生物组织漫反射的P3近似模型及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物组织中光的传输和生物组织光学特性的研究是组织光学领域中重要的基础的研究工作。通过对生物组织的漫反射光分布的研究,可以获知表征组织生理特性的光学参数,这样可以为临床的医疗诊断和治疗提供参数指标,对医学领域的相关应用有重要的指导意义。
     P3近似理论是描述光源附近空间分辨漫反射的理论模型,本文P3在近似理论的基础上,讨论了组织光学参数吸收系数μa、有效散射系数μ's、二阶参数γ和三阶参数δ灵敏度对空间分辨漫反射的影响,结果表明,光学参数的灵敏度P3对近似空间分辨漫反射的影响程度和区域不同。
     在以上理论研究的指导下,采用双光纤测量装置进行了光源附近空间分辨漫反射的实验研究,做了实验器件的性能分析和实验系统的调试,以组织模拟液Intralipid和吸收体亚甲基兰为实验样品,配制成不同浓度的模拟液,研究了散射特性和吸收特性对空间分辨漫反射的影响,并将实验结果与P3近似的理论结果做比较,研究表明,实验结果与理论分析的趋势相一致。
     在以上实验研究的基础上,进行了实验装置的进一步改进,自主设计并完成制作了微型阵列式光纤探头,可用于光源附近0.3-3.6mm区域的漫反射实验研究,并对其做了通道性能的测试,结果表明通光性能良好;研究设计了多通道实验测量系统的方案,对实验器件进行了性能研究和初步的调试。
The studies of light propagation in biological tissue and tissue optical parameters are important and fundamental. The optical parameters which characterize the physiological properties of the tissue can be gained by analyzing the spatially resolved reflectance from the tissue. The optical parameters of tissue supplies the index parameters for clinical therapy and diagnose, has great instructional significance for the application in medical.
     P_3approximation theory describes the spatially resolved reflectance near the source. The effects of optical parameters including absorbing coefficientμa, efficient scattering coefficientμ's , the second-order parameterγand the third-order coefficientδon the diffused reflectance are studied, and the results show the influences are different in the region and extent.
     Based on the study of the P3 approximation theory, double-fibers equipment has been used in the experiment. The devices performance has been analyzed and debugged. We studied the effects on the distribution of reflectance by absorbing and scattering using the sample with different concentration made of Intralipid and Methylene blue, the results compared with P3 approximation show the same trend.
     Based on the experimental facility above, we designed and manufactured a linear array fibers probe, and tested its propagation characteristic were good. It can be used in the experiment to study the spatially resolved reflectance in the region of 0.3-4.2mm. The experimental system has been further studied, the multi-channel experimental system was designed, and the performance parameter of the components been studied.
引文
[1]. V.V. Tuchin. Tissue optics. SPIE-The International Society for Optical Engineering, 2000.
    [2]. 张逸新编著,《随机介质中光的传播与成像》,国防工业出版社,2002。
    [3]. F.Bevilacqua, D.Piguet, P.Marquet, et al... In vivo local determination of tissue optical properties: application to human brain[J]. Appl. Opt., 1999, 38(22): 4939-4950.
    [4]. D.Fried, R.E.Glena, J.D.B.Featherstone, et al. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl.Opt.1995, 34(7): 1278-1285.
    [5]. 许棠,张春平,王新宇,“时间分辨反射确定生物组织光学参数的研究”,光电子·激光,2004,15(1),108-112。
    [6]. 张智,骆清铭,曾绍群 等.非均匀生物组织中光子迁移的数值方法[J].光学学报,2003,23(7):860~863。
    [7]. 张琳,张连顺,许棠,“生物组织光学参数的离体和在体无损测量”,光子学报,2004,33(11):1377-1381。
    [8]. Jean-Michel Tualle, Jerome Prat, Eric Tinet, Sigrid Avrillier. Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media, J.Opt.Soc.Am.A, 2000, 17(11): 2046-2055.
    [9]. Richard C. Haskell, Lars O. Svaasand, Tsong-Tseh Tsay, Ti-Chen Feng, Matthew S.McAdams,Bruce J.Tromberg. Boundary conditions for the diffusion equation in radiative transfer[J]. J Opt Soc Am A.1994,11(10): 2727-2741.
    [10]. Alwin Kienle, Florian K .Forster, and Raimund Hibst, Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance. Opt. Lett. 2001, 26(20):1571-1573.
    [11]. 王喜昌,宫彦军,宋东草 等.平稳状态下匹配介质三层漫射方程的空间分辨漫反射[J].光学学报,2005,25(3):377~381。
    [12]. 黄祖恰,丁鄂江著,《输运理论》,科学出版社,1987。
    [13]. F. Bevilacqua and C.Depeursinge. Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path[J]. J Opt Soc Am A.1999,16(12): 2935-2945.
    [14]. Wai-Fung Cheong, Scott A.Prahl, and Ashley J.Welch. A review of the optical properties of biological tissues. IEEE of Quantum Electronics, 1990, 26(12): 2166-2185.
    [15]. F.Bevilacqua, Optical characterization of biological tissues in vitro and in vivo. Ph.D, dissertation 1781(Swiss Federal Institute of Technology, Lausanne,1998).
    [16]. Edward L.Hull and Thomas H.Foster, “Stead-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 2001, 18(3): 584-599.
    [17]. Dwayne Dickey, Oscar Barajas, and Kevin Brown, Radiance modeling using the P3 approximation. Phys. Med. Biol. 43.1998, 3559-3570.
    [18]. P.Thueler, I.Charvet, F.Bevilacqua, et al.. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties[J].J.Biomed.Opt. 2003, 8(3):495-503.
    [19]. 许堂,张春平,王新宇等,“650nm 光在 Intralipid-10%分布的测量与分析” ,光散射学报,2003,15(2):114-120。
    [20]. 张小娟,刘迎,高宗慧.光源附近组织的空间分辨漫反射研究[J].中国激光,2005, 32(4):571~575。
    [21]. 刘迎,张小娟,胡佑周. 生物组织的散射相函数及其二阶光学参量的性质[J].光学学报,2004,24(7),877~880。
    [22]. 张小娟,刘迎. 组织的特征长度微距空间分辨漫反射[J].光电子·激光,2005,16(1):124~128。
    [23]. A. Kienle and M. S. Patterson, Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium [J]. J Opt Soc Am A, 1997,14(1): 246–254.
    [24]. 王建岗,王桂英,徐至展.光在分层散射介质中传输行为的蒙特卡罗模拟研究[J] .光学学报,2000,20(3):346~350。
    [25]. R M P Doornbos, R Lang, and M C Aalders, The determination of in vivo human tissue optical properties and absolute chromophore concentration using spatially resolved steady-state diffuse reflectance spectroscopy. Phys. Med. Biol.44. 1999. 967-981.
    [26]. Dwayne J Dickey, Ronalda B Moore, and David C Rayner, Light dosimetry using the P3 approximation, Phys. Med. Biol. 43. 2001, 2539-2370.
    [27]. ST Flock, SL Jacques, BC. Wilson, et.al.. Optical Properties of Intralipid: A phantom medium for light propagation studies. Lasers in Surgery and Medicine 1992, 12:510-519.
    [28]. J.R.Mourant, I. J.Bigio, D.A.Jack, et al. Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties. Appl.Opt. 1997,36(22): 5655-5661.
    [29]. A. Dimofte, T.C. Zhu, M. Solonenko. Comparison of depth dependence of light fluence rate in intralipid for wavelengths between 532-730nm[C]. Proceedings of the 22 annual International Conference of the IEEE Engineering in Medicine and Biology Society, July 23-28, 2000, Chicago IL. 884-887. nd
    [30]. HG van Staveren, CJM Moes, J van Marle, et al. Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers. Applied Optics 1991, 30:4507-4514. 41
    [31]. A. Dimofte, T.C. Zhu, M. Solonenko. Comparison of depth dependence of light fluence rate in intralipid for wavelengths between 532-730nm[C]. Proceedings of the 22 annual International Conference of the IEEE Engineering in Medicine and Biology Society, July 23-28, 2000, Chicago IL. 884-887. nd
    [32]. Steven Jacques, “Optical properties of “IntralipidTM”, an aqueous suspension of lipid droplets,” Oregon Medical Laser Center, 1 April, 1998.
    [33]. Pope and Fry, “Absorption spectrum (380-700nm) of pure water,” Integrating cavity measurements, 1997.
    [34]. Scott Prahl, “Tabulated Molar Extinction Coefficient for Methylene Blue in Water,” 4 March, 1998.
    [35]. 原荣编著,《光纤通信》,电子工业出版社,2002。
    [36]. 王延恒编著,《光纤通信技术基础》,天津大学出版社,1990。
    [37]. 徐正红,张镇西,王晶,“生物组织光学特性检测中的探头设计”,激光生物学报,2004,13(1),78-81。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700