往复式机械管道噪声有源控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,有源消声技术(ANC)成为噪声控制领域的研究热点。它以体积小、重量轻、低频消声效果好等优点获得普遍关注。但是针对往复式机械进排气噪声主动控制却少有研究。本文结合往复式机械进排气噪声的特点,进行了管道噪声有源控制中降噪量影响因素及改进措施的研究。
     本文在综合分析管道声场理论和自适应算法理论的基础上,针对往复式机械进排气噪声的特性,以LabView为软件开发平台,编制了仿真和实验程序。仿真程序中的算法主要采用自适应控制中两种经典算法:最小均方算法(LMS)和最小二乘算法(RLS)。利用这两种算法进行了大量的仿真研究,分析了采样频率等因素对降噪量的影响,得出了一些有益于工程应用的结论。结合往复式机械进排气噪声主要由基频和倍频成分组成的特点,分析了基频与倍频混合信号在这两种算法下的消声效果。
     本文设计了管道噪声有源控制实验系统,分析了系统主要参数的选择依据,完成了系统的安装调试工作。实验研究主要应用LMS算法进行,直接采用LMS算法时,初级声源和次级声源间较大的相位差会严重影响消声量。针对这一问题,本文提出了一种延迟LMS改进方法。实验结果表明,延迟LMS方法较之直接LMS算法,消声量有明显提高。
     实验过程中,观察到误差传感器和次级声源在不同位置时对实验结果有一定影响,因此本文还进行了误差传感器和次级声源多种不同位置的消声效果对比研究,并得出如下结论:次级声源和初级声源反向较同向消声效果好,误差传感器在管道中心线较在中心线外消声效果好。
     上述结合往复式机械进排气噪声的特点的仿真研究和实验研究,较全面地分析了管道噪声有源控制消声量的影响因素及其变化规律,并提出了改进的控制算法,这些研究对往复式机械进排气噪声的有源控制有一定参考价值。
In recent decades, active noise control (ANC) has become a hot research subject in noise control field. With the advantages of small volume, light mass and effectiveness in low frequency, it attracts much attention. But the researchers have less focused on ANC for inlet and exhaust pipe of reciprocating machines. The critical factors influencing noise attenuation and improving measurements have been studied through the noise property in inlet and exhaust ducts of reciprocating machines.On the basis of the principles of acoustic field in a duct and ANC algorithms, simulated and experimental programmes were carried out aimed at the main frequencies of the noise from the inlet and exhaust pipe of reciprocating machines. The programmes for simulation and experimental study were developed by LabView.The simulation algorithms come from the classic control algorithms , which are the least mean square (LMS) and the recursive least mean square (RLS). A great deal of simulation study was accomplished with both algorithms and some factors such as sampling rate were analyzed on the level of noise attenuation. Then some useful conclusions were presented for the applications in engineering. Considering that the fundamental frequency and multiple frequencies make up the main frequencies in the noise of reciprocating machines, the signals mixed with the fundamental frequency and multiple frequecies were calculated by two algorithms.An experimental system for ANC in a duct was designed and the reasons for deciding major parameters of the system were analyzed. Installation and debugging of the system was completed. The experimental study is based on LMS and the experimental data showed that major phase difference existing between the two acoustic sources would affect noise reduction seriously. A new delayed LMS was brought forward to further improve the noise attenuation. The amount of noise attenuation was obviously increased.During the process of experiments, it found that different positions of error sensor and secondary acourstic source were compared in terms of noise attenuation result. The paper concluded that the best positon for the system is that
    the error sensor lay in the center of the duct and secondary acourstic source was opposite to primary acoustic source.The above simulation and experimental researches analyzed the influencing factors and changing tendency of noise reduction, and an improved algorithm was put forward. The research work has some referential value to the industrial application.
引文
[1] European Commission. Green paper-Futrue Noise Policy [J], NII, 1997, 5(2):77-98.
    [2] Eriksson. L. J. Recent trends in the development of active sound and vibration control systems [A], Prec. Noise-Cen'1994:271-278.
    [3] 陈克安,马远良.噪声源有源控制—原理,算法及实现[M].西安:西北工业大学出版社,1993.
    [4] 徐世勤,王樯.工业噪声与振动控制[M].2版,北京:北京冶金工业出版社,1999:110-113.
    [5] 徐永成,温熙森,陈循等.有源消声技术与应用述评[J].国防科技大学学报,2001,23(2):119-122
    [6] 陈克安,马远良,孙进才.有源消声理论的进展与发展趋势[J].噪声与振动控制,1992(4):28-33.
    [7] JESSEL M J M, MANGIANTE G A. Active sound absorbers in an air duct [J]. Jounal of Sound and Vibration.1972, 23(3):383-390.
    [8] SWINBANKS M A. The active control of sound propagation in long ducts [J]. Jounal of Sound and Vibration.1973, 27(3):411-436.
    [9] LEVENTHALL H G;EGHTESADI K. Active attenuation of noise: dipole and monopole system[A].Inter-Noise' 79[C]. Edinburgh: Noise Control Foundation, 1979, 175-180.
    [10] HONG W K W, EGHTESADI K, LEVENTHALL H G. The tight-coupled monopole system and tandem attenuators in a duct[A]. Inter-Noise'83[C]. Edinburgh:Noise Control Foudation, 1983, 439-442.
    [11] CHEN K T, CHEN Y H, HSUEH W J, et al. The study of an adaptively active control on the acoustic propagation in a pipe[J]. Applied Acoustic, 1998, 55(1): 53-56.
    [12] OLSON H F, MAY E G. Electronic sound absorber[J]. JASA, 1953, 25(6):1130-1136.
    [13] KIM H S, HONG J S, SOHN D G, et al. Development of an active muffler system for reducing exhaust noise and flow restriction in a heavy vehicle[J], Noise Control Joumal, 1999,47(2):57-63.
    [14] LEON H S. Adaptive Signal Processing[M]. New York: IEEE Press, 1987.
    [15] TOKHI M O, WOOD R. Neruo-adaptive active control of noise[A], IEE Colloquium on Active Sound and vibration Control[C]. London: The Institusion of Electrical Engineers, 1997,2/1-2/3.
    [16] KIM J B, LEE T P, YIM K H. Feedforward IIR active noise control using genetic algorithm[A]. Proc of the 1999 IEEE International Conference on Control Applications[C]. Hawaii: Noise Control Foundation, 1999, 1:436-441.
    [17] MATSUURA T, HIEI T, ITOH H, et al. Active noise control by using prediction of time series data with a neural network[A], IEEE International Conference on Systems, Man and Cybernetics, Intelligent Systems for thhe 21st Century[C]. Vancouver: Institute of Electrical and Electronics Engineers, 1995, 3:2070-2075.
    [18] TOOCHINDA V, KLAWITTER T, HOLLOT V C, et al. A single-input two-output feedback formulation for ANC problems[A]. Proceedings of the 2001 American Conference[C]. Arlington: IEEE, 2001, 2:923-928.
    [19] 冯津伟,沙家正.空间有源消声的声能量研究[J].声学学报,1996,21(5).
    [20] M. Jessel. Acoustic letter 4 (1981), 9, 174.
    [22] Munjal M L, Eriksson L J. An analytica, one-dimensional, standing-wave model of a linear active noise control system in a duct [J]. Jounal of Acoustic Society of America, 1998,84.
    [23] Sommeifeldt.SD, Nashif.P.J. An adaptive filtered-X algorithm for energy-based active control [J]. Noise and Vibration Worldwide, 1993,(1).
    [24] E.Eweda. Comparison of RLS, LMS and sign algorithms for tracking randomly time-varing channels [J]. IEEE transactions on signal processing, 1994,(11).
    [25] 王冲,孙朝晖.自适应空间有源消声中误差传感器的个数及位置优化[J].声学学报,1994,19(3).
    [26] 李毅民.与阻性消声器结合的自适应有源消声[J].国防科技大学学报,1996,18(2).
    [27] 马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社,2002,9:469-498.
    [28] 马大猷,沈壕.声学手册[M].北京:科学出版社,1983.
    [29] Jay Warner.Active noise control in an eff-road vehicle cab [J].Noise and Vibration Worldwide, 1995, (7): 452-563.
    [30] Dr.Colin Ross. Quieter air travel takes eft with active noise control [J].Noise and Vibration Worldwide, 1993, (1).
    [31] Nelson P A, Elliott S J. Active Control of Sound [M]. Academic Press,1992.
    [32] GMMT. Active noise-reduction headsets for fighting vehicles [J]. Noise and Vibration Worldwide, 1994, (2).
    [33] 季正林,沙家正.气流管道有源消声器声学性能分析[J].南京大学学报,1995,31(4).
    [34] 王冲,孙进才.分布声源的有源消声理论研究[J].振动工程学报,1993,6(2).
    [35] PETERSEN M O, PRATT P. Active noise control using robust feedback techniques[A].JCASSP 2001: International Conference on Accoustics, Speech arid Signal Processing[C]. Salt Lake City: IEEE, 2001, 52:3209-3212.
    [36] 费仁元,伊善贞.管道有源消声控制技术的发展与动向[J].北京工业大学学报,2003(3):257-261.
    [37] 雷振山.Labview 7 Express实用技术教程[M].北京:中国铁道出版社,2004:265-269.
    [38] 吴斌,费仁元,周大森.管道噪声有源控制的声学特性研究理论部分[J].北京工业大学学报.2003,29(4):411-413.
    [39] 曾成,张奇志.管道低频宽带噪声自适应有源控制的实验研究[J].噪声控制,2001,(5):18-20.
    [40] 郭文勇,黄映云,朴甲哲.柴油机排气噪声有源控制的实验研究[J].内燃机学报,2001,19(1):39-42.
    [41] 栾晓锐,陈端石,孙旭.H-控制理论在管道降噪中的仿真实验研究[J].噪声与振动控制,2001(3):2-5.
    [42] 杨庆佛.内燃机噪声控制[M].山西:山西人民出版社,1985:49-54.
    [43] 吴斌,费仁元,周大森,等.基于神经网络的动反馈管道有源消声系统声学通道辨识[J].机械工程学报,2002,38(2):100-103.
    [44] 陈克安.有源噪声控制[M].北京:国防工业出版社,2003:63-87.
    [45] 靳晓雄,胡子谷.工程机械噪声控制学[M].上海:同济大学出版社,1997:85-98.
    [46] Morgan D R, IEEE Trails, ASSP-28, 1980, (Aug): 454-467.
    [47] Elliott S J, Nelson P A. Active Noise Control. IEEE Signal Process Mag.1993, 10(4):12-35.
    [48] Burgess J C. Active Adaptive Sound Control in a duct: a Computer Simulation. J Acoust Soc Am, 1981, 70(3): 715-726.
    [49] Kuo S M, Panahi I, Chuang K M, Homer T, Nadeski M,Chyan J.Design of Active Noise Control Systems With The TMS320 Family. Application Report of TI, Digital Signal Processing Solutiongs, 1996.
    [50] 张奇志,周雅莉,贾永乐.一维噪声的有源控制[J].北京机械工业学院学报,2000,15(1):6-12.
    [51] Eriksson L J, Allie M C, Greiner R A. The Selection and Application of an IIR Adaptive Filter for use in Active Sound attenuation[C]. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-35, 1987:433-437.
    [52] B.维德罗,S.D.史蒂恩斯.自适应信号处理[M].王永德,龙宪惠译.四川:四川大学出版社,1989.
    [53] S.J.Elliott, I.M.Stothers and P.A.Nelson. A Multiple Error LMS Algorithm and Its Application to the Active Control of Sound and Vibration[C].IEEE Transactions on Acoustics,Speech and Signal Processing.ASSP-35,1987:1426-1434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700