CNG气瓶热旋压机研发及有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于南京某气瓶制造厂325、425旋压机研发项目。
     作为一种气体储存容器,CNG气瓶已在工业、矿业、军事、医药、潜水、汽车等领域得到了广泛应用。传统CNG气瓶采用焊接的方法,随着旋压技术的不断发展,发现用旋压技术生产CNG气瓶是更好的办法,能从根本上消除传统焊接生产中焊缝强度降低、脆裂和拉应力集中等缺陷,使气瓶的气密性和耐压性有了很大提高,同时具有所需设备吨位小、模具加工成本低、成形范围广、产品质量高等优点。
     为此研究团队在赵长财教授的带领下自主研发了425、325全自动数控气瓶旋压机(生产线),此设备可实现对钢质气瓶局部加热后作无芯模的多道次收口和封底,结构简单,外观整洁,生产效率高,提高了国内外数控热旋压机研制的水平,降低了设备成本,提高了产品市场竞争力。
     本文主要研究内容和结果如下:
     建立了既符合实际又兼顾效率和计算精度的旋压工艺有限元模拟模型,解决了材料模型建立、边界条件处理和旋轮轨迹实现等关键问题,得出旋压力能参数,为旋压机的整体设计奠定力学基础。
     基于上述力能参数,设计CNG气瓶热旋压机本体结构。此旋压机主要由主轴机构、模具装置、翻料装置、加工运送装置、加热上料装置、分料装置、吹底枪装置、传送辊道等部分组成。本文主要针对主轴机构和模具装置进行结构设计阐述,针对关键部件进行运动学分析和力学计算,并对主要零部件进行有限元模拟分析和优化。结果表明,该旋压机整体满足结构刚度和强度,旋制出的气瓶尺寸精度高,表面质量好,达到了国际先进水平。
The project comes from 325, 425 spinning machine R & D projects proposed by a gas factory in Nanjing.
     As gas storage vessel, CNG cylinders have been widely used in the industrial, mining, military, medicine, diving cars and other fields. The traditional method to produce CNG cylinders is welding, but with the continuous development of spinning technology, people found that spinning technology is a better way to produce CNG cylinders. It can virtually eliminate the defects such as weld strength reduction, brittle rupture and tensile stress concentration of the traditional welding production, so that air tightness and pressure of the cylinders have been greatly improved, meanwhile it has the advantages such as lower tonnage equipment, lower mould manufacturing cost, wider forming range and higher production quality etc.
     The 425 and 325 automatic CNG cylinder spinning devices (production line) were developed by the research team. This device can achieve non-core multi-pass shell nosing and back cover after local heating the steel cylinders. It has simple structure, neat appearance, high efficiency, and has improved the level of thermal shut CNG spinning machine at home and abroad, lower the equipment costs, and improved market competitiveness of the production.
     What the paper studies are as follows:
     Taking into account realistic, efficiency and accuracy, established finite element simulation model of spinning technology, saluted the material model, boundary conditions, the roller track and other key issues, drew spinning force energy parameters, lay the foundation mechanics for the overall design of the spinning machine.
     Based on the above force energy parameters, designed the body structure of CNG cylinder hot spinning machine. The spinning machine is made of spindle unit, mould device, stirring device, processing delivery device, heating and feeding device, sub-feed device, blowing the end unit, transfer roller and other components. This paper describes the design of spindle unit and mould device, the kinematics analysis and mechanical calculations for the key components, and the finite element simulation analysis and optimization of the main components. The results show that this spinning device as a whole has meet the structural stiffness and strength, the productions which this device produce have high dimensional accuracy, surface quality, and the device has reached to the international advanced level.
引文
1李德群.塑性加工技术发展状况及趋势.航空制造技术, 2000(3):27-28
    2日本塑性加工学会.旋压成形技术.陈敬之译.北京:机械工业出版社, 1988:1-32
    3王成和,刘克璋.旋压技术.北京:机械工业出版社, 1986:23-30
    4张涛.旋压成形工艺.北京:化学工业出版社, 2008:1-60
    5赵云豪.旋压技术现状.锻压技术, 2005(5):95-100
    6 M.M.EL-Khabeery, M. Fattouh, M. N. E. Sheikh. On the Conventional Simple Spinning of Cylindrical Aluminum Cups. International Journal of Machine Tools & Manufacture, 1991(2):203-219
    7赵琳瑜,韩冬,张立武,等.典型零件旋压成形技术应用发展.航天制造技术, 2007(4):5-10
    8梁佰祥,杨明辉,阳意慧.气瓶旋压成形技术.机电工程技术, 2004(10):13-18
    9徐洪烈.强力旋压技术.北京:国防工业出版社, 1984:12-23
    10王仲仁.特种塑性成形.北京:机械工业出版社, 1995:6-10
    11 R. P. Singhal, P. K. Saxena, R. Prakash. Estimation of Power in The Shear Spinning of Long Tubes in Hard-to-work Materials. Journal of Materials Processing Technology, 1990(23):29-40
    12 Ismail Nawi, S. M. Mahdavian. Hydrodynamic lubrication analysis for tube spinning Process. Wear, 1998(200):145-153
    13叶山益次郎.回转塑性加工学.近代编辑社, 1978:1-54
    14陈适先,贾文铎.强力旋压工艺与设备.北京:国防工业出版社, 1986:35-36
    15 S.Kalpakcioglu. A Experimental Study of Plastic Deformation in Power Spin. CIRP.Annalen, 1961:1-10
    16刘建华,杨合,李玉强.旋压技术基本原理的研究现状与发展趋势.重型机械, 2002(3):1-4
    17詹梅,马明娟,杨合,等.旋轮参数对异性薄壁壳体强力旋压成形的影响.锻压技术, 2006(5):144-147
    18黄亮,杨合,詹梅.分形旋压成形技术研究进展.材料科学与工艺, 2008(4): 476-479
    19詹梅,李虎,杨合,等.大型复杂薄壁壳体多道次旋压过程中的壁厚变化.塑性工程学报, 2008(2):115-118
    20胡莉巾,詹梅,杨合,等.采用韧性断裂准则预测分形旋压径向开裂.塑性工程学报, 2009(3):69-73
    21陈岗,詹梅,杨合,等.基于正交优化的异性薄壁壳体强力旋压成形有限元分析.塑性工程学报, 2008(4):67-71
    22吴立波,张治民.旋压设备工艺研究.锻压装备与制造技术, 2006(2):31-33
    23 Matsunok. Recent Research and Development in Metal Forming in Japan. Journal of Materials Processing Technology, 1997(6):l-3
    24徐恒秋,樊桂森,张锐,等.旋压设备及工艺技术的应用与发展.新技术新工艺, 2007(2):6-8
    25赵琳瑜.旋压成形技术和设备的应用与发展.机床与金属加工设备, 2007(6):18-25
    26侯红亮,余肖放,王耀奇.国内旋压设备及其相关技术的发展与现状.锻压装备与制造技术, 2009(4):16-19
    27 Liu Chun. The simulation of the multi-pass and die-less spinning process [J]. Journal of Materials Processing Technology, 2007(6):518-524
    28李继贞.气瓶(内衬)整体旋压成形技术.锻造与冲压, 2005(10):45-47
    29刘鹏,朱命怡,李长胜,等.薄壁管体缩径旋压变形特性分析.机械设计与制造, 2010(6):126-128
    30 GEEN. T. (Ed.), Nee. A. Y. C. (Ed.). 5th Asia Pacific Conference on Materials Processing. Journal of Materials Processing Technology, 2001(113):788-789
    31 Kawai, K, Yang, L.-N, Kudo. H. A flexible shear spinning of truncated conical shells with a general-purpose mandrel. Journal of Materials Processing Technology, 2001(113):28-33
    32 D. Salgues, A. Mouis, S. Lee, D. Kalitan, S. Pal, and R. Santoro. Shear and SwirlCoaxial Injector Studies of LOX/GCH4 Rocket Combustion Using Non. Intrusive Laser Diagnostics. AIAA, 2006:757
    33 Nan zong and Vigor Yang. Supercritical LOX/Methane Flame Stabilization And Dynamics of a Shear Coaxial. AIAA, 2006:760
    34 D. Craig Judd, S. Buccella, M. Alkema, R. Hewitt, and E. Veith. Effect of Combustion Process on Performance, Stability, and Durability of a LOX/Methane Rocket Engine. AIAA, 2006:1533
    35 J. Lax, D. Suslov, M. Bechle, M. Oschwald, O. Haidn. Investigation of Sub—And Supercritical LOX/Methane Injection Using Optical Diagnostics. AIAA, 2006:5077
    36 Scott J. Volchko, Chih-Jen Sung, Yimin Huang. Catalytic Combustion of Rich Methane/Oxygen Mixtures for Micro propulsion Applications. AIAA, 2005:3924
    37程秀全,陈家华,夏琴香,等.无芯模缩径旋压力的有限元数值模拟及试验研究.塑性工程学报, 2007(5):38-42
    38王殿勇,聂兰启,汪发春.气瓶旋压收口工艺及旋轮设计.模具制造, 2010(7):12-15
    39孙丽霞,姜生元,贾建波,等.铝合金薄壁管旋压封口工艺.塑性工程学报, 2010(4):82-85
    40夏琴香,陈家华,梁佰祥,等.基于数值模拟的无心模旋压收口工艺.华南理工大学学报, 2006:1-7
    41李维贞,王键飞,陈福龙,等.铝合金整体复合气瓶内胆旋压工艺研究.第八届全国旋压学术年会论文集.西安, 2003:53-55
    42 M. Chiaverini, J. Sauer, and S. Munson. Laboratory Characterization of Vortex. Cooled 11l rust Chambers for Methane/O2 and H2, O2. AIAA, 2005:4131
    43 Holger Burkhardt, Martin Sippel, Armin Herbertz, Josef Klevanski. Kerosene VS Methane A Propellant Trade of for Reusable Liquid Stages. JOURNAL OF SPACECRAFT AND ROCKETS, 2004, 41(5):9-10
    44 Holger Burkhardt, Martin Sippel, Armin Herbertz, Josef Klevanski. COMPARATIVE STUDY OF KEROSENE AND METHANE PROPELLANT ENGINES FOR REUSABLE LIQUID BOOSTER STAGES. 4th International Conference onLauncher Technology“Space Launcher Liquid Propulsion”, 2002(12):3-6
    45 Yoshihiko Torano, Makoto Arita, Hiromu Takahashi. Current Study Status of the Advanced Technologies for the J-I upgrade Launch Vehicle-LOX/LNG Engine. AIAA, 200l:1783
    46赵琳瑜,韩冬,张立武,等.旋压成形技术和设备的典型应用与发展.锻压技术, 2007(12):20-23
    47张敏聪.钛合金高压容器成形过程的有限元模拟.西北工业大学, 2003:35-42
    48王玉辉,夏琴香,杨明辉,等.数控旋压机床的发展历程及其研究现状.锻压技术, 2006, 30(4):97-99
    49赵云豪,张顺福.国内旋压技术发展的回顾与展望.第七届全国旋压学术年会论文集.广州, 1999:59-60
    50张涛,林刚.旋压缩口过程的三维有限元数值模拟.锻压技术, 2001(5):26-28
    51赵腾伦.基于ABAQUS的弹体旋压成形有限元数值模拟.精密成形工程, 2010(6):35-38
    52李健,杨坤.基于Abaqus软件二次开发技术筒形件旋压过程研究.锻压技术, 2009(6):129-132
    53石亦平,周玉蓉. ABAQUS有限元分析实例详解.机械工业出版社, 2006:2-7
    54魏战冲,李卫东,万敏,等.旋轮加载轨迹与方式对多道次普通旋压成形的影响.塑性工程学报, 2010(3):108-112
    55 Scheiders R. A grid generation algorithm for the generation of hexahedral element meshes [J]. Engineering with computers, 1996(12):168-177
    56 Geckler J. Metal spinning broadens capabilities. Machine Design, 1977, 19(21):92-95
    57 Winship J T. High production comes to spinning. American Machinist, 1982, 126(18):8-10
    58 Y. Jianguo, M. Makoto. An experimental study on paraxial spinning of one tube end [J]. J. Mater. Process. Techno, 2002, 128(1-3):324-329
    59 M. Hayama, H. Kudo, T. Murata. Development of roller pass programming for spinning shells of various shapes. JSTP, 1992, 33(5):510-518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700