蜂窝催化剂中甲醇自热重整制氢反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以研发高效的氢源系统为目标,采用实验研究、理论分析和数值模拟相结合的方法对ZNO-CR2O3/CEO2-ZRO2整体催化剂上的甲醇自热重整制氢反应进行了系统的研究,解决了甲醇重整制氢过程中重整催化剂和反应器的优化设计以及放大过程涉及的反应工程问题。
     通过正交实验系统研究了整体催化剂上甲醇自热重整制氢体系的反应动力学;利用方差分析得出反应温度、空速、水醇摩尔比和氧醇摩尔比都是影响甲醇的转化率、氢产率和CO选择性的重要因素,而且其影响的显著程度依次减弱。
     采用平板式石英玻璃反应器测试了蜂窝催化剂内的轴向浓度分布,并据此对甲醇自热重整反应的反应路径进行了探讨。结果表明,甲醇水蒸气重整反应在整个催化剂床层上发生,而甲醇完全氧化反应和甲醇分解反应则主要在催化剂床层前段发生。
     建立了蜂窝反应器内多反应耦合过程的三维数学模型,运用CFD软件对重整器内的温度分布、浓度分布进行了数值计算,模拟与实验结果吻合良好。对蜂窝反应器进行结构优化设计,分析了催化剂长度、高径比、开孔率和载体材质对反应特性的影响,得出此蜂窝反应器最优的结构参数。
     采用多孔介质模型考察了反应器入口分布方式对75kW重整制氢系统反应效果的影响,并对放大后的反应器内的流场分布进行了数值模拟,结果表明该模型能够比较准确地预测反应器内的场分布。研究了反应器的入口扩张管对反应的影响规律,为反应器的最优化设计提供了理论指导。
This paper focused on developing a fuel processing system with high efficiency. The reaction of autothermal reforming of methanol (ATR) over ZnO-Cr2O3/CeO2-ZrO2 monolithic catalyst was investigated by the experimental and theoretical studies. The problems involved in the optimization and scale-up of monolithic catalyst and reactors were discussed.
     Kinetics of ATR reaction over monolithic catalyst was studied by means of orthogonal experiment. A power-type rate expression was established, and its accuracy was proved by F-examination. Effects of different operating conditions on ATR reaction were investigated by analysis of variance. It was proved that the highly notable influence factors were reaction temperature and space velocity.
     The concentration profiles of the monolithic catalyst were measured by novel flat-bed reactor and sliced catalyst. The reaction pathways for ATR were discussed according to the results of concentration distribution. It was proved that the steam reforming of methanol happened in the whole parts of the catalyst; whereas the reactions of methanol decomposition and total oxidation of methanol mainly occured in the initial stage of the catalyst.
     A three-dimensional mathematical model was established to describe the ATR reaction process in monolithic reactor. Distribution of concentration in the reactor had been calculated. Effects of the mole ratio of water/methanol, oxygen/methanol, temperature and gas hourly space velocity (GHSV) on the performance of monolithic reactor had also been simulated by the model. Mathematical simulations of the concentration distribution in monolith reactor were in good agreement with the experiments. The effects of configuration parameters of monolithic reactor on reaction were investigated, such as the length of catalyst, the ratio of height/diameter of catalyst, the porosity of catalyst bed, and even the substrate materials of the catalyst. Optimal design of the monolithic reactor was achieved.
     The effect of different distributors in 75kW reformer on the performance of ATR system was investigated. Porous media model was chosen to simulate the temperature distribution of the scale-up reactor. The computational results indicate that this model can predict the field distribution of monolithic reactor accurately. The effect of different expanding tubes on reaction performance was also discussed. The result indicates that 120o expanding tube should be chosen preferentially.
引文
1. 中国科学院能源战略研究组.中国能源可持续发展战略专题研究. 北京:科学出版社,2006.215-291.
    2. Richard S. Fuel cell technology for vehicles. U.S.A: Society of Automotive Engineers, Inc., 2001:21-35.
    3. 汪丛伟,周帅林,洪学伦,王树东. 燃料电池汽车氢源选择的研究进展和预测.化学通报,2005, 68(1): 30-35.
    4. 王树东,洪学伦,孙柏铭,邱彤,周帅林,汪丛伟. 国家 863 计划 (2001AA501984) “燃料电池汽车氢源基础设施工程前期研究”总报告,2002 年 7 月. 26-116.
    5. Wang C, Zhou S, Hong X, Qiu T, Wang S. A comprehensive comparison of fuel options for fuel cell vehicles in China. Fuel Processing Technology, 2005,86:831-845.
    6. Pour V, Barton J and Benda A. Kinetics of Catalyzed Reaction of Methanol with Water Vapour.Coll Czechoslov Chem. Commun, 1975, 40:2923-2934.
    7. Cubeiroa M L, Fierro J L G. Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A: General 1998, 168: 307-322.
    8. Angelo B, Fausto G and Luca P. Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor. Catalysis Today, 2005, 104 (2-4): 251-259.
    9. Huang T, Wang S. Hydrogen production via partial oxidation of methanol over a copper-zinc catalyst. Applied Catalysis, 1986, 24(1-2):287-297.
    10. Velu S, Suzuki K, Okazaki M,Kapoor M P, Osaki T, Ohashi F. Oxidative steam reforming of methanol over CuZnAl(Zr)-Oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation, Journal of Catalysis, 2000, 194:373-384.
    11. Velu S, Suzuki K, Osaki T. Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides. Catalysis Letters, 1999, 62:159-167.
    12. Lindstrom B, Agrell J, Pettersson L J, Combined methanol reforming for hydrogen generation over monolithic catalysts, Chemical Engineering Journal, 2003,93:91-101.
    13. Ahmed S, Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells, International Journal of Hydrogen Energy, 2001, 26:291-301.
    14. Agrell J, Birgersson H and Boutonnet M. Steam reforming of methanol over Cu-ZnO-Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources, 2002, 106 (1-2):249-257.
    15. Kasaoka S, Sasaoka E, and Yokota Y. Reaction performance of methanol reforming with steam over various impregnated and coprecipitated copper-catalysts. Kagaku Kogaku ronbunshu, 1991,17:288
    16. Idem R O, Bakhshi N N. Production of hydrogen from methanol .2. experimental studies. Industrial & Engineering Chemistry Research, 1994, 33: 2056
    17. Zhang X R, Shi P. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts. Fuel Processing Technology, 2003, 83:183-192.
    18. Zhang X R, Shi P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts, Journal of Molecular Catalysis A: Chemical, 2003, 194: 99-105.
    19. Takahashi H, Takahashi K, Takezawa N. Steam reforming of methanol over group-VIII metals supported on SiO2, Al2O3 and ZrO2.Reaction Kinetics and Catalysis Letters, 1994, 52:303.
    20. Iwasa N, Takezawa N. Steam reforming of methanol over Ni, Co, Pd and Pt supported on ZnO, Reaction Kinetics and Catalysis Letters, 1995, 55:349.
    21. 王胜年,洪学伦,王树东,吴迪镛. Cr-Zn 催化剂上甲醇水蒸汽重整反应动力学 I. 本征动力学.石油化工,2001, 30(4) :259-262.
    22. Alejo L, Lago R, Pena M A, Fierro J L G. Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts. Applied Catalysis A: General, 1997, 162:281-297.
    23. Navarro R M, Pena M A, Fierro J L G. Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: influence of the initial state of the catalyst on the start-up behavior of the reformer. Journal of Catalysis, 2002, 212: 112-118.
    24. Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 1989, 115:301-309.
    25. Chang F, Yu H, Roselin L S, Yang H, Ou T. Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides. Applied Catalysis A: General, 302:157-167.
    26. Reitz T, H. H. Kung, Time-resoved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction, Journal of Catalysis, 2001, 199: 193-201.
    27. Velu S, Suzuki K, Osaki T. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts: a new and efficient method for the production of CO-free hydrogen for fuel cells, Chemical Communication, 1999, 20:2341-2342.
    28. Turco M, Bagnasco G, Costantino U, Busca G. Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 2004, 228: 43–55.
    29. Turco M, Bagnasco G, Costantino U, Busca G. Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts, Journal of Catalysis, 2004, 228: 56–65.
    30. Liu S, Takahashi K, Ayabe M. Hydrogen production by oxidative methanol reforming onPd/ZnO catalyst: effects of Pd loading, Catalyst Today, 2003, 87:247–253.
    31. Liu S, Takahashi K, Uematsu K, Ayabe M. Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component, Applied Catalysis A: General, 2004, 277: 265–270.
    32. Liu S, Takahashi K, Uematsu K, Ayabe M. Hydrogen production by oxidative methanol reforming on Pd/ZnO,Applied Catalysis A: General, 2005, 283: 125–135.
    33. 亓爱笃,洪学伦,王树东,付桂芝,吴迪镛,甲醇氧化重整催化剂的研究,现代化工,2000 , 20 (7) :37-39.
    34. 刘娜,王树东,袁中山.甲醇自热重整制氢整体催化剂的制备.化工学报,2004,第55 卷增刊:90-94.
    35. 李永峰,董新法,林维明,甲醇-水蒸气转化反应机理的研究进展,天然气化工 2002,27: 30-32.
    36. Santacesaria E, Carra S. Kinetics of catalytic steam reforming of methanol in a cstr reactor. Applied Catalysis, 1983, 5:345-358.
    37. Amphlett J C, Evans M J, Jones R A, Mann R F and Weir R D. Hydrogen production by the catalytic steam reforming of methanol Part 2: Kinetics of methanol decomposition using girdler G66B catalyst. Canadian Journal of Chemical Engineering, 1985, 63(4):605-611.
    38. Vanderborgh N E, Goodby B E, Springer T E. Oxygen exchange reactions during methanol steam reforming, in: Proceedings of the 32nd International Power Sources Symposium, 1986, 623-628.
    39. Kobayashi H, Takazawa N, Minochi C. Methanol reforming reaction over a copper-containing mixed oxides, Chemistry Letters,1976:1347-1350.
    40. Takahashi K, Takezawa N, Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst. Applied Catalysis, 1982, 2:363-366.
    41. Jiang C J, Trimm D L and Wainwright M S. Kinetic study of steam reforming of methanol over copper-based catalysts, Applied Catalysis A: General, 1993, 93 : 245-255.
    42. Jiang C J, Trimm D L and Wainwright M S. Kinetic mechanism for the reaction between methanol and water over Cu/Zn/Al2O3 catalysts. Applied Catalysis A: General, 1993, 97:145-158.
    43. Idem R O, Bakhshi N N. Kinetic modeling of the production of hydrogen from the methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst, Chemical Engineering Science, 1996, 51(14):3697-3708.
    44. Breen J P, Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst, Chemical Communication,1999, 22:2247-2248.
    45. Peppley B A, Amphlett J C, Kearns L M, Mann R F. Methanol steam reforming on Cu/Zn/Al2O3. Part 1: the reaction network, Applied Catalysis A: General, 1999, 179: 21-29.
    46. Peppley B A, Amphlett J C, Kearns L M, Mann R F. Methanol steam reforming on Cu/Zn/Al2O3. Part 2: A comprehensive kinetic model. Applied Catalysis A: General, 1999, 179: 31-49.
    47. Asprey S P, Wojciechowshi B W, Peppley B A. Kinetic studies using temperature-scanning: the steam-reforming of methanol. Applied Catalysis A: General, 1999, 179: 51-70.
    48. Geissler K, Newson E, Vogel F. Autothermal methanol reforming for hydrogen production in fuel cell applications, Physical Chemistry Chemical Physics, 2001, 3: 289-293.
    49. Newson E, Mizsey P, Truong T and Hottinger P. The autothermal partial oxidation kinetics of methanol to produce hydrogen, Studies in Sufface Science and Catalysis 130:695-700.
    50. Mizsey P, Newson E. Comparison of different vehicle power trains. Journal of Power Sources, 2001,102 (1-2): 205-209.
    51. Mizsey P, Newson E., Truong T. The kinetics of methanol decomposition: a part of autothermal partial oxidation to produce hydrogen for fuel cells, Applied Catalysis A: General, 2001,213 : 233-237
    52. Maxim L, Subir R. Novel catalytic reactor for oxidative reforming of methanol. Applied Catalysis B-Environmental, 2004, 54:203–215.
    53. Agrell J, Birgersson H, Boutonnet M, Fierro J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3, Journal of Catalysis, 2003, 219: 389–403.
    54. Angelo B, Fausto G, Luca P. Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor, Catalysis Today, 2005, 104: 251–259.
    55. 王胜年,王树东,吴迪镛,洪学伦,甲醇自热重整制氢反应分析,燃料化学学报,2001, 29 (3):238-241.
    56. 亓爱笃,甲醇氧化重整制氢过程的研究,大连化物所博士学位论文
    57. Centi G, Perathoner S. Novel catalyst design for multiphase reactions. Catalysis Today, 2003, 79-80: 3-13.
    58. Kapteijn F, Nijhuis T A, Heiszwolf J J , Moulijn J A,New non-traditional multiphase catalytic reactors based on monolithic structures. Catalysis Today, 2001, 66: 133-144.
    59. Cybulski A, Moulijn J A. Structured Catalysts and Reactors. New York : Marcel Dekker Inc. , 1998. 670
    60. Moulijn J A. Catalysis Today , 2001 , 69 : 1-1 (Preface)
    61. Johnson L L, Johnson W C, O’Brein D L. Chemical Engineering Progress, Symposium Section , 1961, 35 : 55-67
    62. Anderson H C, Green W J , Romeo P L, Engelhard Industries Inc. , Technical Bulletin , 1966 , 7 : 100
    63. Keith C, Kenah P, Bair D. A Catalyst for Oxidation of Automobile and Industrial Fumer. US 3565830, 1971.
    64. Keith C, Schreuders T, Cunningham C. Purifying Exhaust Gases of an Internal Combustion Engine. US 3441381 , 1969
    65. Cybulski A, Moulijn J A. Chemical Industries. New York: Marcel Dekker Inc. , 1998. 1-14.
    66. John W G, Joep C G, Monoliths in catalytic oxidation, Catalysis Today, 1999 , 47 : 169-180.
    67. Irandoust S, Andersson B, Catalysis Review - Science Engineering, 1988, 30 (3): 341-392.
    68. Edvinsson A R, Nystrêm M, Sellin A, Development of a monolith-based process for H2O2 production: from idea to large-scale implementation, Catalysis Today, 2001, 69: 247-252.
    69. Cybulski A, Moulijn J A, Catalysis Review - Science Engineering, 1994, 36 (2): 179-270.
    70. Kapteijn F, Heiszwolf J J , Nijhuis T A, CAT TECH , 1999, 3 : 24~41.
    71. Liu W, William P A, Sorensen C M, Industrial & Engineering Chemical Research , 2002 , 41 (13) :3131-3138.
    72. Williams J L. Monolith structures, materials, properties and uses. Catalysis Today, 2001, 69: 3-9.
    73. Vaarkamp M, Dijkstra W, Reesink B H. Hurdles and solutions for reactions between gas and liquid in a monolithic reactor, Catalysis Today, 2001, 69 : 131-135.
    74. Ronald M H, Suresh G, Robert J F, The application of monoliths for gas phase catalytic reactions, Chemical Engineering Journal, 2001, 82: 149-156.
    75. Monolith Loop Reactor. The 7th International Conference on Organic Process Research and Development, New Orleans, 2003.
    76. Anderzej S. Process intensification in in-line monolithic reactor. Chemical Engineering Science, 2001, 56: 359-364.
    77. Nijhuis T A, Beers A E W, Vergunst T, Catalysis Review - Science Engineering, 2001, 43 (4) : 345-380.
    78. Siemund S, Leclerc J P, Schweich D, Prigent M, Castagna F. Three-way monolithic converter: simulations versus experiments. Chemical Engineering Science, 1996, 51:3709-3720.
    79. Groppi G., Betolli A., Tronconi E., Forzatti P., A comparision of lumped and distributed models of monolith catalytic combustors, Chemical Engineering Science, 1995, 50(17): 2705-2715.
    80. Springmann S, Bolnet M, Sommer M, Himmen M, Eigenberger G. Steady-state and dynamic simulation of an autothermal gasoline reformer, Chemical Engineering Technology, 2003, 26: 790-796.
    81. Liu H, Zhao J, Li C, Ji S. Conceptual design and CFD simulation of a novel metal-based monolith reactor with enhanced mass transfer, Catalysis Today, 2005, 105:401-406.
    82. Shuai S, Wang J,Unsteady temperature fields of monoliths in catalytic converters,Chemical Engineering Journal, 2004, 100:95–107.
    83. Braun J, Hauber T, T?bben H, Zacke P, Chatterjee D, Deutschmann O, Warnatz J. Influence of Physicl and Chemical Parameters on the Conversion Rate of a Catalytic Converter: A Numerical Simulation Study. SAE paper 2000-01-0211 (2000).
    84. Schwiedernoch R, Tischer S, Correa C, Deutschmann O. Experimental and Numerical Study of the Transient Behavior of a Catalytic Partial Oxidation Monolith. Chemical Engineering Science, 2003, 58: 633-642.
    85. Braun J, Hauber T, T?bben H, Windmann J, Zacke P, Chatterjee D, Correa C, Deutschmann O, Maier L, Tischer S, Warnatz J. Three-Dimensional Simulation of the Transient Behavior of a Three-Way Catalytic Converter. SAE Technical paper 2002-01-0065 (2002)
    86. Redenius J M, Schmidt L D, Deutschmann O. Millisecond Catalytic Wall Reactors: Ⅰ .Radiant Burner. AIChE, 2001, 47:1177-1184.
    87. Deutschmann O, Schwiedernoch R, Maier L I, Chatterjee D. Natural Gas Conversion in Monolithic Catalysts: Interaction of Chemical Reactions and Transport Phenomena. Natural Gas Conversion VI, Studies in Surface Science and Catalysis, 2001, 136:215-258.
    88. Zerkle D. K, Allendorf M D, Wolf M and Deutschmann O, Understanding Homogeneous and Heterogeneous Contributions to the Platinum-Catalyzed Partial Oxidation of Ethane in a Short-Contact-Time Reactor , Journal of Catalysis, 2000, 196: 18-39.
    89. Raja L. L, Kee R J, Deutschmann O, Warnatz J and Schmidt L. D, A critical evaluation of Navier–Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith , Catalysis Today, 2000, 59: 47-60.
    90. Jahn R, Snita D, Kubek M, Marek M. 3-D modeling of monolith reactors. Catalysis Today, 1997, 38: 39-46.
    91. Jahn R, Snita D, Kubek M, Marek M. 1D-,2D-,3D-Modeling of Honeycomb Reactors, Proc. of 3-rd Work-shop on modeling of chemical reaction systems (on CD-ROM), Heidelberg, Germany, 1996.
    92. Kolaczkowski S T, Crumpton P, Spence A. Modeling of heat transfer in non-adiabatic monolithic reactors. Chemical Engineering Science, 1988, 43: 227-231.
    93. Kolaczkowski S T, David J. W, Modeling channel interactions in a non-adiabatic multichannel catalytic combustion reactor. Catalysis Today, 1995, 26: 275-282.
    94. Kolaczkowski S T. Modeling catalytic combustion in monolith reactors – challengesfaced. Catalysis Today, 1999, 47: 209-218.
    95. Sugiura S,Ijuin K. A multi-dimensional numerical method for predicting warm-up characteristic of automobile catalytic converter systems. SAE Paper 952413.
    96. Jeong S,Kim T. CFD investigation of the 3-dimensional unsteady flow in the catalytic converter. SAE Paper 971025.
    97. Shi-Jin Shuai, Jian-Xin Wang, Unsteady temperature fields of monoliths in catalytic converters,Chemical Engineering Journal, 2004,100 : 95–107
    [1] 刘娜,王树东,袁中山.甲醇自热重整制氢整体催化剂的制备.化工学报,2004,第55 卷增刊:90-94.
    [2] Maxim L, Subir R. Novel catalytic reactor for oxidative reforming of methanol, Applied Catalysis B-Environmental, 2004, 54:203–215.
    [3] Agrell J, Birgersson H, Boutonnet M, Fierro J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis, 2003, 219: 389-403.
    [4] 亓爱笃,洪学伦,王树东. 甲醇氧化重整制氢反应动力学的研究. 天然气化工, 2000, 25: 18-21.
    [5] 李绍芬. 化学与催化反应工程. 北京:化工出版社,1986. p485-490.
    [6] 王胜年,王树东,吴迪镛. Cr-Zn 催化剂上甲醇水蒸气转化反应动力学 ?.本征动力学. 石油化工. 2001, 30(4): 259-262
    [7] 蒋元力,黄强,陈卫航. 甲醇POSR 制氢的反应网络热力学分析和有效因子的估算[J].燃料化学学报. 2003, 131(4) : 349-354.
    [8] Peppley B A, Amphlett J C, Kearns L.M, et al. Methanol steam reforming on Cu/Zn/Al2O3. Part 2: A comprehensive kinetic model. Applied Catalysis A: General, 1999, 179: 31-49
    [9] Jiang C J, Trimm D L and Wainwright M S, Kinetic study of steam reforming of methanol over copper-based catalysts, Applied Catalysis A: General, 1993, 93: 245-255.
    [10] Reitz T L, Ahmed S, Krumpelt M, Kumar R, et al. Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction. Journal of Molecular Catalysis A: Chemical, 2000, 162 :275-285.
    [11] Pakornphant C, Sumaeth C, Johannes S. Temperature programmed desorption of methanol and oxidation of methanol on Pt–Sn/Al2O3 catalysts. Chemical Engineering Journal, 2004, 97: 161–171.
    [12] 潘亚明,朱鹤孙.化学与化工中的数学方法. 北京:北京理工大学出版社,1993. p350-358.
    [13] Ahmed S, Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells, International Journal of Hydrogen Energy, 2001, 26:291-301.
    [1] Jahn R, Snita D, Kubek M, Marek M. 3-D modeling of monolith reactors. Catalysis Today, 1997, 38: 39-46.
    [2] Shuai S, Wang J,Unsteady temperature fields of monoliths in catalytic converters,Chemical Engineering Journal, 2004, 100: 95-107.
    [3] Springmann S, Friedrich G, Himmen M, Eigenberger G. Isothermal kinetic measurements for hydrogen production from hydrocarbon fuels using a novel kinetic reactor concept, Applied Catalysis A: General, 2002, 235: 101–111.
    [4] Maxim L, Subir R. Novel catalytic reactor for oxidative reforming of methanol. Applied Catalysis B-Environmental, 2004, 54: 203–215.
    [5] Wanker R, Berg M, Raupenstrauch H, Staudinger G.Numerical Simulation of Monolithic Catalysts with a Heterogeneous Model and Comparison with Experimental Results from a Wood-fired Domestic Boiler. Chemical Engineering Technology, 2000, 23: 535-542.
    [6] Peppley B A, Amphlett J C, Kearns L M, Mann R F. Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Applied Catalysis A: General, 1999, 179: 21-29.
    [1] Jahn R, Snita D, Kubek M, Marek M. 3-D modeling of monolith reactors. Catalysis Today, 1997, 38: 39-46.
    [2] Kolaczkowski S T, David J. W, Modeling channel interactions in a non-adiabatic multichannel catalytic combustion reactor. Catalysis Today, 1995, 26: 275-282.
    [3] Sugiura S,Ijuin K. A multi-dimensional numerical method for predicting warm-up characteristic of automobile catalytic converter systems. SAE Paper 952413.
    [4] Jeong S,Kim T. CFD investigation of the 3-dimensional unsteady flow in the catalytic converter. SAE Paper 971025.
    [5] Shi-Jin Shuai, Jian-Xin Wang, Unsteady temperature fields of monoliths in catalytic converters,Chemical Engineering Journal, 2004, 100: 95-107.
    [6] Fluent software. FLUENT user’s guide. Fluent Incorporated. http://www.fluent.com
    [7] 邵潜,龙军,贺振富.规整结构催化剂及反应器. 北京:化学工业出版社,2005. p26-28.
    [8] 魏伟,史庆南.汽车催化净化器载体材料的研究进展.云南冶金,2002, 31: 46-48.
    [1] 王安杰,周裕之,赵蓓. 化学反应工程学. 北京:化学工业出版社,2005. p5-6.
    [2] Wendland D W. The segmented oxidating monolith catalystic converter. Theory and performance. Trans. ASME, 1980, 102:194-198.
    [3] Wanker R, Berg M, Raupenstrauch H, Staudinger G. Numerical Simulation of Monolithic Catalysts with a Heterogeneous Model and Comparison with Experimental Results from a Wood-fired Domestic Boiler. Chem. Eng. Technol. 2000, 23:535-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700