CNG气瓶拉拔工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压气瓶是高压气体的主要盛装容器,广泛应用于电力、石油化工、轻工、纺织、冶金、机械、交通、采矿、医药等行业部门及日常生活中。由于高压气瓶工作时承受较高的压力载荷、接触腐蚀性介质,并且常应用于高温或深冷等极端工作条件下,因此是一种比较容易发生事故的特种设备。随着我国汽车保有量的不断增加,天然气汽车的推广不仅符合我国的经济发展战略,还可有效缓解能源短缺和大气污染。车载压缩天然气气瓶(Compressed Natural Gas,简称CNG气瓶)是CNG汽车的关键零部件之一,其安全性能一直受到国家和市场的重视。
     高压气瓶按制造工艺可分为两类:拉拔瓶和管制瓶。由于管制瓶瓶底的收底质量问题使其推广和应用受到了限制。而以钢坯为原材料的拉拔瓶,由于产品安全性能高、密封性能好、容重比高等优点越来越受到市场欢迎。目前,在欧美等先进国家拉拔瓶的使用越来越广泛。
     本文以圈模、辊模拉拔为基本研究对象,将圈模和辊模拉拔技术同时应用于CNG气瓶拉拔成形领域,用于解决CNG气瓶拉拔生产过程中的实际问题。论文以气瓶用34CrMo4合金钢为研究对象,通过材料拉伸实验、压缩实验得到了34CrMo4合金钢的动态回复型本构关系方程。针对CNG气瓶圈模、辊轮模拉拔进行了系统的理论分析,给出了圈模、辊轮模拉拔力理论计算公式。通过对圈模拉拔力分析,给出了拉拔力最小的最佳入模角取值范围,并通过有限元数值模拟验证了这一结论。利用有限元软件,对圈模拉拔和辊模拉拔进行数值模拟分析,得到了圈模拉拔力和辊模拉拔力随拉拔比、入模角、圆角半径、摩擦系数等工艺参数的变化规律。通过有限元模拟,研究了摩擦系数对辊轮模拉拔力的影响,发现轴承摩擦系数对轴向拉拔力和径向压制力影响较大,轴向拉拔力随摩擦系数的增大而增大,而辊轮径向压制力随摩擦系数的增大而减小。
     论文针对辊模拉拔进行了力学理论研究,得到了拉拔等速点公式和拉拔力的理论关系式。通过有限元数值模拟得到了拉拔力随拉拔比、瓶坯厚径比、摩擦系数等参数的变化规律。在相同拉拔比下,两道拉拔辊同时通过瓶坯时的拉拔力大于单道拉拔辊的拉拔力。
     对圈模拉拔和辊模拉拔的各工艺参数进行比较,得到在相同拉拔比条件下,辊模拉拔力低于圈模拉拔力,单道拉拔圈拉拔力小于两道拉拔圈的拉拔力,单道拉拔辊拉拔力小于两道拉拔辊的拉拔力。将辊模拉拔技术引入CNG气瓶制造技术,进行合理配模,设计了气瓶拉拔模具,并设计了专用拉拔设备及其生产线。
     本文研究结果为CNG气瓶的拉拔工艺配模设计和拉拔模具的设计提供了理论依据,对CNG气瓶拉拔生产具有重要理论意义和应用推广价值。
High pressure gas cylinder is the main holding container of the high pressure, widelyused in electric power, petroleum chemical industry, light industry, textile, metallurgy,machinery, transportation, mining, pharmaceutical industries and daily life. Due to thehigh pressure and contact corrosive medium it endures during the work, and extremeoperating conditions such as high and low temperature, it is a relatively special equipmenteasy to have an accident. With the increase of car ownership, the promotion of natural gasvehicle not only conforms to our country's economic development strategy, but also caneffectively relieve the energy shortage and air pollution. On-board compressed natural gascylinder (CNG gas cylinder) is one of the key components of CNG vehicle, its securityhas received great attention from the state and market.
     High pressure gas cylinder according to the manufacturing process can be dividedinto two categories: drawing bottle and tube-type bottle. Due to quality problem of thebottom of tube-type bottle, the development of the tube-type bottle is limited. But thedrawing bottle, using billet as its raw materials, due to the high product safetyperformance, good sealed performance, high bulk density, is more and more welcomed bythe market. At present, drawing bottle is widely used in Europe and the United States andother advanced countries.
     Based on the ring dies and roller dies drawing as the basic research object, the ringdies and roller dies drawing technology are both used in CNG gas cylinder drawingforming field, aim at solving the practical problems of CNG gas cylinder drawing in theprocess of production. In this paper, with gas cylinder steel34CrMo4as research object,through the material tensile test, compression test, the dynamic recovery constitutive lawsequations of34CrMo4alloy steel is obtained. Detailed theoretical analysis for CNG gascylinder ring dies and roller dies drawing were applied, which gives the ring dies androller dies drawing force theoretical calculation formulas. Through the analysis for thering dies drawing force, the value range of minimum best blank entry angles to mold aregiven, and this conclusion is verified by finite element numerical simulation. Using finite element software, the ring dies and roller dies drawing numerical simulation analysis isprocessed, the rule of variation of process parameters such as drawing ratio, die-entranceangle, the radius and friction coefficient with the ring dies and the roller dies drawingforce is obtained. the influence of the friction coefficient to the roller die drawing force isstudied, finding that bearing friction coefficient makes a great influence on the axialdrawing force and radial pressing force, the axial drawing force increases with theincreasing of the friction coefficient, the roller radial pressing force decreases with theincreasing of friction coefficient.
     The mechanics theory of roller dies drawing is studied, the theoretical relationformula between drawing speed point and drawing force is built. By finite elementnumerical simulation, the rule of variation of parameters, such as coefficient of friction,the bottle drawing ratio, slab thickness to diameter ratio changed with the drawing force isobtained. Under the same drawing ratio, drawing force of two passes rolling process islarger than single pass rolling process.
     Compared various process parameters of the ring dies and roller dies drawing underthe same drawing ratio condition, find that the roller dies drawing force is lower than ringdies drawing force, force of single pass ring drawing process is smaller than two passesring drawing process, and the one of single pass roller drawing process is smaller than twopasses roller drawing process. Through introducing the roller dies drawing technology toCNG gas cylinder manufacturing, carring on the reasonable die arrangement, the bottledrawing die was designed, same with the special drawing equipment and production line.
     In this paper, the results of the study provides a theoretical basis for CNG gascylinder die arrangement of drawing process and the die design, which has importanttheory meaning and application promotion value to the CNG gas cylinder drawingproduction.
引文
[1]陶晋.汽车企业绿色制造的研究[D].武汉:武汉理工大学管理科学与工程学科硕士学位论文,2006:8-10.
    [2]席跃进,刘建华.车用内燃机环保节能技术的进展[J].北京汽车,2004,2:17-19.
    [3]张启义,张鹏辉.汽车节能与环保并举的几点措施[J].节能技术,2003,21(121):31-32.
    [4] Webster C. The Development of ISO11439for Compressed Natural Gas Vehicle Cylinders[J].ISO Bulletin,2001,2:15-18.
    [5]系海军.中国天然气汽车发展[M].北京:化学工业出版社,2006:5-6.
    [6]赵建宁.发展压缩天然气汽车的可行性分析[J].交通标准化,2009,7:219-220.
    [7]李晓辉.车用全复合材料CNG气瓶的安全可靠性分析[D].北京:首都经济贸易大学安全技术及工程专业硕士学位论文,2007:1-2.
    [8]梁静.高压气瓶热拉拔成形工艺优化研究[D].秦皇岛:燕山大学材料加工工程学科硕士学位论文,2010:1-10.
    [9]张洁.国内复合材料气瓶发展及气瓶标准概况[J].纤维复合材料,2007,3:38-42.
    [10] ANSI/CSA NGV-2Basic Requirements for Compressed Natural Gas Vehicle (NGV) fuelcontainers[S]. Canadian standardsAssotions,5060Spectrum Way, Mississauga, ONL4W5N6,Canada.
    [11]李晓辉,陈林红,张树.浅析影响车用缠绕气瓶使用安全的问题与缺陷[J].城市公共交通,2010(2):28-30.
    [12]戚基艳.车用压缩天然气气瓶发展与检验[J].辽宁高职学报,2013,15(5):74-76.
    [13] GASTANK瑞典推出基于帝斯曼Akulon Fuel Lock和3B HiPer-texTM玻璃纤维的零渗透轻质复合材料CNG气瓶[J].国外塑料,2012,12.
    [14]张红星,江华生.车用压缩天然气气瓶的研究概况[J].石油和化工设备,2011,10:5-8,16.
    [15]邢志敏.复合材料CNG气瓶的力学性能研究[D].北京:北方工业大学机电工程学科硕士学位论文,2005:1-10.
    [16]蔡久茂.高压气瓶收口塑性成形数值模拟与缺陷预测[D].上海:华东理工大学机械电子工程学科硕士学位论文,2012:1-18.
    [17]罗先登,杜厚益.高强度钢质轻型高压气瓶[J].钢管,2000,29(3):45-47.
    [18]吴立波,张治民.旋压设备工艺研究[J].锻压装备与制造技术,2006,41(2):31-33.
    [19]黄亮,杨合,詹梅.分形旋压成形技术研究进展[J].材料科学与工艺,2008,16(4):476-479.
    [20]徐恒秋,樊桂森,张锐,等.旋压设备及工艺技术的应用与发展[J].新技术新工艺,2007,2:6-8.
    [21]侯红亮,余肖放,王耀奇.国内旋压设备及其相关技术的发展与现状[J].锻压装备与制造技术,2009,44(4):16-19.
    [22]刘鹏,朱命怡,李长胜,等.薄壁管体缩径旋压变形特性分析[J].机械设计与制造,2010,6:126-128.
    [23] Salgues D, Mouis A, Lee S, et al. Shear and SwirlCoaxial Injector Studies of LOX/GCH4Rocket Combustion Using Non[J]. Intrusive Laser Diagnostics, AIAA Paper,2006:757.
    [24] Zong N, Yang V. Supercritical LOX/Methane Flame Stabilization And Dynamics of a ShearCoaxial[J]. AIAA Paper,2006:760.
    [25] Craig Judd D, Buccella S, Alkema M, et al. Effect of Combustion Process on Performance.Stability, and Durability of a LOX/Methane Rocket Engine[J]. AIAA Paper,2006:1533.
    [26] Lax J, Suslov D, Bechle M, et al. Investigation of Sub-And Supercritical LOX/Methane InjectionUsing Optical Diagnostics[J]. AIAA Paper,2006,5077:2006.
    [27]程秀全,陈家华,夏琴香,等.无芯模缩径旋压力的有限元数值模拟及试验研究[J].塑性工程学报,2007,14(5):38-42.
    [28]李旺. CNG气瓶热旋压机研发及有限元分析[D].秦皇岛:燕山大学材料加工工程专业硕士学位论文,2011:5-20.
    [29]时丰兵.卧式普通旋压机床结构优化设计及整机研制[D].上海:华南理工大学机械制造及其自动化专业硕士学位论文,2013:1-6.
    [30]范淑琴,赵升吨,王春辉.普旋成形设备的研究现状[C].第四届锻压装备与制造技术论坛九届一次学术交流会议论文集,太原,2009:89-93.
    [31]赵升吨,赵承伟,王君峰,等.现代旋压设备发展趋势的探讨[J].中国机械工程,2012,23(010):1251-1255.
    [32]李世君.大型立式强力旋压机电液伺服系统的研究[D].杭州:浙江大学机械电子工程专业硕士学位论文,2008:1-12.
    [33]《锻压技术手册》编委会.锻压技术手册[M].北京:国防工业出版社,1989.
    [34]赵琳瑜,韩冬,张立武,等.旋压成形技术和设备的典型应用与发展[J].锻压技术,2007,32(6):18-25.
    [35]夏琴香,时丰兵,赵学智,等.基于ANSYS Workbench的卧式旋压机床身结构设计[J].锻压技术,2014,39(1):136-141.
    [36]黄成龙,夏琴香,赵学智,等.焊接式卧式旋压成形机床结构设计及分析[J].锻压技术,2013,38(4):82-86.
    [37]黄涌,夏琴香,程秀全,等.筒形件强力旋压用对轮旋压装置的研制[J].锻压技术,2013,38(6):62-66.
    [38]周思聪,夏琴香,胡广华,等.皮带轮旋压机床用嵌入式开放性数控系统的研究[J].机床与液压,2009,37(5):11-18.
    [39]夏琴香.三维非轴对称零件旋压成形工艺及设备[J].新技术新工艺,2003,12:33-35.
    [40]夏琴香.一种旋压成形装置[P].2002年实用新型专利,专利号: ZL02226079, X.
    [41]黄涌,夏琴香,程秀全,等.筒形件强力旋压用对轮旋压装置的研制[J].锻压技术,2013,38(6):62-66.
    [42]孙凌燕,叶邦彦,郝少华,等.杯形薄壁梯形内齿轮旋压成形的机理[J].华南理工大学学报(自然科学版),2010,38(2):49-54.
    [43]罗杜宇,夏琴香,程秀全.齿轮参数对杯形薄壁内齿旋压成形的影响[J].锻压技术,2011,36(4):73-76.
    [44]罗杜宇,夏琴香,程秀全.旋压成形对内齿轮显微组织的影响[J].热加工工艺,2011,40(11):68-72.
    [45]黄亮,杨合,詹梅.分形旋压成形技术研究进展[J].材料科学与工艺,2008,16(4):476-480.
    [46]杨合,詹梅,李甜,等.铝合金大型复杂薄壁壳体旋压研究进展[J].中国有色金属学报,2011,21(10):2535-2550.
    [47]夏琴香,张帅斌,吴小瑜,等.锥形件单道次拉深旋压成形的数值模拟及试验研究[J].锻压技术,2010,35(1):44-49.
    [48]秦雪梅,黄雁威,夏琴香,等.旋压成形齿槽的有限元模拟分析[J].锻压装备与制造技术,2012,(6):79-83.
    [49]范燕波,赵学智,夏琴香.钢制带轮热旋压成形工艺分析及有限元模拟[J].锻压技术,2012,37(4):54-59.
    [50]耿艳青.多道次普通旋压成形工艺试验及数值模拟研究[D].南昌:南昌航空大学材料加工工程学科硕士学位论文,2012:1-10.
    [51]张涛,贾英辉,时海芳.无缝气瓶收口热旋压成形过程的数值模拟及分析[J].锻压技术,2011,36(3):58-62.
    [52]葛丹丹.连杆衬套强力旋压有限元数值模拟及工艺参数研究[D].太原:中北大学机械设计及理论学科硕士学位论文,2012:7-17.
    [53]吴立波.旋压引伸成形设备虚拟样机分析及仿真实验研究[J].热加工工艺,2013,42(9):131-134.
    [54]宋晓飞,詹梅,蒋华兵,等.铝合金大型复杂薄壁壳体多道次旋压缺陷形成机理[J].塑性工程学报,2013,20(1):31-37.
    [55]刘彧.轮毂旋压机加工力学参数的确定与关键部件设计及优化[D].杭州:浙江大学热能工程学科硕士学位论文,2012:1-12.
    [56]高桥金.基于有限元分析和试验对旋压残余应变的研究[J].热加工工艺,2013,42(17):83-86.
    [57]李伟,李亨,刘全坤.带轮旋压成形关键技术分析[J].机械传动,2013,37(8):13-17.
    [58]孙凌燕.内筋参数对薄壁复杂构件旋压材料流动的影响[J].制造业自动化,2012,34(12):49-52.
    [59]于志德,聂兰启.连接体旋压工艺研究[J].模具制造,2013,(11):20-23.
    [60]周吉,程松,王浩林.金属旋压加工工艺的研究[J].上海电气技术,2012,5(1):6-12.
    [61]孙丽霞,姜生元,贾建波,等.铝合金薄壁管旋压封口工艺[J].塑性工程报,2010(4):82-85.
    [62]王成和,刘克璋.旋压技术[M].北京:机械工业出版社,1986:23-30.
    [63]徐洪烈.强力旋压技术[M].北京:国防工业出版社,1984:12-23.
    [64]李继贞.气瓶(内衬)整体旋压成形技术[J].锻造与冲压,2005,10:45-47.
    [65]徐勇.连续流变挤压铝合金导电材料的研究[D].沈阳:东北大学材料加工工程学科硕士学位论文,2008:10-11.
    [66]王德广,邓小民.高精度管材拉拔过程计算机模拟研究[J].重型机械,2006,3:35-39.
    [67]薛隆泉,何亚峰.拉杆对短芯棒拔制影响的有限元分析[J].铸造技术,2005,26(12):1100-1104.
    [68]韩宝云,胡成就.钢管苏式模空拔过程的计算机有限元模拟[J].钢铁研究学报,2001,13(6):19-22.
    [69]胡龙飞,刘全坤,王强.固定短芯棒拔管残余应力分布规律研究[J].材料科学与工艺,2008,16(1):89—93.
    [70]谢玲玲,王萍,黄贞益.无缝钢管空拔成形的有限元模拟研究[J].热加工工艺,2011,40(1):99-102.
    [71]胡建英,叶金铎,牛洪军.锥模与弧形模芯拔管成型过程的非线性有限元分析[J].天津理工大学学报,2006,22(2):23-26.
    [72]黄小青,唐华平.基于有限元模拟的双模拔制力优化研究[J].热加工工艺.2013,16:14.
    [73]曹小峰,周黄山,张江伟.提高胎圈钢丝强度的途径[J].金属制品,2010,36(2):32-35.
    [74]张伟玮,王仲仁,陈景松.无芯棒拉拔过程应力应变分析及壁厚变化[J].塑性工程学报,2013,20(2):29-33.
    [75]贾春扬.胎圈钢丝拉拔工艺和模具孔型设计研究[D].杭州:浙江工业大学硕士学位论文,2009:1-3.
    [76]贾春扬,刘红,曾好平.胎圈钢丝拉拔模新孔型设计与有限元分析[J].轻工机械,2010,28(2):54-57.
    [77]辛成,储少军,杜海清.胎圈钢丝拉拔模具的修模质量改进[J].金属制品,2009,35(4):47-52.
    [78]陈丽文,郭胜利,崔冰艳.铍铜管固定短芯头拉拔外模半锥角的优化[J].机械工程材料,2008,32(8):79-83.
    [79]陈学胜,赵仲治,杨文成.平面流动动可容分析和最佳凹模锥角[J].汽车工程,1995,17(1):57-66.
    [80]黄东男,张士宏,王鹏程.游动芯头拉拔模具锥角优化的数值模拟[J].机械工程与自动化,2006,(2):33-36.
    [81]王德广,邓小民.芯棒位置对管材内径尺寸精度影响的有限元模拟[J].重型机械,2005,1:51-57.
    [82]杨晓静,孙方宏.金刚石涂层模具铜管固定芯头拉拔过程数值模拟[J].上海交通大学学报,2009,43(5):841—847.
    [83]刘升,李浩进,王伯文.方圆管固定短芯棒拉拔工艺分析[J].武汉科技大学学报,2011,34(6):414-419.
    [84] Kwan C T. A Generalized Velocity Field for Axisymmetric Tube Drawing through anArbitrarily Curved Die with an Arbitrarily Curved Plug[J]. Journal of Materials ProcessingTechnology,2002,122(2):213-219.
    [85]黄成江,李殿中,戎利建,等.多道次拉拔管的三维弹塑性有限元分析[J].钢铁研究学报,2000,12(3):27-30.
    [86] Alexandrove N. Analytical Treatment ofTube Drawing with a Mandrel[J]. Proceedings of theInstitution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2001,215(5):581-589.
    [87] Kuboki T, Nishida K, Sakaki T. Effect of Plug on Leveling of Residual Stress in Tube Drawing[J].Journal of Materials Processing Technolo-gy,2008,204(1):162-168.
    [88]马怀宪.金属塑性加工学一挤压、拉拔与管材冷轧[M].北京:冶金工业出版社,1997.
    [89] Anthony L, Randazzo. A New Concept of Wire Making With Roller Dies[J]. Wire Production,1964,39(4):527-531.
    [90]五弓勇雄等.ロ一ヮ一ダィス引拔法の特长[J].日本金属学会志,1962,26(1):39-43.
    [91]五弓勇雄等.ロ一ヮ一ダィス引拔法の特长[J].日本金属学会志,1963,27(12):611-618.
    [92]五弓勇雄等. On the Roller-Dies Drawing[J].铁と钢,1963,49(8):1110-1117.
    [93]五弓勇雄等. Charaeter of Roller-Dies Wire Drawing Method[J].日立评论(别册),(15):7-12.
    [94]五弓勇雄等. On the produetion of Round-Wire from Alum.Strip[J].轻金属,1966,6(80):38-44.
    [95]五弓勇雄等. Roller Dies for Wire-Drawing[J]. The Wire Industry Yearbook,1970.207.
    [96]永井博司. Theoretieal Analysis and Praetical Use of Rolle:Dies in Cold Drawing[J].塑性と加工,1984,279(25):324-328.
    [97]清水一之.ロ一ヮ一ダィス伸线法[J].金属,29(11):863-864.
    [98]岩田寿郎等. Consideration on Callibe:of Roller dies Wire Drawing Method[J].日立评论(别册).(21):66-71.
    [99]郑宝龙,朱为昌,徐言东.辊模拉拔技术及其应用[J].金属工艺研究,1996,14(1):43-46.
    [100]北京钢铁厂.用“辊拔法”生产异型钢丝[J].北京钢铁学院资料一轧,760041-1,1976.
    [101]大连钢厂钢丝车间技术组.辊拉模冷拉法[J].特钢文集,1981,1:73-79.
    [102]季龙官,方树铭,雷霆,等.拉拔低塑性金属异型材的四辊辊拉模的新设计[J].云南冶金,2007,(36)6:44-46.
    [103]郑宝龙,朱为昌,刘希和.辊模拉拔运动学分析[J].金属制品,1996,22(5):10-13.
    [104]黄崇高,刘党伟,陆小蕊. TC4线材辊模拉拔工艺研究[J].热加工工艺,2014,41(11):109-110.
    [105]李新立,小型异型线材的生产方法[J].金属制品,1999,25(3):17-19.
    [106]刘凯,彭立新,邱霞.天然气发动机,新型绿色动力[J].柴油机设计与制造,2005,14(2):7-10.
    [107]李兴虎.汽车排气污染与控制[M].北京:机械工业出版社,1999.
    [108]李萍.我国天然气汽车(环保汽车)的发展现状及趋势[J].机械管理开发,2008.23(5):106-109.
    [109]许勇顺,柳建韬,聂明,等.金属热变形应力-应变曲线数学模型的研究与应用[J].应用科学学报,1997,15(4):379-384.
    [110]申卫华,李章刚,刘化民,等.铜管游动芯头拉拔模具角度优化的有限元模拟[J].塑性工程学报,2005,12(2):61-65.
    [111]严珩志,何超.优化管材拉拔模压缩带及游动芯头锥角的遗传算法[J].铝加工,1999,22(1):13-17.
    [112]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2001:153-154.
    [113]Hao H B, Zhao C C. Research on CNG Control Bottle Drawing Process and Model Parameters[J].Applied Mechanics and Materials,2013,271:466-471.
    [114]燕存良.滚动模拉拔工艺研究[D].西安:西安建筑科技大学材料加工工程学科硕士学位论文,2001:12-26.
    [115]李勇. Y型辊模拉拔过程的三维有限元模拟[D].昆明:昆明理工大学材料学学科硕士学位论文,2004:1-5.
    [116]Fisher W P, Day A J. A study of the factors controlling the tube-sinking process for polymermaterials[J]. Journal of materials processing technology,1997,68(2):156-162.
    [117]Sawamiphakdi K, Lahoti G D., Kropp P K.. Simulation of a tube drawing processing by the finiteele-mentmethod [J]. Journal of Materials Engineering and Performance,1991(27):179-190.
    [118]高昂,王德广,邓小民.不同拉拔工艺对管材尺寸精度的影响[J].试验与研究,2008,37(1):42-48.
    [119]黄崇高,刘党伟,陆小蕊. TC4线材辊模拉拔工艺研究[J].热加工工艺,2012,41(11):109-110.
    [120]王会凤.应用广泛的金属挤压工艺[J].金属世界,2011,(5):10-12.
    [121]李东和.热挤压的一次成形技术概述[J].辽宁省交通高等专科学校学报,2007,9(1):41-44.
    [122]吴诗惇.挤压理论[M].北京:国防工业出版社,1994:65-70.
    [123]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1986:141-173.
    [124]陈平昌,朱六妹.材料成形原理[M].武汉:机械工业出版社,2006:340-351.
    [125]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社,2001:203-241.
    [126]刘德学.挤压变形力的数值分析及模拟方法研究[D].兰州:兰州理工大学材料科学与工程学科博士学位论文,2009:13-20.
    [127]易绯雄,李职模,姚春臣,等.铝合金产品的温挤压工艺研究[J].新技术新工艺,2009,2:25-27.
    [128]赵长财,曹秒艳,董国疆.无缝气瓶拉伸模具[P].中国: ZL200910264124.X.2012-09-05.
    [129]赵长财,董国疆,曹秒艳.立式液压机及其支撑结构[P].中国: ZL200920283249.2.2010-12-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700