好的带内阻抗匹配特性。
     3.在双端短路双模谐振器的基础上,提出了新型的双端短路阶梯阻抗双模谐振器,通过奇偶模分析方法详述了该谐振器的谐振特性,并且给出了该谐振器的设计图;通过控制长度比和阻抗比,第一次用单个双模谐振器实现了三个通带频率都可控的三通带滤波器;在带通滤波器的设计中,选择合适的阻抗比和长度比,使谐振器的一次谐波出现在4.2f0处,从而获得了宽阻带的效果;在双通带和三通带滤波器的设计中,很好的利用了谐振器的电压分布情况,实现了每个通带的外部耦合可控,从而获得了良好的带内阻抗匹配。
     4.基于枝节加载谐振器,提出了几种新型的三模、四模谐振器,并通过奇偶模分析方法对其谐振特性和耦合特性进行了系统分析;利用提出的谐振器设计了带通、双通带滤波器;一种基于短路枝节加载的四模谐振器设计的双通带滤波器,具有小型化、宽阻带的特性;一种基于短路枝节加载的方环谐振器设计的双通带滤波器,通过源和负载耦合的加载,实现了高隔离度和高选择性的特性;一种基于全短路枝节的三模、四模谐振器用来设计实现了带通滤波器。
     5.系统的研究了双频阻抗变换器的特性,通过优化的方法将该结构成功的应用在了两个不等阻抗到同一阻抗的变换。阶梯阻抗谐振器(SIRs)作为一种广义概念上的双模谐振器,同样利用奇偶模方法分析了它的谐振特性,并给出了它的设计图。最终,把它作为公共腔,利用双频阻抗变换器对其进行馈电,应用在了双工器和四工器的设计中。在设计过程中,采取了仿真模型参数提取的方法获得SIR在两个频率处的谐振阻抗,利用这种方法设计的双频阻抗变换器更准确、更符合实际。
With the rapid development of wireless comunication systems, many newtechnologies can be seen everywhere, such as Wlan,3G and4G. The emergence of newtechnoligies makes the design of microwave components quite challenging. Filter is oneof the most basic microwave components, and its indices has become more and morestringent, such as miniarizaiton, low insertion loss, high passband selectivity andwide-stopband. In order to make multiple communication modes operatingsimultaneously, wideband and multi-band filters are the most popular candidates.
     Dual-mode resonators, which feature compact size, high performance, and low cost,have been widely used in the filter design. According to the study on the publisheddual-mode resonators, this paper proposed many novel dual-and multi-mode resonators,and their resonance and coupling characteristics have been analyzed in detail. In thispaper, these proposed resonators have been employed to design filters.
     The author's works are concluded as follows:
     1. The application background odd-even-mode method has been studied andemployed to analyze the resonance characteristics of four centrally stub-loadedresontors (CLRs). In this way, a novel dual-mode resonator is observed, which is veryimportant to the latter work in this paper.
     2. For the first time, a novel short-ended dual-mode resonator has been proposed,and its resonance and coupling characteristics have been given detailed analysis throughthe equivalent transmisson line theorem. For wideband application, an improtantparameter, the external coupling, has been analyzed in quantitative, which successfullydescribes the poles within the passband. Moreover, source-load coupling is introduced,which not only enhance the passband selectivity, but also improves the in-band property.In addition, open-circuit stub is loaded to realize filter miniaturization, and it will beused to design dual-mode dual-band bandpsss filters (BPFs), in the design, the externalcouplings of both passbands can be controlled simultaneously, and good impedancematching can be acheived in each passband.
     3. A novel short-ended stepped-impedance dual-mode resonator is proposed basedon the short-ended dual-mode resonator, and the odd-even-mode method is adopted toanalyze its resonance characteristics, from which, its design graph is given. For the firsttime, a tri-band filter with three passbands whose center frequencies are controllable isimplemented by using only one dual-mode resonator. In bandpass filter design, the firstspurious occurring at4.2f0can be achieved by choosing a reasonable impedance and length ratio. In dual-and tri-band filter design, according to the voltage distributionalong the resonator, three passband external couplings can be controlled, and goodimpedance matching for each passband can be obtained.
     4. Based on stub-loaded resonators, serval kinds of tri-and quad-mode resonatorsare proposed, and systemically study on their resonance and coupling characteristics iscarried out. The proposed resonators can be used to design bandpass and dual-band filter.A dual-band filter designed by a novel short-circuit stub-loaded quad-mode resonatorfeatures compact size and wide stop-band property. Another dual-band filter based on anovel short-circuit stub-loaded square-loop resonator can exhibit high passbandselectivity and band-to-band isolation. Moreover, novel tri-and quad-mode resonatorsare proposed and employed to design bandpass filters.
     5. Systemically study on the characteristics of dual-frequency impedancetransformer, which is applied on the transformation of the two inequality impedance tothe standard one. Steeped-impdance resonator (SIR) can be regarded as generalizeddual-mode resonator, and its resonance characteristics are analyzed by theodd-even-mode method. Meanwhile, SIR feeded by stepped-impedance dual-frequencytransformer is functioned as common cavity, which is employed to design diplexers andquadruplexer. During the design, parameters extraction of the simulation model isutilized in the caculating of SIR resonant impedances at two frequencies. In this way,the dual-frequency impedance transformer can be designed more accurate andpractically.
引文
[1] M.Makimoto,S.Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002.
    [2]樊振芳,无线通信的发展与未来,中国科技信息,2005,51:45-51.
    [3]高峻,唐晋生,微波滤波器的回顾与展望,应用与设计,2005,11:70-72.
    [4] Cameron R. J. General coupling matrix synthesis methods for Chebyshev filteringfunction[J]. IEEE Transactions on Microwave Theory and Techniques. Apr.1999,47(4):433-442
    [5] Cameron R. J. Advanced coupling matrix synthesis techniques for microwavefilters[J]. IEEE Transactions on Microwave Theory and Techniques. Jan.2003,51(1):1-10
    [6] Cameron R. J., Harish A. R., Radcliffe C. J. Synthesis of advanced microwavefilters without diagonal cross-couplings[J]. IEEE. Transactions on MicrowaveTheory and Techniques. Dec.2002,50(12):2862–2872
    [7] Rhodes J. D., Cameron R. J. General extracted pole synthesis technique withapplications to low-loss TE011mode filters[J]. IEEE Transactions on MicrowaveTheory and Techniques. Sept.1980,28(9):1018-1028
    [8] Levy R. Theory of direct-coupled cavity filters[J]. IEEE Transactions onMicrowave Theory and Techniques. June1967,15:340-348
    [9] Levy R. Direct synthesis of cascaded quadruplet (CQ) filters[J]. IEEETransactions on Microwave Theory Techniques. Dec.1995,43(12):2940-2944
    [10] Macchiarella G. Accurate synthesis of inline prototype filters using cascadedtriplet and quadruplet sections[J]. IEEE Transactions on Microwave Theory andTechniques. July2002,50:1779–1783
    [11] Levy Ralph, Cohn S.B.. A history of microwave filter research, design, anddevelopment [J]. IEEE Transactions on Microwave Theory and Techniques, Sep.1984,32:1055-1067
    [12] Chu Q.-X., Wang H. A compact open-loop filter with mixed electric andmagnetic coupling [J]. IEEE Transactions on Microwave Theory and Techniques,Feb.2008,56(2):431-439
    [13] Wang H., Chu Q.-X.. An EM-coupled triangular open-loop filter withtransmission zeros very close to passband [J]. IEEE Microwave and WirelessComponents Letters, Feb.2009,19(2):71-73
    [14] Wang H., Chu Q.-X.. A narrow-band hairpin-comb two-pole filter withsource-load coupling [J]. IEEE Microwave and Wireless Components Letters,2010
    [15] Wang H., Chu Q.-X.. An inline coaxial quasi-elliptic filter with controllablemixed electric and magnetic coupling [J]. IEEE Transactions on MicrowaveTheory and Techniques, Mar.2009,57(3):667-673
    [16] Hong J.-S., Lancaster M. J.. Couplings of microstrip square open-loop resonatorsfor cross-coupled planar microwave filters [J]. IEEE Transactions on MicrowaveTheory and Techniques. Dec.1996,44(21):2099-2109
    [17] Hong J.-S.. Couplings of asynchronously tuned coupled microwave resonators [J].IEE Proceedings on Micrwoaves, Antennas and Propagation.2000,147(5):354-358
    [18] Chang S F R, Chen W L, Chang S C, C, et al. A dual-band RF transceiver formultistandard WLAN applications[J]. IEEE Transactions on Microwave Theoryand Techniques,2005,53(3):1048-1055
    [19] Lin Y S, Liu C C, Li K M, et al. Design of an LTCC tri-band transceiver modulefor GPRS mobile applications[J]. IEEE Transactions on Microwave Theory andTechniques,2004,52(1):2718–2724
    [20] Tsai L C, Hsue C W. Dual band bandpass filters using equal-lengthcoupled-serial-shunted lines and Z-transform technique[J]. IEEE Transactions onMicrowave Theory and Techniques,2004,52(4):1111-1117
    [21] Chen C Y, Hsu C Y. A simple and effective method for microstrip dual-bandfilters design[J]. IEEE Microwave and Wireless Components Letters,2006,16(5):246–248
    [22] Chen C F, Huang T Y, Wu R B. Design of dual-and triple-passband filters usingalternately cascaded multiband resonators[J]. IEEE Transactions on MicrowaveTheory and Techniques,2006,54(9):3550-3558
    [23] Sun S, Zhu L. Compact dual-band microstrip bandpass filter without externalfeeds[J]. IEEE Microwave and Wireless Components Letters,2005,15(10):644-646
    [24] Kuo J T, Yeh T H, Yeh C C. Design of microstrip bandpass filters with adual-passband response[J]. IEEE Transactions on Microwave Theory andTechniques,2005,53(4):1331–1337
    [25] Zhang Y. P., Sun M., Dual-band microstrip bandpass filter usingstepped-impedance resonators with new coupling schemes[J]. IEEE Transactionson Microwave Theory and Techniques,2006,54(10):3779-3785
    [26] Federal Communications Commission, Revision of part15of the commission’srules regarding ultra-wideband transmission system first report and order[R],Tech. Rep. ET: FCC, Feb.2002
    [27] R.Fonta, Recent system applications of short-Pulse ultra-wideband (UWB)technology[J], IEEE Transactions on Microwave Theory and Techniques,2004,52(9):2087-2104
    [28]蔡鹏.超宽带带通滤波器的设计理论及其小型化研究[D].上海大学,2007
    [29] Wong W. T., Lin Y. S., Wang C. H., et al, Highly selective microstrip bandpassfilters for ultra-wideband (UWB) applications[J], Asia-Pacific MicrowaveConference Proceedings,2005,5:2850-2853
    [30] Yang, G.M., Jin, R.H., Geng, J.P., Planar microstrip UWB bandpass filter usingU-shaped slot coupling structure[J], Electronics Letters,2006,42(25):146-1463
    [31] Tang C. W. and Chen M. G., A microstrip ultra-wideband bandpass filter withcascaded broadband bandpass and bandstop filters[J], IEEE Transactions onMicrowave Theory and Techniques,2007,55(11), pp:2412-2418
    [32] Zhu L., Sun S., and Menzel W., Ultra-wideband (UWB) bandpass filters usingmultiple-mode resonator[J],IEEE Microwave and Wireless Components Letters,2005,15(11), pp:796–798
    [33] Wang H., Zhu L. and Menzel W., Ultra-wideband bandpass filter with hybridmicrostrip/CPW structure[J], IEEE Microwave and Wireless Components Letters,2005,15(12), pp:844–846
    [34] R. G. L. Mattaei, L. Yong, and E. M. T. Jones, Microwave filters,Impedance-matching networks and coupling structures, New York, McGraw-Hill,1964.
    [35] L. Zhu, S. Sun, and W. Menzel, Ultra-wideband (UWB) bandpass filters usingmultiple-mode resonator [J], IEEE Microw. Wirel. Compon. Lett.,Nov.2005,15(11), pp:796-798.
    [36] H. Wang, Q.-X. Chu, and J.-Q. Gong, A compact wideband microstrip filter usingfolded multiple-mode resonator [J], IEEE Microw. Wirel. Compon. Lett.,May2009,19(5), pp:287-289.
    [37] J. Wang, Y.-X. Guo, B.-Z. Wang, L. C. Ong, and S. Xiao, High-selectivitydual-band stepped-impedance bandpass filter, Electron. Lett. Apr.2006,42(7),pp:538-539.
    [38] X.-Y. Zhang, J.-X. Chen, Q. Xue, and S.-M. Li, Dual-band bandpass filters usingstub-loaded resonators [J], IEEE Microw. Wirel. Compon. Lett.,Aug.2007,17(8), pp:583-585.
    [39] W.-H. Tu, and K. Chang, Compact microstrip bandstop filter using open stub andspurline [J], IEEE Microw. Wirel. Compon. Lett.,Apr.2006,15(4):, pp268-270.
    [40] P. Mondal, and M. K. Mandal,Design of dual-band bandpass filters usingstub-loaded open-loop resonators [J]. IEEE Trans on Microwave Theory Tech.,Jan.2008,56(1), pp:150-155.
    [41] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, Design of dual-and triple-passbandfilters using alternately cascaded multiband resonators [J]. IEEE Trans onMicrowave Theory Tech., Sep.2006,54(9):3550-3558.
    [42] S. Luo, and L. Zhu, A novel dual-mode dual-band bandpass filters based on asingle ring resonator [J]. IEEE Microw. Wirel. Compon. Lett.,Aug.2009,19(8):,pp497-499.
    [43] S. Luo, L. Zhu, and S. Sun, Compact dual-mode triple-band bandpass filters usingthree pairs of degenerate modes in a ring resonator [J]. IEEE Trans on MicrowaveTheory Tech, May,2011,59(5), pp:1222-1229.
    [44] Hong J S,Lancaster M J.Bandpass Characteristics of New Dual-Mode MicrostripSquare Loop Resonators [J].Electron Lett,1995,31(11):891-892.
    [45] Sung Y. Dual-Mode Dual-Band Filter With Band Notch Structures [J]. IEEEMicrow Wirel Compon Lett,2010,20(2):73-75.
    [46] Hong J-S, Shaman H, Chun Y-H. Dual-Mode Microstrip Open-Loop Resonatorand Filters [J]. IEEE Trans on Microwave Theory Tech,2007,55(8):1764-1770.
    [47] Athukorala L, Budimir D. Design of Compact Dual-Mode Microstrip Filters [J].IEEE Microw Wirel Compon Lett,2010,58(11):2888-2895.
    [48] Howe H, Microwave Integrated Circuits-An Historical Perspective [J]. IEEETransactions on microwave theory and techniques, September1984.32(9):991-996.
    [49] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave filters impedance-matchingnetworks and coupling structures, New York: McGraw-Hill,1964
    [50]熊予莹,康琳等,高温超导滤波器在现代移动通信中的应用,移动通信,2001,
    [51]王传声,叶天培,王正义,LTCC技术在移动通信领域的应用,电子与封装,2002,3:19-23.
    [52]吴群,MMIC—单片微波集成电路技术,电磁场与微波技术学科前沿动态系列讲座.哈尔滨工业大学,2003.
    [53] S. B. Cohn, Direct Coupled Cavity Filters, Proc.IRE,Feb.1957,45(2),pp.187-196.
    [54] L. Young, Direct-coupled cavity filters for wide and narrow bandwidths [J]. IEEETrans. Microwave Theory Tech., May.1963,1l(5), pp.162-178.
    [55] R. Levy, Tables of element values for the distributed low-pass prototype filter [J].IEEE Trans. Microwave Theory Tech., Sep.1965,13(9), pp.514-536.
    [56] R. Levy, Theory of Direct-Coupled Cavity Filters [J]. IEEE Trans. MicrowaveTheory Tech., June.1967,15(6),pp.340-348.
    [57] S. O. Scanlan, and J. D. Rhodes, Microwave networks with constant delay[J].IEEE Trans. Circuit Systems, Sep.1967,14(9),pp.280-297.
    [58] S. B. Cohn, Generalized design of band-pass and other filters by computeroptimization[J]. IEEE MTT-S Int. Microwave Symposium Dig.,1974, pp.272-274.
    [59] H. J. Orchard, Filter design by iterated analysis[J]. IEEE Trans. Circuit Systems,Nov.1985vol. CAS-32,pp.1089-1096.
    [60] R. M. Kurzrok, General three-resonator filters in waveguide[J]. IEEE Trans.Microwave Theory Tech., Jan.1966,14(1), pp.46-47.
    [61] S.B. Cohn, Direct-coupled resonator filters, Proc. IRE,1957,45(2), pp:187–196.
    [62] G.L.Matthaei, L.Young, and E.M.T.Jones, Microwave Filters, ImpedanceMatching Networks and Coupling Structures, New York: McGraw-Hill,1964.
    [63] A.E. Atia, A.E. Williams, and R.W. Newcomb, Narrow-band multiple-coupledcavity synthesis[J]. IEEE Trans. Circuits Syst.,1974, CAS-21, pp:649–655.
    [64] J.D. Rhodes and R.J. Cameron, General extracted pole synthesis technique withapplications to low-loss TE mode filters[J]. IEEE Trans. Microwave TheoryTech.,1980, MTT-28(9), pp:1018–1028.
    [65] R.J. Cameron, Advanced coupling matrix synthesis techniques for microwavefilters[J]. IEEE Trans. Microwave Theory Tech.,2003,51(1), pp:1–10.
    [66]森荣二(日),LC滤波器设计与制作,北京:科学出版社,2006.
    [67] K.-Y.Wong, W.-Y. Tam, Analysis of the Frequency Response of SAW FiltersUsing Finite-Difference Time-Domain Method[J]. IEEE Trans. MicrowaveTheory Tech.,2005,53(11), pp:3364–3370.
    [68] J. S. Hong and M.J. Lancaster, Cross-coupled microstrip hairpin-resonatorfilters[J]. IEEE Trans. Microw. Theory Tech.,1998,46(1), pp:118–122.
    [69] J. T. Kuo, M.J. Maa, and P.H. Lu, A microstrip elliptic function filter withcompact miniaturized hairpin resonators[J]. IEEE Microw. Guided Wave Lett.,2000,10(3),94–95.
    [70] C. M. Tsai, S.Y. Lee, and C.C. Tsai, Performance of a planar filter using a0feedstructure[J]. IEEE Trans. Microw. Theory Tech.,2002,50(10),2362–2367.
    [71] G. L. Matthaei, Interdigital bandpass filters[J]. IEEE Trans. Microw. TheoryTech.,1962,10(11),479–491.
    [72] E. G. Cristal, Tapped-line coupled transmission lines with applications tointerdigital and combline filter[J]. IEEE Trans. Microw. Theory Tech.,1975,23(12),1007–1012.
    [73] Y.-C. Zhang, K.A. Zaki, A. J. Piloto, and J. Tallo, Miniature Broadband BandpassFilters Using Double-Layer Coupled Stripline Resonators[J]. IEEE Trans.Microwave Theory Tech.,2006,54(8):3370-3377.
    [74] J.-T. Kuo, and M. Jiang, Enhanced Microstrip Filter Design With a UniformDielectric Overlay for Suppressing the Second Harmonic Response[J]. IEEEMicrowaveWireless Compon. Lett.,2004,14(9):419-421.
    [75]徐鸿飞,朱成枉,刘坚,孙忠良,同轴腔带通滤波器的一种设计方法,微波学报,2004,20(2):5-8.
    [76] Nicola Coetzee, Asymmetrical S-Band Coupled Resonator Filters, thesis for theMaster degree at the University of Stellenbosch, Dec.2005.
    [77] J. Brian Thomas, Cross-Coupling in Coaxial Cavity Filters—A TutorialOverview[J]. IEEE Trans. Microwave Theory Tech.,2003,51(4),1368–1376.
    [78] Peter Vizmuller, Filters with Helical and Folded Helical Resonators, Artech Hose,Inc. Norwood, MA,1987,
    [79] J.K.A. Everard, K.K.M. Cheng, Dallas, P.A., High-Q helical resonator foroscillators and filters in mobile communications systems[J]. Electronics Letters,1989,25(23),1648–1650
    [80] S.J.Fiedziuszko, R.S Kwok, Novel helical resonator filter structures, MicrowaveSymposium Digest,1998IEEE MTT-S International,1998,3,1323-1326[61]Kwok, R.S.; Fiedziuszko, S.J., Dual-mode helical resonators[J]. IEEE Trans.Microwave Theory Tech.,2000,48(3),474-477
    [81] G.I. Panaitov, R.Ott, and N.Klein, Dielectric Resonator With DiscreteElectromechanical Frequency Tuning [J]. IEEE Trans. Microwave Theory Tech.,2005,53(11):1-7.
    [82] A.W. Glisson, D. Kajfez, J. James, Evaluation of modes in dielectric resonatorsusing a surface integral equation formulation [J]. IEEE Trans. Microwave TheoryTech.,1983,31,1023-1029
    [83] J.V. Bladel, On the resonances of a dielectric resonator of very high permittivity[J]. IEEE Trans. Microwave Theory Tech.,1979,23,195-208
    [84] A.Wexler, Solution of waveguide discontinuities by modal analysis [J]. IEEETrans. Microwave Theory Tech.,1967,15(7):508-517.
    [85] M. Piloni, R. Ravenelli, and M. Guglielmi, Resonant aperture filters inrectangular waveguide, IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA,1999,911–914.
    [86] C. Quendo, E. Rius, and C. Person, Narrow bandpass filters using dualbehaviorresonators [J]. IEEE Trans. Microw. Theory Tech.,2003,51(3),734–743
    [87]李胜先,傅君眉,吴须大,星载高功率微波波导低通滤波器的精确设计,西安交通大学学报,2006,40(2):195-202.
    [88] http://www.ansoft.com.
    [89] http://www.cst-china.cn.
    [90] http://www.feko.info.
    [91] http://bbs.rfeda.cn.
    [92] S. Luo, and L. Zhu, A novel dual-mode dual-band bandpass filters based on asingle ring resonator [J]. IEEE Microw. Wirel. Compon. Lett.,Aug.2009,19(8):,pp497-499.
    [93] Y.-C. Li, H. Wong, and Q. Xue, Dual-mode dual-band bandpass filter based on astub-loaded patch resonator [J]. IEEE Microw. Wirel. Compon. Lett.,Oct.2011,21(10):, pp525-527.
    [94] Y. Sung, Dual-mode dual-band filter with band notch structures [J]. IEEEMicrow. Wirel. Compon. Lett.,Feb.2010,20(2):, pp73-75.
    [95] T.-H. Huang, H.-J. Chen, C.-S. Chang, L.-S. Chen, Y.-H. Wang, and M.-P.Houng, A novel compact ring dual-mode fitler with adjustable second-passbandfor dual-band applications [J]. IEEE Microw. Wirel. Compon. Lett.,Jun.2006,16(6):, pp:360-362.
    [96] J. Xu, C. Miao, L. Cui, Y.-X. Ji, and W. Wu, Compact hign isolation quad-bandbandpass filter using quad-mode resonator, Electron. Lett. Jan.2012,48(1), pp:28-30.
    [97] J. Fan, D. Zhan, C. Jin, and J. Luo, Wideband microsrip bandpass filter based onquadruple mode ring resonator [J]. IEEE Microw. Wirel. Compon. Lett.,Jul.2012,22(7):, pp:348-350.
    [98] S. Zhang and L. Zhu, Compact and high-selectivity microstrip bandpass filtersusing triple-/quad-mode stub-loaded resonators [J]. IEEE Microw. WirelessCompon. Lett., Oct.2011, vol.21, no.10, pp.522-524.
    [99] A.E.Atia, A.E.Williamsand R.W.Newcomb, Narrow-band multiple-coupledcavity synthesis [J]. IEEE Trans.on Circuits and Systems,1974,21(5):649-655.
    [100] S.Amari, Synthesis of Cross-Coupled Resonator Filters Using an AnalyticalGradient-Based Optimization Technique [J]. IEEE Trans. Microw. Theory andTech.,2000,48(9):1559-1564.
    [101] S. Amari, U. Rosenberg, J. Bornemann, Adaptive Synthesis and Design ofResonator Filters With Source/Load-Multiresonator Coupling [J]. IEEE Trans.Microw. Theory and Tech.,2002,50(8):1969-1978.
    [102] J. Brian Thomas, Cross-Coupling in Coaxial Cavity Filters—A Tutorial Overview[J]. IEEE Trans. Microwave Theory Tech.,2003,51(4),1368–1376.
    [103] S. Amari, Direct synthesis of folded symmetric resonator filters with source-loadcoupling [J]. IEEE Microwave and wireless components letters, Jun.2001, vol.11,No.6, pp.264-266.
    [104] I. Wolff, Microstrip bandpass filter using degenerate modes of a microstrip ringresonator [J]. Electron Lett., Jun.1972, vol.8, No.12, pp.302-303.
    [105] H. N. Shaman, New S-band bandpass filter (BPF) with wideband passband forwireless communication systems [J]. IEEE Microw. Wireless Compon. Lett.,May.2012, vol.22, No.5, pp.242-244.
    [106] S. Sun and L. Zhu, Wideband microstrip ring resonator bandpass filter undermultiple resonance [J]. IEEE Trans. Microw. Theory Tech., Oct.2007, vol.55,No.10, pp.2176-2182.
    [107] X. Luo, J.-G. Ma, and E.-P. Li, Wideband bandpass filter with wide stopbandusing loaded BCMC stub and short-stub [J]. IEEE Microw. Wireless Compon.Lett., Jul.2011, vol.21, No.7, pp.353-355.
    [108] S. Luo and L. Zhu, A novel dual-mode dual-band bandpass filter based on asingle ring resonator [J]. IEEE Microw. Wireless Compon. Lett., Aug.2009, vol.19, No.8, pp.497-499.
    [109] Y. Sung, Dual-mode dual-band filter with band notch structures [J]. IEEEMicrow. Wireless Compon. Lett., Feb.2010, vol.20, No.2, pp.73-75.
    [110] Y. C. Li, H. Wong, and Q. Xue, Dual-mode dual-band bandpass filter based on astub-loaded patch resonator [J]. IEEE Microw. Wireless Compon. Lett., Oct.2011, vol.21, No.10, pp.525-527.
    [111] S. Fu, B. Wu, J. Chen, S.-J. Sun, and C.-H. Liang, Novel second-order dual-modefilters using capacitance loaded square loop resonator [J]. IEEE Trans. Microw.Theory Tech., Mar.2012, vol.60, No.3, pp.477-483.
    [112] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications.New York: Wiley,2001.
    [113] G. L. Matthaei, L. Young, and E. M. T. Jones, Microstrip Filters,Impedance-Matching Network, and Coupling Structures. Norwood, MA: ArtechHouse,1980.
    [114] J.-T. Kuo, S.-P. Chen, and M. Jiang, Parallel-coupled microstrip filters withover-coupled end stages for suppression of spurious responses [J]. IEEE Microw.Wireless Compon. Lett., Oct.2003, vol.13, no.10, pp.440-442.
    [115] J. S. Hong and M. J. Lancaster, Bandpass characteristics of new dual-modemicrostrip square loop resonators [J]. Electron Lett,1995, vol.31,no.11, pp.891-892.
    [116] W. Shen, X.-W. Sun, and W.-Y. Yin, A novel microstrip filter using three-modestepped impedance resonator (SIR)[J]. IEEE Microw. Wireless Compon. Lett.,Dec.2009, vol.19, no.12, pp.774-776.
    [117] W. Xue, C.-H. Liang, X. W. Dai, and J. W. Fan, Design of miniature planardual-band filter with0o feed structures [J]. Progress In ElectromagneticsResearch,2007, PIER77, pp.493-499.
    [118] J.-X. Chen, T. Y. Yum, J.-L. Li, and Q. Xue, Dual-mode dual-band bandpassfilter using stacked-loop structure [J]. IEEE Microw. Wireless Compon. Lett., Sep.2006, Vol.16, No.9, pp.502-504.
    [119] Y. Sung, Dual-mode dual-band filter with band notch structures [J]. IEEEMicrow. Wireless Compon. Lett., Feb.2010, Vol.20, No.2, pp.73-75.
    [120] L.-P. Zhao, X.-W. Dai, Z.-X. Chen and C.-H. Liang, Novel design of dual-modedual-band bandpass filter with triangular resonators [J]. Progress InElectromagnetics Research,2007, PIER77, pp.417-424.
    [121] J. S. Hong and H. Shaman, Dual-mode microstrip open-loop resonators and filters[J]. IEEE Trans. Microw. Theory Tech., Aug.2007, vol.55, no.8, pp.1764-1770.
    [122] L. Athukorala and D. Budimir, Compact dual-mode open loop microstripresonators and filters [J]. IEEE Microw. Wireless Compon. Lett., Nov.2009, vol.19, no.11, pp.698-700.
    [123] T.-H. Huang, H.-J. Chen, C.-S. Chang, L.-S. Chen, Y.-H. Wang, and M.-P.Houng, A novel compact ring dual-mode filter with adjustable second-passbandfor dual-band applications [J]. IEEE Microw. Wireless Compon. Lett., Nov.2006,vol.16, no.6, pp.360-362.
    [124] X. Y. Zhang and Q. Xue, Novel dual-mode dual-band filters usingcoplanar-waveguide-fed ring resonators [J]. IEEE Trans. Microw. Theory Tech.,Oct.2007, vol.55, no.10, pp.2183-2190.
    [125] E. Emmanuel and K. Wu, Multilayer dual-mode dual-bandpass filter [J]. IEEEMicrow. Wireless Compon. Lett., Jan.2009, vol.19, no.1, pp.21-23.
    [126] A. G rür and C. Karpuz, Compact dual-band bandpass filters using dual-moderesonator, in IEEE MTT-S Int. Dig.,2007, pp.905-908.
    [127] J. Xu, W. Wu, and C. Miao, Compact and sharp skirts microstrip dual-modedual-band bandpass filter using a single quadruple-mode resonator (QMR)[J].IEEE Trans. Microw. Theory Tech., Mar.2013, vol.61, no.3, pp.1104-1113.
    [128] H. W. Liu, B. P. Ren, X. H. Guan, J. H. Lei, and S. Li, Compact dual-bandbandpass filter using quadruple-mode square ring loaded resonator (SRLR)[J].IEEE Microw. Wireless Compon. Lett., Apr.2013, vol.23, no.4, pp.181-183.
    [129] S. B. Zhang and L. Zhu, Synthesis design of dual-band bandpass filters withstepped-impedance resonators [J]. IEEE Trans. Microw. Theory Tech., May.2013,vol.61, no.5, pp.1812-1819.
    [130] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, Design of multimodenet-type resonators and their applications to filters and multiplexers [J]. IEEETrans. Microw. Theory Tech., Apr.2013, vol.59, no.4, pp.848-856.
    [131] C.-F. Chen, T.-M. Shen, T-Y. Huang, and R.-B Wu, Design of compactquadruplexer based on the tri-mode net-type resonators [J]. IEEE Microw.Wireless Compon. Lett., Oct.2011, vol.21, no.10, pp.534-536.
    [132] C.-F. Chen, Design of a compact microstrip quint-band filter based on thetri-mode stub-loaded stepped-impedance resonators [J]. IEEE Microw. WirelessCompon. Lett., Jul.2012, vol.22, no.7, pp.357-359.
    [133] S. Zhang and L. Zhu, Compact and high-selectivity microstrip bandpass filtersusing triple-/quad-mode stub-loaded resonators [J]. IEEE Microw. WirelessCompon. Lett., Oct.2011, vol.21, no.10, pp.522-524.
    [134] Y. L. Chow and K. L.Wan, A transformer of one-third wavelength in twosections—For a frequency and its first harmonic [J]. IEEE Microw. WirelessCompon. Lett., Jan.2002, vol.12, no.1, pp.22–23.
    [135] C. Monzon, Analytical derivation of a two-section impedance transformer for afrequency and it first harmonic [J]. IEEE Microw. Wireless Compon. Lett., Oct.2002, vol.12, no.10, pp.381–382.
    [136] C. Monzon, A small dual-frequency transformer in two sections [J]. IEEE Trans.Microw. Theory Tech., Apr.2003, vol.51, no.4, pp.1157–1161.
    [137] L. Wu, H. Yilmaz, T. Bitzer, A. Pascht, and M. Berroth, A dual-frequencyWilkinson power divider: For a frequency and its first harmonic [J]. IEEEMicrow. Wireless Compon. Lett., Feb.2005, vol.15, no.2, pp.107–109.
    [138] L. Wu, Z. Sun, H. Yilmaz, and M. Berroth, A dual-frequency wilkinson powerdivider [J]. IEEE Trans. Microw. Theory Tech., Jan.2006, vol.54, no.1, pp.278–284.
    [139] Y. Wu, Y. Liu, and S. Li, A dual-frequency transformer for complex impedanceswith two unequal sections [J]. IEEE Microw. Wireless Compon. Lett., Feb.2009,vol.19, no.2, pp.77–79.
    [140] J.-T. Kuo, and E. Shih, Microstrip stepped impedance resonator bandpass filterwith an extended optimal rejection bandwidth [J]. IEEE Trans. Microw. TheoryTech., May2003, vol.51, no.5, pp.1554–1559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700