微纳结构光学微腔中的光学双稳与耦合慢光传输
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是一种折射率在空间周期性变化的介电结构,具有光子禁带和光子局域等特性,由光子晶体制成的器件可以方便地控制光子行为,使其在应用方面显示巨大潜力。表面等离子体激元(SPPs)是一种由外界光场与金属表面电子相互作用而产生的在金属和电介质界面上传播的电磁波模式,具有突破衍射极限和局部场增强效应特性。以光子晶体和SPPs作为信息载体是实现集成光子器件小型化,提高系统集成度的有效途径之一。本文根据集成光学的原理,设计了基于光子晶体、SPPs的集成光子器件,并采用时域有限差分(FDTD)、传输矩阵(TMM)等数值模拟技术分析了这些器件的光学性能。结果表明,利用这些光子器件,可以在微纳米尺度范围操纵光子行为,为构建新型功能光学系统和光学集成提供新的方案。本文的工作分为以下几个方面:
     1.基于SPPs纳米微腔的光学双稳态及其器件应用
     SPPs能将电磁场能量聚集在很小的空间范围,具有巨大的局部场增强效益。在狭缝金属波导内放入非线性介质,利用非线性Kerr效应和由金属-非线性介质-金属所构成的纳米SPPs Fabry-Perot微腔形成的正反馈机制,可以实现纳米结构的光学双稳器件。且由于SPPs所具有的局部场增强效应,该双稳器件可以满足较小的输入光强获得较大的腔内光强及非线性响应,而实现低输入光强的双稳态效应。在填充以长度为300nm厚度为30nmGaAs非线性介质的Ag-GaAs-Ag腔内,利用FDTD方法计算了不同入射光强下的透射曲线及不同波长情况时的输入输出关系曲线,验证了该纳米器件可以实现光学双稳。而且由于SPPs的局部增强效应,导致这种双稳态可以在低入射光强条件下发生。因此,可望用于高密度光学集成网络中的光开关、光学三极管等等光子器件。
     2.基于SPPs耦合共振波导(CROW)的可调谐慢光及光时分复用(OTDM)
     增益介质填充于二维金属微型环内并排列构成SPPs CROW用以实现连续可调谐慢光。对于群速度而言,其大小和折射率的相对变化率密切相关,故结构中的群速度与CROW本身结构所对应的色散特性及增益介质共振频率附近色散变化特性都有依赖关系。通过调节增益强度改变增益介质色散则可以放大或缩小由CROW几何结构所决定的群速度,并由此得到可连续调谐慢光。介电常数具有Lorentz模型的增益介质被填充于由4个金属Ag环组成的长度为2.32um二维有限CROW,通过调节增益强度的办法,实现了可调谐时间延迟。利用传输矩阵方法推导了其透射率、色散曲线及群折射率,利用FDTD数值模拟了脉冲在该结构中的可调谐时间延迟特性。最后把该结构应用到OTDM系统,实现了较宽比特率范围内的输入信号复用。
     3.局部准周期光子晶体CROW与多通道慢光
     局部准周期光子晶体可以代替准周期光子晶体并实现准周期光子晶体独特性能。利用局部准周期光子晶体缺陷构造CROW结构使光子同时受到局域与导引的双重作用,既可实现慢光效应又可得到高的透射率。多个CROW结构排列在一起则可以实现局部准周期光子晶体的多通道慢光。该结构既能保证各通道良好的传输特性,又能得到较大的群折射率。研究了由方形格点组成的包含十二重准周期结构的二维正三角周期光子晶体的特性,利用平面波展开法计算了其能带机构。使用FDTD计算了该局部准周期光子晶体缺陷构造的CROW结构及多个CROW排列所形成的多通道结构的透射特征,验证了其多通道和慢光特性。其多通道的特性可直接构成波分复用器件应用于高密度光学集成系统。
Photonic crystals (PCs), which have periodic varied refractive index, have the characteristics of photonic band gaps and photonic localization. PC-based devices can make photon easily to be controlled and show wide potential application. Surface plasmon polaritons (SPPs) are surface waves tending to propagate along the interface between metals and dielectrics. And SPPs can transfer optical signals beyond the diffraction limit and show stong local field on the metal surfaces. According to the properties of PCs and SPPs, an effective way to reduce the photonic devices' volume and improve the density of integration can be found by taking PCs and SPPs as information carriers. In this disseration, by taking advantage of the well-known optical principles, we have designed three SPPs-based and PC-based integrated photonic devices and further confirmed the optical properties of these devices by the finite-difference time-domain (FDTD) method, transfer matrix method (TMM) and other simulation method, respectively. Our results may provide some ways to construct novel functional optical components and integration systems of photonic network. The main work of this disseration includes the following three parts:
     1. Optical bistability(OB) in plasmonic nanocavities and its application
     SPPs are well known as the abilities of confining and enhancing the local optical field intensity. Taking the advantage of SPPs, OB can be realized in plasmonic nanovavity. In this part, a Fabry-Perot nanocavity is constructed by filling a piece of optical Kerr medium into the metal gap waveguides (MGWs). And the OB effects are observed in low incident power due to the strong local field of SPPs. Here, the nanocavity is constructed by a piece of GaAs layer with thickness of 30 nm and length of 300 nm. FDTD numerical simulations are performed to calculate the transmission spectra and output-input intensity relations. The results show the hysteresis loop of bistability in the case of with low incident intensity due to the enhancement of SPPs. The result implies a feasible way for constructing nanoscale optical logical gates, switches, all-optical transisitors etc. for high density integration of optical circuits.
     2. Continuously tunable slow light in plasmonic coupled resonator optical waveguide (CROW) and optical-time-division-multiplexing (OTDM)
     By filling optical active materials in two-dimensional metal rings, we construct a SPPs CROW to achieve continuously tunable slow light. It is well known that the group velocity is related to the relative variation of dielectric refractive index. So in SPPs CROW, the group velocity can be independently controlled by either the active material dispersion or dispersion from CROW geometry structure. To tune the gain strength, the varied material dispersion can lead to amplified or attenuated group velocity produced by the geometry structure, and so the continuously slow light can be obtained. We propose a structure constructed by filling a Lorentz model active material in 4 Ag-rings CROW. The tunable time delay is realized in it by tuning the gain strength. TMM is performed to calculate the transmission, dispersion relation and group index. FDTD method is performed to simulate the time evolution of input pulses to demonstrate the time delay. Based on this structure, a variable-bit-rate OTDM system in wide range of incoming bit-rates can be realized.
     3. CROW by photonic crystal with portion of photonic quasicrystals and its multi-channel slow light properties
     PC constructed with portion of quasiperiodic structures can realize the properties of photonic quasicrystals. CROW in this structure is designed for slow light. Here, a two-dimensional periodic triangular photonic crystal structures constructed with a portion of 12-fold symmetric photonic quasicrystals was proposed for multi-channel slow light. We perform plane wave expansion method to calculate its photonic band gaps and FDTD to demonstrate calculate the transmisson of the CROWs and property of the multi-channel slow light.
引文
[1]S. E. Miller, "Integrated Optics:An Introduction," Bell Sys. Tech. J.1969;48:2059-61.
    [2]E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett.1987;58:2059-62.
    [3]S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett.1987;58:2486-89.
    [4]E. A. Stern, and R. A. Ferrell, "Surface Plasma Oscillations of a Degenerate Electron Gas," Phys. Rev.1960;120:130-36.
    [5]张建标,”光子晶体的研究进展,”红外2006;27:29-34.
    [6]刘丹,马仁敏,王菲菲,张增星,张振生,张学进,王笑,白永强,朱星,戴伦,章蓓,“纳米集成光路中的光源、光波导和光增强,”物理学报2008;57:371-81.
    [7]小林功郎,光集成器件,科学出版社,2002.
    [8]唐天同,王兆宏,集成光学科学出版社,2005.
    [9]张彤,崔一平,”集成光学国际研究进展,”电子器件2004;27:196-201.
    [10]J. Reichel, "BEC in a microchip trap:Integrated atom optics," Conference on Quantum Electronics and Laser Science-Technical Digest Series,2002.
    [11]A. Taflove, and S.C. Hagness, Computational Electrodynamics:The Finite-difference Time-domain Method, Artech House,2000.
    [12]R.C. Alferness, and T. Tamir, Guided-wave optoelectronics, Springer-Verlag,1988.
    [13]M. Plihal, and A.A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 1991;44:8565-71.
    [14]V. Kuzmiak, A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B 1994;50:16835-44.
    [15]J. Xue, and S. Forrest, "An organic optical bistable switch, Technical Digest-International Electron Devices Meeting," Technical Digest-International Electron Devices Meeting,2002. p.913-15.
    [16]E. Mateo, J. Linares, and C. Montero, "Intrinsic bistability achieved by transverse model coupling in a nonlinear integrated optical device," J. Opt. A:Pure Appl. Opt. 2002;4:562-70.
    [17]V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp.1968;10:509-14.
    [18]J.B. Pendry, and A.J. Holderi, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech.1999;47:2075-84.
    [19]H. Sozuer, L. Haus, and R. Inguvr, "Photonic band:convergence problem with the plane wave method," Phys. Rev. B 1992;45:13962-65.
    [20]Y.S. Chan, C.T. Chan, and Z.Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. B 1998;80:956-59.
    [21]M.E. Zoorob, M.D.B. Charlton, G.J. Parker, J.J. Baumberg, and M.C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 2000;404:740-43.
    [22]W. Man, M. Megens, P.J. Steinhardt, and P.M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 2005;436:993-96.
    [23]H. Shin, and S. Fan, "All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure," Phys. Rev. Lett.2006;96:73907.
    [24]X. Fan, G.P. Wang, J.C.W. Lee, and C.T. Chan, "All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range:Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett.2006;97:73901.
    [25]M. Notomi, "Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 2000;62:10696-705.
    [26]E. Yablonovitch, T.J. Gmitter, and K.M. Leung, "Photonic Band Structure:The Face-Centered-Cubic Case Employing Nonspherical Atoms," Phys. Rev. Lett. 1991;67:2295-98.
    [27]E. Ozbay, E. Michel, and G. Tuttle, "Micromachined millimeter-wave photonic band-gap crystals," Appl. Phys. Lett.1994;64:2059-61.
    [28]S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, W. Zubrzycki, S. R. Kurtz, J. Bur, R. Biswas, K. M. Ho, and M. M. Sigalas, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 1998;394:251-53.
    [29]V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys.1997;82:60.
    [30]M. Campbell, N. D. Sharp, and T. M. Harrison, "Fabrication of photonic crystals for the visible spectrum by holography," Nature 2000;404:53-56.
    [31]Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 2005;86:173108.
    [32]Y. Yang, S. Zhang, and G. P. Wang, "Fabrication of two-dimensional metallodielectric quaiscrystals by single-beam holography," Appl. Phys. Lett.2006;88:251104.
    [33]Y. Yang, and G. P. Wang, " Realization of periodic and quasiperiodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography," Appl. Phys. Lett 2006;89:111104.
    [34]Y. Yang, and G. P. Wang, "Single-beam holography for Ag nanoparticle--embedded two-dimensional binary metallodielectric photonic crystals," Appl. Opt.2007;46:84-86.
    [35]I. Tarhan, and G. H. Watson, "Photonic band structure of fcc colloidal crystal," Phys. Rev. Lett.1996;76:315-18.
    [36]Y. Ono, and Ikemoto, K, "Fabrication of arbitrary three-dimensional photonic crystals by four plane-waves interference," Micromachining Technology for Micro-optics and Nano-optics, E. G. Johnson, presiding of SPIE,2003. p.70-78.
    [37]L. Yuan, G. P. Wang, and X. Huang, "All arrangements of four beams for any Bravais lattice.," Opt. Lett.2003;28:1769-71.
    [38]X. Wang, C. Y. Ng, W. T. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv.Mater.2003;15:1526-28.
    [39]邹丽娜,郑咏梅,施宏艳,申铉国,”光子晶体的研究新进展及应用,”半导体光电2006;27:231-35.
    [40]S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 2000;407:608-10.
    [41]W. Suh, and S. Fan, "Mechanically switchable photonic crystal filter with either all-pass transmission or flattop reflection characteristics," Opt. Lett.2003;28:1763-65.
    [42]T. D. Drysdale, and R. J. Blaikie, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett.2003;83:5362-64.
    [43]H. Nemec, "Thermally-tunable filter for terahertz range based on a one-dimensional photonic erystal with a defect," J. Appl. Phys.2004;96:4072-75.
    [44]S. Gupta, G. Tuttle, and M. SigMas, "Infrared filters using metallic photonie band gap structures on flexible substrates," Appl. Phys. Lett.1997;71:2412-14.
    [45]E. R. Brown, and C. D. Parker, "Radiation properties of a plan ar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B 1993;10:404.
    [46]Y. Akahane, T. Asano, and B. S. Song, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 2003;425:944-47.
    [47]X. Wu, A. Yamilov, and X. Liu, "Ultraviolet photonic crystal laser," Appl. Phys. Lett.2004;85:3657-59.
    [48]H. Ahug, and J. Vuakovic, "Photonic crystal nanocavity array laser," Opt. Express 2005;13:8819-28.
    [49]A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J.D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett.1996;77:3787-90.
    [50]J. D. Joannopoulos, P. R. Villeneuve, and Fan.S., "Photonic crystals:putting a new twist on light," Nature 1997;386:143-47.
    [51]P. S. J. Russell, "Recent progress in photonic crystal fibers," Proe. OFC 2000;3:982-1000.
    [52]H. C. Nguyen, B. T. Kuhlmey, and M. J. Steel, "Tapered photonic crystal fibres: properties, characterisation and applications," Appl. Phys. B 2005;81:377-87.
    [53]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, M. Notolnj, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 1998;58:R10090-R99.
    [54]G. D. Aguanno, M. Centini, M. Scalora, C. Sinilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, "Group velocity,enegy velocity, and superluminal propagation in finite photonic band-gap structures," Phys. Rev. E 2001;63:036610-46615.
    [55]N. H. LIu, S. Y. Zhu, H. Chen, and X. Wu, "Superluinal pulse propagation through one-dimensional photonic crystals with a dispersive defect," Phys. Rev. E 2002;65:046607-15.
    [56]M. Soljacic, and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater.2004;3:211-13.
    [57]E. Yablonovitch, "Photonic bandgap based designs for nano-photonic integrated circuits," Technical Digest-International Electron Devices Meeting,2002. p.17-20.
    [58]R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev. 1957;106:874-81.
    [59]C. J. Powell, and J. B. Swan, "Origin of the Characteristic Electron Energy Losses in Aluminum," Phys. Rev.1959;115:869-75.
    [60]B. Rothenhaeusler, and W. Knoll, "Surface-plasmon microscopy," Nature 1988;332:615-17.
    [61]S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics:A Route to Nanoscale Optical Devices," Advanced Mater. 2001;13:1501-05.
    [62]J. R. Krenn, and J. C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 2004;362:739-56.
    [63]K. Tanaka, and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett 2003;82:1158-60.
    [64]K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express 2005;13:256-66.
    [65]D. F. P. Pile, and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett.2004;29:1069-71.
    [66]D. F. P. Pile, and D. K. Gramotnev, "Nanoscale Fabry-Perot interferometer using channel plasmon-polaritons in triangular metallic grooves," Appl. Phys. Lett 2005;86:161101.
    [67]D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett 2005;87:061106.
    [68]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 2005;95:046802.
    [69]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 2006;440:508-11.
    [70]S. I. Bozhevolnyi, "Channeling surface plasmons," Photon Spectra 2006;40:62-64.
    [71]S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett.1996;77:2670-73.
    [72]J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 2004;70:235406.
    [73]B. Wang, and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl Phys Lett 2005;87:013107.
    [74]T. W. Ebbesen, H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 1998;391:667-69
    [75]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T.W. Ebbesen, "Beaming light from a subwavelength aperture," Science 2002;297:820-22.
    [76]J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 2000;85:3966-69.
    [77]W. Lin, X. Zhou, and G. P. Wang, "Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays," Appl. Phys. Lett 2007;91:243113.
    [78]K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett.1997;78:1667-70.
    [79]S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 1997;275:1102-06.
    [80]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 2003;424:824-30.
    [81]方俊鑫,曹庄琪,杨傅子,光泼导友术物理基础,上海交通大学出版社,1987.
    [82]A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift fur Physik A 1968;216:398-410.
    [83]E. Kretschmann, and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A 1968;23:2135-36.
    [84]H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag,1988.
    [85]V. M. Agranovich, and D. L. Mills, Surface Polaritons, North-Holland, Amsterdam, 1982.
    [86]L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, "Local excitation of surface plasmon polaritons at discontinuities of a metal film: Theoretical analysis and optical near-field measurements," Phys. Rev. B 2002;65:125409.
    [87]D. W. Phohl, and D. Courjon, Near Field Optics, Kluwer,1993.
    [88]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater.2003;2:229-32.
    [89]K. Tanaka, and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 2004;95:3765-71.
    [90]K. Tanaka, M. Tanaka, and T. Sugiyama, "Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics," Appl. Phys. Lett 2005;87:151116.
    [91]C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, and J.L. Pelouard, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett.2008;92:011125.
    [92]G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett.2006;97:057402.
    [93]C. J. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, "Optical bistability in subwavelength metallic grating coated by nonlinear material," Opt. Express 2007;15:12368-73.
    [94]K. S. Yee, "Numerical solution of boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag.1966;14:302-07.
    [95]H. Klingbeil, K. Beilenhoff, and H. L. Hartnagel, "FDFD full-wave analysis and modeling of dielectric and metalliclosses of CPW short circuits,", IEEE Trans. Microwave Theory Tech.1996;44:485-87.
    [96]郭硕鸿,电动力学,高等教育出版社,1996.
    [97]葛德彪,闫玉波,电磁波时域有限差分方法,西安电子科技大学出版社,2002.
    [98]X. Wang, and K. Kempa, "Negative refraction and subwavelength lensing in a polaritonic crystal," Phys. Rev. B 2005;71:233101.
    [99]谈春雷,易永祥,汪国平,“一维金属光栅的透射光学特性,”物理学报2002;51:1063-67.
    [100]易永祥,汪国平,龙拥兵,单红,“二维亚波长金属小孔阵列的透射光增强效应,”物理学报2003;52:604-08.
    [101]B. Engquist, and A. Majda, "Absorbing boundary conditions for the nu-merical simulation of waves," Math. Comput.1977;31:629-51.
    [102]G. Mur, "Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations," IEEE Trans. Electromagnetic Compat.1981;EMC-23:377-82.
    [103]Z. S. Sacks, D. M. Kingsland, and R. Lee, "A perfectly matched anisotropic absorber for use as an absorbingboundary condition," IEEE Trans. Antennas Propag.1995;43:1460-63.
    [104]S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag.1996;44:1630-39.
    [105]J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 2004;12:90-103.
    [106]Y. Yang, and G. P. Wang, "Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals," Opt. Express 2007;15:5991-96.
    [107]M. Soljacic, M. Ibanescu, S.G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 2002;66:055601(R).
    [108]李福利,高等激光物丽学,中国科技大学出版社,1992.
    [109]H. M. Gibbs, Optical Bistability:Controlling Light with Light, Academic,1985.
    [110]P. W. Smith, "Electro-optic nonlinear Fabry-Perot devices," IEEE J. Quantum Electron 1978;14:207-09.
    [111]K. H. Lcvin, and C. L. Tang, "Optical switching and bistability in tunable lasers," Appl. Phys. Lett 1979;34:376-78.
    [112]J. E. Bjorkholm, and P. W. Smith, "Optical bistability based on self-focusing," Opt. Phys. Lett.1981;6:345.
    [113]H. M. Gibbs, and S. S. Tang, "Room-temperature excitonic optical bistability in a GaAs-GaAlAs superlattice etalon," Appl. Phys. Lett 1982;41:221.
    [114]D. A. B. Miller, "Refractive Fabry-Perot Bistability with Linear Absorption:Theory of Operation and Cavity Optimizeion," IEEE J. Quantum Electron. QE 1981;17:306-11.
    [115]R. W. Boyd, Nonlinear Optics, Academic,1992.
    [116]H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett.1979;35:379-81.
    [117]G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A.A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett 1988;35:379-81.
    [118]G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhoutm, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 2005;13:9623-28.
    [119]E. Centeno, and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 2000; 62:R7683-R86.
    [120]M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B.2002;19:2224-31.
    [121]X. Chen, "Intrinsic optical intersubband bistability and saturation in a quantum well microcavity structure," J. Opt. B:Quantum Semiclass. Opt.1999;1:524-28.
    [122]A. Husakou, and J. Herrmann, "Steplike Transmission of Light through a Metal-Dielectric Multilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant," Phys. Rev. Lett.2007;99:127402.
    [123]H. T. Miyazaki, and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett.2006;96:097401.
    [124]H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett 1979;35:451-53.
    [125]I. P. Kaminow, W. L. Mammel, and H. P. Weber, "Metal-Clad optical waveguides: analytical and experimental study," Appl. Opt.1974;13:396-405.
    [126]B. Wang, and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.2005;87:013107.
    [127]R. M. Joseph, and A. Taflove, "FDTD Maxwell's Equations Models for Nonlinear Electrodynamics and Optics," IEEE Trans. Antennas Propag.1997;45:364-74.
    [128]S. Martellucci, and A.N. Chester, Integrated Optics Physics and Applications, Plenum, 1983.
    [129]E. D. Palik, Handbook of Optical Constants of Solids, Academic,1985.
    [130]P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a Vertical-Cavity Semiconductor Optical Amplifier (VCSOA)," Opt. Express 2002;10:1273-78.
    [131]J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 2004;70:081402(R).
    [132]J. K. S. Poon, j. Scheuer, Y. Xu, and A. Yariv, "Designing coupled-resonator optical waveguide delay lines," J. Opt. Soc. Am. B 2004;21:1665-73.
    [133]G. T. Paloczi, Y. Huang, and A. Yariv, "Polymeric Mach-Zehnder interferometer using serially coupled microring resonators," Opt. Express 2003;11:2666-71.
    [134]B. Zhang,1. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Express 2007;15:8317-22.
    [135]I. Fazal,O. Yilmaz, S. Nuccio, B. Zhang, A. E. Willner, C. Langrock, and M. M. Fejer, " Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion," Opt. Express 2007;15:10492-97.
    [136]L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 1999;397:594-98.
    [137]Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," 2005;94:153902.
    [138]Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 2005;438:65-69.
    [139]A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide:a proposal and analysis," Opt. Lett.1999;24:711-13.
    [140]J. K. S. Poon,1. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett.2006;31:456-58.
    [141]S. Mookherjea, "Using gain to tune the dispersion relation of coupled-resonator optical waveguides," IEEE Photon. Technol. Lett.2006;18:715-17.
    [142]A. A. Govyadinov, and V. A. Podolskiy, "Gain-assisted to superluminal group velocity manipulation in nanowaveguides," Phy. Rev. Lett.2006;97:223902.
    [143]E. Ozbay, "Plasmonics:merging photonics and electronics at nanoscale dimensions," Science 2006;311:189-93.
    [144]A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, "Optical signal processing using tunable delay elements based on slow light," IEEE J. Quantum Electron. 2008;14:691-705.
    [145]A. A. Govyadinov, and V. A. Podolskiy, "Active metamaterials:Sign of refractive index and gain-assisted dispersion management," Appl. Phys. Lett.2007;91:191103.
    [146]Y. Shen, and G. P. Wang, "Optical bistability in metal gap waveguide nanocavities," Opt. Express 2008;16:8421-26.
    [147]I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, "Bent planar waveguides and whispering gallery modes:a new method of analysis," J. Lightw. Technol.1990;8:768-74.
    [148]P. Yeh, A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. B 1977;67:423-38.
    [149]S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouang, and D. Bimberg, "Excited-state gain dynamics in InGaAs quantum-dot amplifiers," IEEE Photon. Technol. Lett.2005;17:2014-16.
    [150]V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.J. Eisler, and M.J. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 2000;290:314-17.
    [151]G. M. Ribeiro, R. L. Maltez, A. A. Bernussi, D. Ugarte, and J. W. de Carvalho, "Seeding of InP islands on InAs quantum dot templates," J. Appl. Phys. 2001;89:6548-50.
    [152]Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 2004;69:056604
    [153]A. Sharkawy, A. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Applied Optics 2001;40:2247-52.
    [154]P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals:Mode symmetry, tunability, and coupling efficiency," Phy. Rev. B 1996;54:7837.
    [155]Y. Q. Wang, J. Liu, B. Zang, S. Feng, and Z. Y. Li, "Simulations of defect-free coupled-resonator optical waveguides constructed in 12-fold quasiperiodic photonic crystals," Phy. Rev. B 2006;73:155107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700