基于准同步采样的电力系统谐波与间谐波在线检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐波和间谐波是典型的电能质量问题。谐波是频率为基波频率整数倍的正弦电压或电流,而间谐波是频率为基波频率非整数倍的畸变成分。各种电力电子装置中的非线性元件都会产生谐波或间谐波,导致谐波和间谐波污染在电力系统中广泛存在并日趋严重。谐波和间谐波会危及供电系统的安全稳定运行,影响用电设备的正常稳定工作,因此,谐波和间谐波的治理越来越受到重视。
     谐波与间谐波的参数测量是实现谐波和间谐波治理的前提,只有通过在线检测方式及时、准确地获取相关参数,才能实现谐波和间谐波补偿装置的最优配置。电力系统中的电压或电流存在无规律的波动,使得谐波和间谐波的准确测量较难实现。此外,间谐波具有幅值小,频率不确定的特点,在频谱上可能离谐波很近,两者之间会产生互相干扰,从而进一步增加谐波与间谐波测量的难度。
     快速傅里叶变换(FFT, fast Fourier transform)是常用的谐波、间谐波检测方法,其优点是算法简单、计算量小,缺点是在非同步采样时存在频谱泄漏和栅栏效应,会对测量准确度造成较大影响。加窗插值FFT算法是抑制频谱泄漏和栅栏效应的有效方法,然而该方法在频率分辨率和计算量之间存在矛盾:阶数越高的窗函数抑制频谱泄漏效果越好,但其主瓣宽度也越宽,导致频谱上的频率分辨能力下降,为了保持足够的频率分辨率,需要增加采样数据长度,从而造成计算量的增加。
     在分析离散傅里叶变换特点和缺陷的基础上,提出了基于准同步采样的谐波检测算法。该算法适用于电力系统缓变谐波的测量,通过将非同步采样信号准同步化,达到抑制频谱泄漏和栅栏效应的目的。算法首先采用带通有限冲激响应(FIR, finite impulse response)滤波器对非同步采样下得到的信号进行预处理,滤除基波频率以外的其它频率分量。然后对滤波信号使用过零比较法获取信号的基波周期,根据该基波周期,采用牛顿插值算法重构原始采样序列,使重构信号近似于同步采样信号。由于频谱泄漏和栅栏效应得到了显著抑制,根据重构信号的FFT结果就能获得各次谐波的准确参数。通过理论分析和仿真实验,讨论了阈值、采样频率、噪声等对谐波检测算法的影响,以及4阶牛顿插值算法的误差估计。
     在谐波检测算法的基础上,提出了基于准同步采样的间谐波检测算法,该算法通过分离信号中的谐波与间谐波成分,达到抑制两者互扰的目的,能够同时实现谐波和间谐波参数的准确测量。间谐波检测算法首先利用谐波检测算法中的准同步化技术重构采样信号,将信号中的所有谐波分量准同步化。在准同步化过程中,设计了多采样率结构的窄带带通FIR滤波器对原始采样信号进行预处理,该滤波器阶数比窗函数法或最优方法设计的滤波器阶数少一个数量级。然后,使用梳状FIR滤波器分离重构信号中的所有谐波与间谐波分量。对于分离后的间谐波分量,使用谱峰搜索法找到各间谐波在频谱上对应的最大谱线,通过加窗插值FFT算法计算各间谐波的参数。对于提取到的谐波分量,根据其FFT结果直接计算各次谐波的参数。
     在MATLAB环境下,通过与常用谐波、间谐波检测方法的对比仿真试验,验证了谐波检测算法在不同噪声干扰、低频率分辨率下的测量准确度,以及对信号波动的动态响应特性;验证了间谐波检测算法在噪声干扰下的测量准确度,以及相关滤波器的线性相位特性。将检测算法分别应用于自主研制的在线式电能质量分析仪PQM-F3和数字信号处理平台TDS6713EVM中,通过对标准源生成的谐波和间谐波信号进行测量,验证算法的有效性。最后,使用电能质量分析仪对市电电压信号进行了现场测试,测量了信号中的谐波含量。
Harmonics and interharmonics are typical power quality events. Aharmonic of the voltage or current is the component whose frequency isan integer multiple of the fundamental frequency, while aninterharmonic is the distorted component whose frequency is not aninteger multiple of the fundamental frequency. Nonlinear elements indifferent kinds of power electronic equipments may produce harmonicsor interharmonics, thus cause harmonic and interharmonic pollution tobe widespread and more and more serious in power systems. Harmonicand interharmonic distortion will threaten the stability of the powersystem and cause serious damages to equipments working in that system.Thus, harmonic and interharmonic treatments have gained increasingattention.
     Accurate measurement of harmonic and interharmonic is aprerequisite for compensating harmonic and interharmonic distortion. Inorder to realize the optimal configuration of the compensation device, itis necessary to determine the harmonics and interharmonics parametersin time via online monitoring. However, fluctuations in voltages andcurrents make the accurate measurement difficult to realize. In addition,interharmonics have the characteristics of small amplitudes anduncertain frequencies. Therefore, interharmonics may be close toharmonics on the spectrum, and thus mutual interferences between themmay further increase the difficulty of harmonic and interharmonicdetermination.
     Fast Fourier transform (FFT) is a common method for harmonic and interharmonic estimation. The advantage of the FFT method is simpleprocedure and low computational cost, while its disadvantage is that themeasurement accuracy is affected by spectral leakage and picket-fenceeffect in the case of asynchronous sampling. The windowed interpolatedFFT method is an effective approach to eliminate the spectral leakageand picket-fence effect. However, there is a conflict between thefrequency resolution and the computational cost: with the increase of theorder of the window function, the spectral leakage decreases whereasthe main-lob width of the window function increases. Wide main-lobrestrains the capability of spectral resolution. In order to keep highenough spectral resolution, the length of the sampling data has to beenlarged, which will obviously increase the computational cost.
     According to the analyses of the characteristics and defects of thediscrete Fourier transform, a harmonic estimation algorithm based onthe quasi-synchronous sampling has been proposed. This algorithmrestrains spectral leakage and picket-fence effect by means of thequasi-synchronization of the asynchronous sampling signal. Hence, it issuitable for estimation of slow change harmonics in power systems. Theproposed algorithm firstly applies a finite impulse response (FIR) filterto preprocess the asynchronous sampling signal by filtering out allfrequency components except the fundamental one. Secondly, azero-crossing method is developed for fundamental-period estimation.With the estimated period, the original sampling sequence isreconstructed by Newton’s interpolation, so that the reconstructed signalcan be approximately regarded as the synchronous sampling signal.Because of the significant decrease of the spectral leakage andpicket-fence effect, parameters of all harmonics can be determineddirectly from the FFT results of the reconstructed signal. Effects oferrors, including the threshold, the sampling frequency and the noiseinterference, are investigated theoretically. Moreover, error estimate of4-order Newton’s interpolation algorithm is also discussed on the basisof the results of the simulation experiment.
     According to the harmonic estimation algorithm, an interharmonicestimation algorithm based on the quasi-synchronous sampling has beenproposed. This algorithm, which separates harmonics andinterharmonics to restrain the mutual interferences, can estimateharmonics and interharmonics simultaneously. Using thequasi-synchronous sampling technique proposed in the harmonicestimation algorithm, the interharmonic estimation algorithm firstlyquasi-synchronizes all harmonic components in the original signal. Inthe process of quasi-synchronization, a multi-rate narrow bandpass FIRfilter is applied to preprocess the asynchronous sampling signal. Thisfilter can decrease the filter order by almost one order of magnitudecompared with the filter designed by the window function method or theoptimal method. Secondly, a comb FIR filter is adopted to separateharmonics and interharmonics in the reconstructed signal. Consequently,as for the extracted interharmonics, a peak-search method is employedto find the maximum spectral line related to every interharmonic. Inaccordance with those maximum spectral lines, the interharmonicsparameters can be determined by the widowed interpolation FFTalgorithm. As for the extracted harmonics, the proposed algorithmdetermines the parameters directly from the FFT results.
     Simulation experiments under MATLAB environment have beencarried out to compare the proposed algorithms with the commonharmonic and interharmonic estimation methods. Simulation resultsverify the measurement accuracy of the harmonic estimation algorithmunder the condition of different noise inferences and low frequencyresolution, and show the dynamic response of the algorithm forwaveform fluctuation as well. Moreover, the simulation results alsoverify the measurement accuracy of the interharmonic estimationalgorithm with noise and show the linear phase characteristics of therelated filters. The proposed harmonic and interharmonic estimationmethods are applied in the self-developed online power quality analyzerPQM-F3and the digital signal process platform TDS6713EVM, respectively. The application of the algorithms to estimate the harmonicsand interharmonics produced by the standard signal sources furtherprove the validity of these two algorithms. At last, the power qualityanalyzer is used to monitor the voltage in the public grid and thenestimate harmonics in the voltage.
引文
[1]陈树勇,宋书芳,李兰欣,沈杰.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [2]肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(9):1-4.
    [3]胡学浩.智能电网——未来电网的发展态势[J].电网技术,2009,33(14):1-5.
    [4] Hughes J. IntelliGrid architecture status report[R]. EPRI,2005.
    [5] Haase P. Intelligrid: A smart network of power[J]. EPRI Journal,2005(Fall):27-32.
    [6] Profiling and mapping of intelligent grid R&D programs[R]. EPRI,2006.
    [7]李令冬.智能电网的发展给电能质量研究与产业带来的机遇和挑战[J].电气时代,2010,11:49-52.
    [8] IEEE Recommended Practice for Monitoring Electric Power Quality, IEEEStd1159-1995.
    [9] General guide on harmonics and interharmonics measurement andinstrumentation, for power supply systems and equipment connected thereto,IEC std.61000-4-7,2002.
    [10]Electromagnetic compatibility-Part4-30: Testing and measurementtechniques–Power quality measurement methods, IEC std.61000-4-30,2008.
    [11]徐政译,Wakileh G. J.著.电力系统谐波—基本原理、分析方法和滤波器设计, Power System Harmonics: Fundamentals, Analysis and FilterDesign.北京:机械工业出版社,2003.
    [12]江涛,林伟斌.电力系统谐波及其检测技术.江西电力职业技术学院学报[J].2006,19(3):3-6.
    [13]Bollen M. H. J. and Gu I. Yu-Hua. Signal Processing of Power QualityDisturbances. John Wiley&Sons,2006.
    [14]Louie K. W., Wilson P., et al. Discussion on power system harmonic analysisin the frequency domain[C]. IEEE/PES Transmission&DistributionConference&Exposition: Latin America,2006.
    [15]Grady W. and Santoso S. Understanding power system harmonics[C]. IEEEPower Engineering Society Summer Meeting. Vancouver, BC, Cannada,2001:813-817.
    [16]Wakileh G. J. Harmonics and rotation machines[J]. ELSEVIER. ElectricPower Systems Research,2003,66:5-14.
    [17]Louie K. W., Wilson P., et al. Power system harmonic analysis in thefrequency domain[C]. Canadian Conference on Electrical and ComputerEngineering,2007:1421-1424.
    [18]赵琰,孙秋野译,C. De La Rosa F.著.电力系统谐波,Narmonics and PowerSystem.北京:机械工业出版社,2009.
    [19]许遐.公用电网谐波的评估和调控.北京:中国电力出版社,2008.
    [20]Li C., Xu W. and Tayjasanant T. Interharmonics: basic concepts andtechniques for their detection and measurement[J]. Electric Power SystemsResearch,2003,66:39-48.
    [21]Yacamini R. Power system harmonics. IV. Interharmonics[J]. PowerEngineering Journal,1996,10(4):185-193.
    [22]董密.多通道谐波监测及故障录波一体化装置的研制.硕士学位论文,中南大学,2002.
    [23]乐叶青,徐政.电力系统间谐波及其检测方法综合分析[J].电气应用,2006,25(3):110-113.
    [24]Delaney E. J. and Morrison R. E. Minimisation of interharmonic current froma current source AC drive by means of a selective DC side active filter[J].IEEE Transcations on Power Delivery,1995,10(3):1584-1590.
    [25]Rifai M. B., Ortmeyer T. H. and McQuillan W. J. Evaluation of currentinterharmonics from AC drives[J]. IEEE Transactions on Power Delivery,2000,15(3):1094-1098.
    [26]Soo-Hwan C., Gilsoo J., et al. Time-frequency analysis of power-qualitydisturbances via the Gabor-Wigner transform[J]. IEEE Transactions on PowerDelivery,2009,25(1):494-499.
    [27]Zhang Q. M., Liu H. J., et al. A precise and adaptive algorithm forinterharmonics measurement based on iterative DFT[J]. IEEE Transactions onPower Delivery,2008,23(4):1728-1735.
    [28]Qian H., Zhao R. X., et al. Interharmonics analysis based on interpolatingwindowed FFT algorithm[J]. IEEE Transactions on Power Delivery,2007,22(2):1064-1069.
    [29]Gallo D., Langella R. and Testa A. A self-tuning harmonic and interharmonicprocessing technique[J]. European Transactions on Electrical Power,2002,12(1):25-31.
    [30]Abdullah A. R., Sha'ameri A. Z., et al. Detection and classification of powerquality disturbances using time-frequency analysis technique[C].5th StudentConference on Research and Development,2007.
    [31]Barros J., Diego R. I., et al. Effects of windowing on the measurement ofharmonics and interharmonics in the IEC standard framework[C].23rd IEEEInstrumentation and Measurement Technology Conference, Sorrento, Italy,2006.
    [32]Chang G. W., Chen C. Y., et al. A modified algorithm for harmonics andinterharmonics measurement[C]. Power Engineering Society General Meeting,2007.
    [33]Gallo D., Langella R., et al. On the processing of harmonics andinterharmonics in electrical power systems[C]. Power Engineering SocietyWinter Meeting,2000.
    [34]Lin H. C. Intelligent neural network-based fast power system harmonicdetection[J]. IEEE Transactions on Industrial Electronics,2007,54(1):43-52.
    [35]Vatansever F. and Ozdemir A. A new approach for measuring RMS value andphase angle of fundamental harmonic based on wavelet packet transform[J].Electric Power Systems Research,2008,78(1):74-79.
    [36]胡国胜,任震,黄雯莹.小波变换在电力系统中的应用研究[J].电力自动化设备,2002,22(3):71-78.
    [37]Yang J. Z. and Liu C. W. A precise calculation of power system frequency[J].IEEE Transactions on Power Delivery,2001,16(3):361-366.
    [38]Begovic M. M., Djunric P. M., et al. Frequency tracking in power networks inthe presence of harmonics[J]. IEEE Transactions on Power Delivery,1993,8(2):480-486.
    [39]Nguyen C. T. and Srinivasan K. A new technique for rapid tracking offrequency deviations based on level crossings[J]. IEEE Transactions on PowerApparatus and System,1984, PAS-103(8):2230-2236.
    [40]Kamwa I. and Grondin R. Fast adaptive schemes for tracking voltage phasorand local frequency in power transmission and distribution systems[J]. IEEETransactions on Power Delivery,1992,7(2):789-795.
    [41]Sachdev M. S. and Giray M. M. A least error squares technique fordetermining power system frequency[J]. IEEE Transactions on PowerApparatus and System,1985, PAS-104(2):437-443.
    [42]Giray M. M. and Sachdev M. S. Off-nominal frequency measurements inelectric power system[J]. IEEE Transactions on Power Delivery,1989,4(3):1573-1578.
    [43]Terzjia V. V., Djuric M. B. and Kovacevic B. D. Voltage phasor and localsystem frequency estimation using newton type algorithm[J]. IEEETransactions on Power Delivery,1994,9(3):1368-1374.
    [44]Sachdev M. S., Wood H. C. and Johnson N. G. Kalman filtering applied topower system measurement for relaying[J]. IEEE Transactions on PowerApparatus and System,1985, PAS-104(12):3565-3573.
    [45]Lobos T. and Rezmer J. Real-time determination of power systemfrequency[J]. IEEE Transactions on Instrument and Measurement,1997,46(4):877-881.
    [46]Salmeron P., Montano J. C., et al. Compensation in nonsinusoidal, unbalancedthree-phase four-wire systems with active power-line conditioner[J]. IEEETransactions on Power Delivery,2004,19(4):1968-1974.
    [47]Montano J. C., Salmeron P., et al. Analysis of power losses for instantaneouscompensation of three-phase four-wire systems[J]. IEEE Transactions onPower Electronics,2005,20(4):901-907.
    [48]Kusljevic, M. D. Simultaneous frequency and harmonic magnitude estimationusing decoupled modules and multirate sampling[J]. IEEE Transactions onInstrumentation and Measurement,2010,59(4):954-962.
    [49]Karimi, H., Karimi-Ghartemani M., et al. An adaptive filter for synchronousextraction of harmonics and distortions[J]. IEEE Transactions on PowerDelivery,2003,18(4):1350-1356.
    [50]Wright P. S. Short-time Fourier transforms and Wigner-Ville distributionsapplied to the calibration of power frequency harmonic analyzers[J]. IEEETransactions on Instrumentation and Measurement,1999,48(2):475-478.
    [51]Min W., Rowe G. I., et al. Classification of power quality events using optimaltime-frequency representations-Part2: application[J]. IEEE Transactions onPower Delivery.2004,19(3):1496-1503.
    [52]Diego R. I. and Barros J. Global method for time-frequency analysis ofharmonic distortion in power systems using the wavelet packet transform[J].Electric Power Systems Research,2009,79(8):1226-1239.
    [53]Mori H., Itou K., et al. An artificial neural-net based method for predictingpower system voltage harmonics[J]. IEEE Transactions on Power Delivery,1992,7(1):402-409.
    [54]Wijayakulasooriya J. V., Putrus G. A., et al. Fast non-recursive extraction ofindividual harmonics using artificial neural networks[J]. IEE Proceedings-Generation, Transmission and Distribution,2005,152(4):539-543.
    [55]Barros J. and Diego R. I. Application of the wavelet-packet transform to theestimation of harmonic groups in current and voltage waveforms[J]. IEEETransactions on Power Delivery,2006,21(1):533-535.
    [56]Zheng T., Makram E. B., et al. Power system transient and harmonic studiesusing wavelet transform[J]. IEEE Transactions on Power Delivery,1999,14(4):1461-1468.
    [57]Eren L., Unal M., et al. Harmonic analysis via wavelet packet decompositionusing special elliptic half-band filters[J]. IEEE Transactions onInstrumentation and Measurement,2007,56(6):2289-2293.
    [58]陈亦文,邱公伟,魏勇.基于小波包分析的时变谐波分析[J].仪器仪表学报,2005,26(5):457-459.
    [59]Wies R. W., Pierre J. W., et al. Use of ARMA block processing for estimatingstationary low-frequency electromechanical modes of power systems[J]. IEEETransactions on Power Systems,2003,18(1):167-173.
    [60]Jones D. Estimation of power system parameters[J]. IEEE Transactions onPower Systems,2004,19(4):1980-1989.
    [61]Young-Moon P., Un-Chul M., et al. A self-organizing power system stabilizerusing fuzzy auto-regressive moving average (FARMA) model[J]. IEEETransactions on Energy Conversion,1996,11(2):442-448.
    [62]张贤志,徐晨曦,盛文,张磊.基于ARMA谐波分解和相干检测的非线性电路故障诊断[J].现代电子技术,2009,32(15):23-26.
    [63]Chang G. W. and Cheng I. C. An accurate time-domain procedure forharmonics and interharmonics detection[J]. IEEE Transactions on PowerDelivery,2010,25(3):1787-1795.
    [64]Lobos T., Leonowicz Z., et al. High-resolution spectrum-estimation methodsfor signal analysis in power systems[J]. IEEE Transactions on Instrumentationand Measurement,2006,55(1):219-225.
    [65]Leonowicz Z., Lobos T., et al. Advanced spectrum estimation methods forsignal analysis in power electronics[J]. IEEE Transactions on IndustrialElectronics,2003,50(3):514-519.
    [66]Meunier M. and Brouaye F. Fourier transform, wavelets, Prony analysis: toolsfor harmonics and quality of power[C].8th International Conference onHarmonics and Quality of Power,1998.
    [67]Costa F. F., Cardoso A. J. M., et al. Harmonic analysis based on Kalmanfiltering and Prony's method[C]. IEEE International Conference on PowerEngineering Energy and Electrical Devices, Setubal, PORTUGAL,2007.
    [68]Jain V. K., Collins W. L. and Davis D. C. High-accuracy analog measurementsvia interpolated FFT[J]. IEEE Transactions on Instrumentation andMeasurement,1979,28(2):113-122.
    [69]Grandke T. Interpolation algorithms for discrete Fourier transform of weighedsignals[J]. IEEE Transactions on Instrumentation and Measurement,1983,32(2):350-355.
    [70]Andria G., Savino M. and Trotta A. Windows and interpolation algorithms toimprove electrical measurement accuracy[J]. IEEE Transactions onInstrumentation and Measurement,1989,38(4):856-863.
    [71]潘文,钱俞寿,周鹗.基于加窗差值FFT的电力谐波测量理论(II)双插值FFT理论[J].电工技术学报,1994,9(2):53-56.
    [72]Agrez D. Weighted multipoint interpolated DFT to improve amplitudeestimation of multifrequency signal[J]. IEEE Transactions on Instrumentationand Measurement,2002,51(2):287-292.
    [73]庞浩,李东霞,俎云霄,王赞基.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报,2003,23(6):50-54.
    [74]Wu J. and Zhao W. A simple interpolation algorithm for measuringmulti-frequency signal based on DFT[J]. ELSEVIER. Measurement,2009,42(2):332–327.
    [75]柴旭峥,文习山,关根志,彭宁云.一种高精度的电力系统谐波分析算法[J].中国电机工程学报,2003,23(9):67-70.
    [76]Cooley J. and Tukey J. An algorithm for the machine calculation of complexFourier series[J]. Mathematics of computation,1965,19(90):297-301.
    [77]Arrillaga J. and Watson N. R. Power System Harmonics, Second Edition. JohnWiley&Sons,2003.
    [78]Salor O. Spectral correction-based method for interharmonics analysis ofpower signals with fundamental frequency deviation[J]. ELSEVIER. ElectricPower Systems Research,2009,79(7):1025-1031.
    [79]Jiang H. L., Tang X. J., et al. An advanced method for eliminating impactsfrom frequency deviations in power system signal processing[J]. ELSEVIER.Electric Power Systems Research,2003,67(3):177–184.
    [80]Oppenheim A. V., Willsky A. S. and Nawab S. H. Signals and Systems,Second Edition. PEARSON EDUCATION NORTH ASIA LIMITED andPublishing House of Electronics Industry,2002.
    [81]Harris F. J. On the use of windows for harmonic analysis with the discreteFourier transform[C]. Proc. IEEE,1978,66:51–83.
    [82]Zhang F. S., Geng Z. X. and Yuan W. The algorithm of interpolatingwindowed FFT for harmonic analysis of power system[J]. IEEE Transactionson Power Delivery,2001,16(2):160–164.
    [83]曾博,滕召胜,温和,卿柏元.莱夫-文森特窗插值FFT谐波分析方法[J].中国电机工程学报,2009,29(10):115-120.
    [84]Gallo D., Langella R. and Testa A. Desynchronized processing technique forharmonic and interharmonic analysis[J]. IEEE Transactions on PowerDelivery,2004,19(3):993–1001.
    [85]Chang G. W., Chen C. I. and Wu M. C. Measuring power system harmonicsand interharmonics by an improved fast Fourier transform-based algorithm[J].IET Generation, Transmission&Distribution,2008,2(2):193-201.
    [86]Zhou F., Huang Z., et al. Time-domain quasi-synchronous sampling algorithmfor harmonic analysis based on Newton's interpolation[J]. IEEE Transactionson Instrumentation and Measurement,2011,60(8):2804-2812.
    [87]Zhou F., Huang Z., et al. Time-domain quasi-synchronous sampling algorithmfor harmonic analysis[C].14th International Conference on Harmonics andQuality of Power (ICHQP),2010.
    [88]陈隆道,钱照明,张圣训.周期域分析中非同步取样数据的同步化[J].电子学报,2001,29(7):950-953.
    [89]Xi J. T. and Chicharo J. F. A time-domain interpolation approach for DFTharmonic analysis[J]. ELSEVIER. Signal Processing,1997,58:181-192.
    [90]Zahradnik P. and Vlcek M. Fast analytical design algorithms for FIR notchfilters[J]. IEEE Transactions Circuits and Systems I: Regular Papers,2004,51(3):608-623.
    [91]Zahradnik P. and Vlcek M. An analytical procedure for critical frequencytuning of FIR filters[J]. IEEE Transactions Circuits and Systems II-ExpressBriefs,2006,53(1):72-76.
    [92]Lyons R. G. Understanding Digital Signal Processing, Second Edition.Prentice Hall PTR,2004.
    [93]Faires J. D. and Burden R. L. Numerical Methods, Third Edition. Brooks Cole,2002.
    [94]周峰,赵春宇,黄震宇,陈大跃.基于时域插值的信号周期计算方法及误差分析[J].仪器仪表学报,2011,32(8):1724-1730.
    [95]严家明,刘诗斌,李辉.线性插值的误差计算方法研究[J].弹箭与制导学报,2005,25(4):111-112.
    [96]Electromagnetic compatibility (EMC) Part2: Environment-Compatibilitylevels for low-frequency conducted disturbances and signalling in publiclow-voltage power supply systems, IEC Std.61000-2-2,2002.
    [97]王德海,步兮瑶译,Gockler H. G., Groth A.著.多采样率系统—采样率转换和数字滤波器组.北京:电子工业出版社,2009.
    [98]Hogenauer E. An economical class of digital filters for decimation andinterpolation[J]. IEEE Transactions on Acoustics, Speech, and SignalProcessing,1981,29(2):155–162.
    [99]Zahradnik P. and Vlcek M. Equiripple approximation of half-band FIRfilters[J]. IEEE Transactions Circuits and Systems II-Express Briefs,2009,56(12):941-945.
    [100] Zahradnik P., Vlcek M. and Unbehauen R. Design of pptimal comb FIRfilters-speed and robustness[J]. IEEE Signal Processing Letters,2009,16(6):465–468.
    [101] Zahradnik P. and Vlcek M. Analytical design method for optimal equiripplecomb FIR filters[J]. IEEE Transactions on Circuits Systems–II, ExpressBriefs,2005,52(2):112–115.
    [102]国标GB/T17626.7-2008.《电磁兼容试验和测试技术供电系统及所连设备谐波、谐间波的测量和测量仪器导则》.中国国家标准化管理委员会.2008.
    [103]周碧红.在线式电能质量检测仪的研究[硕士论文].上海:上海交通大学.2009.
    [104]周碧红,赵春宇.电能质量监测中同步采样时钟发生器的设计[J].电子测量技术,2008,31(6):65-68.
    [105]王丽颖.基于DSP和ARM的电能质量监测系统[硕士论文].上海:上海交通大学.2009.
    [106]王丽颖,赵春宇.基于DSP和ARM的电能质量监测系统[J].电子测量技术,2008,31(10):64-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700