重型钢制车轮体积成形工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车轮是汽车行驶系统中重要的安全部件之一,对整车安全性和可靠性有着重要的影响。重型钢制车轮结构复杂、壁厚变化不规则、成形载荷大,在体积成形过程中易出现断裂、起皱等现象。传统的车轮成形工艺研究方法“试错法”凭借经验确定成形工艺参数,存在盲目性大、研发周期长、实验费用高等弊端。由于现有技术条件的限制,仅仅依靠理论分析或实验研究比较困难。本文采用有限元技术,对重型钢制车轮的成形工艺过程、轮辐旋压加工、轮辋滚压加工等进行分析研究,主要开展了以下三方面研究工作。
     在分析研究重型钢制车轮结构与成形工艺的基础上,针对传统成形工艺过程中存在的工序繁琐、加工效率低等现状,提出了基于DEFORM-3D软件的成形工艺数值仿真方法,为工艺设计、实验研究提供了有效手段。基于数值仿真结果,对轮辐旋压和轮辋滚压提出了新的改进工艺,可有效提高产品质量、缩短产品研发周期。
     从旋压加工的理论和实际出发,对重型钢制车轮轮辐的传统成形工艺方案进行了研究,将轮辐母线分为曲母线段和直线段分别进行处理,提出了错距旋压的新方案。将轮辐曲母线段离散成一系列小曲线段,利用线性逼近的思想,用小直线段替代小曲线段,则曲母线段旋压可看作无数个锥形段旋压的集合;轮辐直线段为筒形件旋压。基于上述模型,可以得到轮辐旋压变形过程中的成形规律。在数值模拟的基础上,采用正交试验法进行工艺参数优化设计,分析各种参数对旋压力及工件质量的影响,得到一组优化的工艺参数。
     在详细分析轮辋滚压成形工况的基础上,提出了“轮辋滚压一次成形”的工艺改进方案。根据轮辋滚压一次成形工艺方案,使用DEFORM-3D软件对轮辋滚压过程进行数值仿真,研究合理的轮辋一次滚压成形的加工参数。仿真结果表明,本文建立的轮辋滚压过程仿真建模方法及其一次成形工艺是可行的。利用正交试验法进行工艺参数优化设计,得到一组优化的工艺参数,为轮辋滚压一次成形提供了理论依据。
Wheel is one of the most important safety parts in vehicle running system. The heavy steel wheel quality greatly affects the security and reliability of the car. Due to the complicated structure, irregular wall-thickness, large forming load, some shortcomings such as tension fracture and crinkle always emerge in the process of molding. The traditional wheel forming process research method" trial and error" relies on experience to determine the process parameters. But it has many disadvantages, such as the blindness in design, the long period, the high cost and so on. It is very hard to clearly understand the forming and process, only depending on theoretical analysis and experimental study. In this paper, the forming process of steel wheel, spinning forming of spoke and roller forming of rim have been analyzed by finite element technology, and the main works having been carried out are as follows:
     Based on study of steel wheel structure and forming process, on the question of complicated process, low processing efficiency in forming process, the paper proposes forming process numerical simulation method based on DEFORM-3D software for process design and experimental research. Based on the numerical simulation results, the spokes and rim rolling spinning a new improvement process, which can effectively improve the quality of products, shorten the product development cycle.
     From the spinning processing of theory and reality, the traditional forming process of steel wheel spoke were studied. The curve segment and straight segment of spoke's generatrix have been treated respectively, and stagger spinning has been putted forward. The curved generatrix has been divided into many small sections. With small straight segments instead of curve segment, using the Linear approximation of the thought, curved generatrix can be regarded as set of innumerability conical sections and followed the sine law in generally; The straight section of the spoke belongs to the spinning of tube-spinning. Based on the model established above, the distribution and variation features of the stress and strain during outside spinning of deformation have been obtained. The appropriate process parameters have been selected by basing on the results of the numerical simulation. And analyze the influence of the parameters on spinning force and blank quality; finally obtain a set of optimum process parameters.
     On the basis of the detailed analysis of the wheel rim roll forming condition and put forward the improvement proposal:the wheel rim rolling form by one step. Based on the proposed scheme, using DEFORM-3D software on the rim of the wheel rolling numerical simulation, discuss reasonable rim a roll forming processing parameters. The simulation results show that it is credible the established rim rolling process simulation modeling method and a forming step numerical simulation. Using orthogonal experiment method for optimizing the process parameters, the group of the most reasonable technological parameters is found which provides a theoretical basis for the production of wheel rim.
引文
[1]陆培明,钱春华,童恬.汽车钢制车轮行业的现状和趋势[J].汽车工程,2006,28(5):504-507.
    [2]Sandip Bhattacharyya, M.Adhikary, M.B.Das, Sudipto Sarkar. Failure analysis of cracking in wheel rims-material and manufacturing aspects [J]. Engineering Failure analysis,2008, 15:547-554.
    [3]载重钢轮行业基本情况ttp://www.cnbuses.com/news/10126.htm.
    [4]李传民,王向丽,闫华军DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [5]张莉,李升军DEFORM在金属塑性成形中的应用[M].北京:机械工业出版社,2009.
    [6]叶山益次朗.回转塑性加工学[M].近代编辑社,1978.
    [7]张彦敏,张学宾,龚红英.有限元在塑性成形中的应用[M].北京:化学工业出版社,2010.
    [8]谭继锦,张代胜.汽车结构有限元分析[D].北京:清华大学,2009.
    [9]魏战冲,李卫东,万敏等.旋轮加载轨迹与方式对多道次普通旋压成形的影响[J].塑性工程学报,2010,17(03):108-112.
    [10]Chen KX, Gia WD, Zao HW. The development and application of metal spinning in China[J].3rd International Conference on Rotary Metal working Processes (ROMP3).Kyoto,Japan,1984,(8-10):155-164.
    [11]王淑军,亓峰,杨金顺等.乘用车钢制车轮轮辐振动特性分析[J].机械工程与自动化,2012,(06):7-12.
    [12]翟月雯,边翊,钟志平.无内胎钢制车轮辗环成形新工艺及其数值模拟[J].锻压技术,2009,34(1):767-769.
    [13]王慧玲,于忠奇,李淑慧.轮辋辊压成形过程的有限元模拟[J].机械设计与研究,2008,24(6):85-88.
    [14]邓锐,石磊,于忠等.轮辋滚压成形的数值仿真技术[J].机械设计与研究,2010,26(1):80-84.
    [15]王宁,李毅,杜林秀等.高强度钢汽车车轮的研制及结构减重分析[J].轧钢2006,23(5):1-4.
    [16]闫胜昝,童水光,张响等.汽车车轮弯曲疲劳试验分析研究[J].机械强 度,2008,30(4):687-691.
    [17]张小光,钟志平,张建荣等.旋压技术在等强度钢制车轮制造中的应用[J].锻压技术,2009,34(2):24-26.
    [18]马海涛.重载汽车用轮辐板带BG420CL生产技术研究[D].沈阳:东北大学,2009.
    [19]田华,陈军.金属体积成形仿真技术的发展概况[J].模具技术,2005,(1):14-17.
    [20]高永超.汽车发电机磁极精密模锻成形模拟和工艺设计[D].武汉:武汉理工大学,2005.
    [21]赵国群,王卫东,栾贻国.金属塑性成形过程勿忘个伽辽金法数值模拟技术研究[J].机械工程学报,2004,40(11):13-16.
    [22]应富强,张更超,潘孝勇.金属塑性成形的三维有限元模拟技术探讨[J].锻压技术,2004,(4):46-50.
    [23]许沂.筒形强旋三维数值模拟及其在钛合金冷强旋中的应用[D].哈尔滨:哈尔滨工业大学,1999.
    [24]贾建磊.汽车铝合金轮毂强力旋压成形工艺研究[D].合肥:合肥工业大学,2010.
    [25]孟艳梅.曲母线形件复合旋压成形的数值模拟及工艺分析[D].秦皇岛:燕山大学,2005.
    [26]L.Huang, H.Yang, M.Zhan.3D-FE modeling method of splitting spinning [J]. Computational Materials Science,2008(42):643-652.
    [27]刘陶,龙思远.基于DEFORM-3D的铝合金筒形件旋压成形过程数值模拟[J].特种制造及有色合金,2010,30(6):160-163.
    [28]孙丽丽,聂海琴,李洪波等.汽车轮毂旋压成形过程的有限元数值模拟[J].合肥工业大学学报,2008,31(4)552-555.
    [29]赵琳瑜,韩冬,张立武等.典型零件旋压成形技术应用发展[J].航空制造技术,2007,4(2):6-7.
    [30]日本塑性加工学会编,陈敬之译.旋压成形技术[M].北京:机械工业出版社,1988.
    [31]张涛.旋压成形工艺[M].北京:化学工业出版社,2009.
    [32]詹梅,李虎,杨合等.大型复杂薄壳多道次旋压成形过程中的壁厚变化[J].塑性工程学报,2008,15(2):115-120.
    [33]Q.Bai, H.Yang, M.Zhan. Finite element modeling of power spinning of thin-walled Shell with hoop inner rib[J]. Transactions of nonferrous metals society of china,2008, (18):6-13.
    [34]He Yang,Liang Huang,Mei Zhan. Coupled thermo-mechanieal FE simulation of the hot Splitting spinning process of magnesium alloy AZ31 [J]. Computational Materials Science, 2010, (47):857-866.
    [35]Liu.C.H. Dynamic finite element modeling for the conventional spinning process [J]. Journal of the Chinese Institute of Engineers,2007(5):911-916.
    [36]李玉强.多道次拉深旋压成形规律的研究[D].西安:西北工业大学,2002.
    [37]马飞.工艺和材料参数对多道次普旋成形影响规律的研究[D].西安:西北工业大学,2005.
    [38]张晋辉,詹梅等.工艺参数对剪切旋压旋压力和壁厚差的影响[J].材料科学与工艺,2007(2):182-185.
    [39]Zhan.M, Yang.H, et al.3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning [J]. Journal of Materials Processing Technology,2007, (12):486-491.
    [40]Huang.C.C, Tang.T.T. Parameter optimization in melt spinning by neural networks and genetic algorithms [J].International Journal of Advanced Manufacturing Technology,2006 (11-12):1113-1118.
    [41]Li.M.S, Yan.Y.N, etal. Selection of parameters in ball-spinning [J]. Journal of Materials Science and Technology,2004, (6):782-787.
    [42]纪莲清,蒋玮.无内胎车轮轮辋滚形时的变形分析[J].锻压技术,2003,1:42-43.
    [43]刘锦文.轮辋复合滚轮扩张滚压成形工艺及分析[J].锻压机械,2005,35(1):26-28.
    [44]陈景烨.截面非对称轮辋滚压成形工艺的研究与应用.模具工业,2007,33,1:27-29.
    [45]韩志武,刘才,陆卫平等.工艺参数对简单断面型钢滚弯成型过程的影响[J].金属学报,2002,38(3):331-333.
    [46]He Yang, Lianggang Guo, Mei Zhan, Zhichao Sun. Research on the influence of material properties on cold ring rolling processes by 3D-FE numerical simulation [J]. Journal of Materials Processing Technology,2006,177:634-638.
    [47]罗晓亮,曾国,李淑慧等.材料参数对高强钢滚弯成形边波影响的有限元分析[J].上海交通大学学报,2008,41(5):776-778.
    [48]李大永,罗应兵,张少睿等.动力显式有限元法滚弯成形多工步仿真关键问题[J].机械科学与技术.2004,23(12):1466-1469.
    [49]李大永,蒋劲茂,彭颖红等.滚弯成形过程仿真与参数优化[J].系统仿真学报.2007,19(4):893-896.
    [50]Y. Abe. K. Mori, O. Ebihara. Optimization of the distribution of wall thickness in the multistage sheet metal forming of wheel disks [J]. Journal of Materials Processing Technology,2002,125-126:792-797.
    [51]W J Chung, J W Cho, T Belytschko. On the dynamic effects of explicit FEM in sheet metal forming analysis [J]. Engineering in Computations,1998,15(6):750-756.
    [52]李有鑫.错距旋压及其应用[J].锻压技术,1988,(6):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700