长筒石蒜花色变异的分子基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长筒石蒜(L. longituba)为我国所特有,长筒石蒜种内花色花型变异最为丰富,这为种质创新和新品种选育奠定了基础。
     本研究以长筒石蒜花瓣为材料,对长筒石蒜花色变异的分子基础进行研究。主要结果如下:
     1.对43个长筒石蒜变异类型和长筒石蒜模式种的花色进行评价。HPLC-DAD/ESI-MS确定长筒石蒜中的花青素组成,初步阐明了长筒石蒜花色形成化学机理。
     2.通过RACE方法从长筒石蒜白色和紫红色花瓣的cDNA中克隆到了ANS,CHS,DFR,F3H,F3’5’H和FLS六个基因的全长cDNA序列。
     3.用实时定量RT-PCR分析了长筒石蒜ANS,CHS,DFR,F3H,F3’5’H和FLS六个基因在不同花色长筒石蒜中的时空表达情况。
     4.构建植物表达载体对矮牵牛进行遗传转化,转基因矮牵牛花朵的颜色有不同程度的变化。
     5.预测了348个转录因子。其中58个转录因子在花瓣中较叶片而言有特异性高表达,同时对其中22个转录因子分析了它们在不同花发育阶段的表达模式。
     6.从前ESTs序列中开发了809个EST-SSR,并进行了初步分析。
     7.不同倍性石蒜(L.radiata)基因组MSAP分析表明DNA甲基化水平与倍性高低关系不明显,而三倍体石蒜表现出较为显著的低甲基化水平特征。
     8.用流式细胞仪对石蒜属植物中9个种进行基因组大小的测定。石蒜属植物基因组大小与其花色、叶形有着密切的关系,并且石蒜属植物基因组大小与染色体数目有关。
The genus Lycoris have colorful flowers favorable for instance as Lycoris longituba. The flowers of L. longituba exhibit a great deal of diversity in both color and floral form, and its bulb has some medicinal potential.
     In this research, the Molecular Biology of Color Variation in L.longituba was studied. The main results were showed as following:
     1、The flower color of 43 L. longituba varieties and the Type species were divided into nine groups: red, orange, yellow and purple series.Anthocyanin composition of L. longituba determined using HPLC-DAD/ESI-MS. The result of multiple linear regression analysis (MLR) indicated that Cy derivatives were the major factors affected the value of color parameters greatly.
     2、Six complete-length cDNAs encoding ANS, CHS, DFR, F3H, F3’5’H and FLS were isolated from the petals by RACE.
     3、The spatial expression analysis of ANS, CHS, DFR, F3H, F3’5’H and FLS in L. longituba indicated that these genes were preferentially expressed in flowers stems and leaves. The temporal expression analysis showed that different expressed patterns in different color flowers.
     4、The function of ANS, CHS, DFR and F3’5’H gene was confirmed by Agrobacterium-mediated transformation of petunia.These results indicated that these genes normally expressed in the transformant.
     5、Based on more than thirty thousand ESTs sequenced in the flower tissue of Lycoris longituba, 349 putative TFs were predicted, and then validated by real time RT-PCR.
     6、Totally 809 SSRs distributed in 738 ESTs were mined out. These results provide a base for the development and future application of EST-SSR markers in genus Lycoris.
     7、Analysis of the level and patterns of gemomic DNA methylation in different ploidy Lycoris radiate by MSAP indicated that 3128 genetic loci were produced by 36 pairs of selective primers. However, the results implied that the DNA methylation levels were not closely associated with the autopolyploidy level in L.radiata.
     8、The nuclear DNA content in Lycoris exhibited significant differences from that of the standard (L. longiflorum). Each species group was allied based on genome size, chromosome number, flower color and leaf morphology; larger genome size was associated with a lower the chromosome number.
引文
Ancos, B. De., E. Gonzalez and M.P. Cano. 1999. Differentiation of raspberry varieties according to anthocyanin composition.Z Lebensm Unters Forsch A. 208:33–38.
    Andersen M, Markham R. Flavonoids: chemistry, biochemistry, and applications. FL:CRC, Taylor&Francis, 2006.
    Arisumi, K. 1971. Flower colors in Amaryllidaceae. II. Anthocyanin constitution of Lycoris. Yamaguchi Daigaku Nogakubu Gakjustsu Hokoku 22:171–180.
    Arisumi, K. and H.Shioya. 1970. Flower colors in Amaryllidaceae. II. Anthocyanin constitution of Nerine. Yamaguchi Daigaku Nogakubu Gakjustsu Hokoku 21:65–72.
    Asen S, Stewart R N, Norris K H. Co-pigmentation of anthocyanins in plant tissues and its effect on color. Phytochemistry, 1972, 11(3): 1139-1144.
    Asen, S., R.N. Stewart, and K.H. Norris. Co-pigmentation effect of quercetin glycosides on absorption characteristics of cyanidin glycosides and color of Red Wing azalea. Phytochemistry 1971.10:171–175.
    Bako E, Deli J, Toth G. HPLC study on the carotenoid composition of Calendula products.J.Biochem & Biophy. Methods, 2002,53:241-250
    Barritt, B.H. and L.C. Torre. 1973. Cellulose thin-layer chromatographi separation of Rubus fruit anthocyanins. J. Chromatogr. 75:151.
    Biolley J P,Jay M.Anthocyanins in modern roses:chemical and colorimetric features in relation to color range.Journal of experimental botany,1993,44(268):1725-1734.
    Bose, T.K., B.K.Jana, and T.P. Mukhopadhyay. 1980. Effects of growth regulators on growth and flowering in Hippeastrum hybridum. Sci. Hortic. 12:195–200.
    Britton G, Liaaen-Jensen S, Pfander H. Carotenoids handbook.Boston: Birkhauser Verlag,2004. Brouillard R. Chemical structure of anthocyanins. In: MarkakisP.Ed. Anthocyanins as food colors. Academic Press, New York, 1982
    Brouillard R. Flavonoids and Flower Color. In: Harborne J B ed. The flavonoids: Advances in Research Since 1980. London: Chapman& Hall, 1988: 525-538.
    Brouillard R. The in vivo expression of anthocyanin color in plants.Phytochem, 1983, 22:1311-1323
    Buchert, J., J.M. Koponen, M. Suutarinen, A. Mustranta, M. Lille, R. Torronen and K. Poutanen. 2005. Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices.J. Sci Food Agric.85:2548–2556.
    Byamukama R., M. Jordheim, B. Kiremire, J. Namukobe and ?. M. Andersen. 2006.
    Anthocyanins from flowers of Hippeastrum cultivars. Scientia Hort.109:262–266.
    Clement J S, Mabry T J. Pigment evolution in the Caryophyllales: A systematic overview.Bot.Acta,1996,109:360-367
    Cunningham, F.X.J. and E.Gantt. 2005. A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J. 41:478–492.
    Da-Costa T, Nelson B C, Margolis S A, et al. Separation of blackcurrant anthocyanins by capillary zone electrophoresis. Journal of Chromatography A,1998,799:321-327.
    Deli J, Molnar P, Matus Z, et al.Isolation and characterization of 3,5,6,-trihydroxy-carotenoids from petals of Lilium trigrinum.Chromatographia. 1998,48:27-31
    Escribano-Bail T, Santos-Buelga C, Rivas-Gonzalo C. Anthocyanins in cereals. Rev Journal of Chromatography A, 2004, 1054: 129-141.
    Favretto D, Flamini R. Application of electrospray ionization mass spectrometry to the study of grape anthocyanins. American Journal of Enology and Viticulture, 2000, 51(1): 55-64.
    Fiorini M. Preparative high-performance liquid chromatography for the purification of natural anthocyanins. Chnmatogr A, 1995, 692: 213-219.
    Forkmann G. Flavonoids as flower pigments the formation of the natural spectrum and its extension by genetic engineering. Plant Breeding, 1991,106:1-26
    Fossen T. Anthocyanins from a norwegian potato cultivar.Food Chemistry, 2003, 81: 433-437
    Glaessgen W E, Seitz H U, Metzger J W. High performance liquid chromatography/electrospray mass spectrometry and tandem mass spectrometry of anthocyanins from plant tissues and cell cultures of Daucus carota L. Biological Mass Spectrometry, 1992, 21: 271-277.
    Gomez-Miguez M, Gonzalez-Miret ML, Heredia FJ. Evolution of colour and anthocyanin composition of Syrah wine elaborated with pre-fermentative cold maceration.J. Agric.Food Chem.2007,79:271-278
    Gonnet J F.CIElab measurement, a precies communication in flower color:A example with carnation(Dianthus caryophyllus) cultivars.J.Horti.Sci.1993,68(4):499-510.
    Gonnet, J.F. Colour effects of co-pigmentation of anthocyanins revisted-Acolorimetric denition using the CIELAB scale. Food Chem. 1998. 63:409–415.
    Gonnet, J.F. and H. Hieu. Insitu microspectrophotometric and microspectrophotocolorimetric investigation of vacuolar pigments in flowers of cultivars of carnation (Dianthus caryophyllus). J. Hortic. Sci.1992. 67:663–676.
    Grotewold E. The science of flavonoids.New York: Springer,2006
    Harborne J B. Chemicogenetical studies of flavonoid pigments.In: Geissiman T A. The chemistry of flavonoid compounds[M]. Paris: Pergamon press, 1962:593-615.
    Harborne J B. Introduction to Ecological Biochemistry(3rd ed). London: Academic Press, 1988.
    Harborne J B. Williams C A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55:481-504
    Harborne JB. Spectral methods of characterizing anthocyanins. Biochem.J., 1958a,70:22-28
    Harris G K, Gupta A, Nines R G, et al. Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2- deoxyguanosine levels in theFischer 344 rat. Nutrition and Cancer, 2001, 40(2): 125-133.
    Heidari R, Khalafi J, Dolatabadzadeh N. Anthocyanin pigments of siahe sardasht grapes. J Sci, 2004, 15(2): 113-117
    Hendrg G.A.F and Houghton J.D. Natural Food Clourant(2nd edn.). Blackie ,1996:1-39
    Honda T, Tatsuzawa F, Kobayashi N, et al. Acylated anthocyanins from the violet-blue flowers of Orychophragonus violaceus. Phytochemistry, 2005, 66(15): 1844-1851.
    Hondo T, Yoshhida K, Nakagawa A, et al.Structual basis of blue-colour development in flower petals from Commelina communis.Nature,1992,358:515-518
    Hong V, Wrolstad R E. Use of HPLC separation/photodiode array detection for characterization of anthocyanins. Journal of Agriculture and Food Chemistry, 1990, 38: 708-715.
    Hrazdina, G. 1988. Purification and properties of a UDPglucose:flavonoid 3-Oglucosyltransferase from Hippeastrum petals. Biochim. Biophys. Acta 955:301–309.
    Iwashina T. The Structure and Distribution of the Flavonoids in Plants. Journal of Plant Research, 2000, 113:287-299
    Jurd L, Asen S, The formation of metal and“co-pigment”complexes of cyaniding 3-glucoside.Phytochemistry,1966, 5:1273-1281
    Kishimoto, S., T.Maoka, K.Sumitomo and A.Ohmiya. Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci. Biotechnol. Biochem. 2005. 69:2122–2128.
    Kobayashi H, Oikawa Y, Koiwa H, Yamamura S. Flower-specific gene expression directed by the promoter of a chalcone synthase gene form Gentiana triflora in Petunia hybrida.Plant Science, 1998,131(2):173-181.
    Kobayashi N, Schmidt J, Nimtz M, et al.Betalains from Christmas cactus.Phytochemistry, 2000, 54:419-426.
    Kong J M, Chia L S, Goh N K, Chia T F, Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry, 2003, 64: 923-933.
    Kramer J H, Canter P H. Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision - a systematic review of placebo-controlled trials. Survey of Ophthalmology, 2004, 49(1): 38-50.
    Kugler F, Stintzing F C,Carle R. Characterisation of betalain patterns of differently coloured inflorescences from Gomphrena globasa L. and Bougainvillea sp. By HPLC-DAD-ESI-MS.Anal Bioanal Chem, 2007,387:637-648.
    Markakis P. Anthocyanins as food colors. San Diego: AcademicPress,1982.
    Mazza G, Brouillard R. Recent developments in the stabilization of anthocyanins in food products. Food Chemistry, 1987,25:207-225
    Mazza G, Miniati E. Anthocyanins in Fruits, Vegetables and Grains. London: CRC Press, 1993.
    Melendez-Martinez AJ, Vicario IM, Heredia FJ.Application of tristimulus colorimetry to estimate the carotenoids content in ultrafrozen orange juices. J. Agric.Food Chem.2003, 51:7266-7270
    Mol J, Grotewold E, Koes R E. How genes paint flowers and seeds. Trends in Plant Science, 1998, 3:212-217.
    Nieuwhof, M., J.P. van Eijk, and W. Eikelboom. 1989. Relation between flower color and pigment composition of tulip (Tulipa L.). Neth. J. Agric. Sci. 37:365?370.
    Noda KI, Glower BJ, Linstead P, Martin C.Flower colour intensity depends on specialized cell shape controlled by Myb-related transcription factor. Nature, 1994,369: 661-664
    Packer L. Methods in Enzymology, Volume 213, Part A, chemistry, separation, quantitation and antioxidation. Academic Press,INC.1992
    Piovan A, Filippini R, Favretto D. Characterization of the anthocyanins of Catharanthus roseus (L.) G. Don in vivo and in vitro by electrospray ionization ion trap mass spectrometry. Rapid Communication in Mass Spectrometry, 1998(12): 361.
    Rein M. Copigmentation Reactions and Color Stability of Berry Anthocyanins. Helsinki: University of Helsinki, 2005.
    Royal Horticultural Society. 2001. Royal Horticultural Society colour chart. In: British Colour Council (ed.). Royal Horticultural Society, London, UK.
    Saito N, Timberlake C F, Tucknot O G, et al.Fast atom bombardment mass spectrometry of the anthocyanins violanin and platyconin.Phytochemistry, 1983, 22(4): 1007-1009.
    Schepper S D, Leus L, Mertens M, Debergh P, Bocksaele E V, Loose M D. Society Horticulturae Science, 1995, 64(2): 351-357.
    Schliemann W, Cai Y,Degenkolb T, et al.Betalains of Celosia argentea. Phytochemistry, 2001, 58:159-165
    Schwarz M, Hillebrand S, Habben S, et al. Application of high-speed countercurrent chromatography to the large-scale isolation ofnanthocyanins. Biochemical Engineering Journal, 2003, 14: 179-189.
    Stafford H A. Anthocyanins and betalains: Evolution of the mutually exclusive pathways.Plant Sci., 1994, 101:91-98
    Steglich W, Strack D. Betalains. In: Brossi A. the Alkaloids, Chemistry and Pharmacology.London: Academic Press, 1999:1-62
    Stintzing, F.C., A. Schieber and R. Carle.x. Evaluation of color properties and chemical quality parameters of cactus juices. Euro. Food Res.Technol. 2003. 216:303?311.
    Strack D, Vogt T, Schliemann S. Recent advances in betalain research.Phytochemistry, 2003,62:247-269.
    Sweeny JG, Wilkinson MM, Iacobucci GA.Effect of flavonoid sulfonates on the photobleachingof anthocyanins in acid solution. J.Agric. Food Chem., 1981, 29:563-567
    Tanaka Y, Tusuda S, Kusumi T. Metabolic engineering to modify flower color.Plant Cell Physiology,1998,11:1119-1126
    Tanaka Y. Flower colour and cytochromes P450. Phytochem Rev, 2006, 283-291.
    Tanaka Y., N. Sasaki and A. Ohmiya. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal. 2008. 54:733–749.
    Tatsuzawa F, Saito N, Toki K, et al. Triacylated cyanidin 3- (3X-
    glucosylsambubio side)-5-glucosides from the flowers of Malcolmia maritima. Phytochemistry, 2007, 69(4):1029-1036.
    Tcher A O,Maciarello M J,Tucker SS.A suivey of color charts for biological description.Taxon,1991,40:201-214.
    
    Tian, Q.G., M.M. Giusti, G.D. Stoner and S.J. Schwartz. Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring. J. Chromatogr. A. 2005. 1091:72–82
    Torkangerpoll K, Nobaeb R, Nodland E, et al.Anthocyanin content of Tulipa species and cultivars and its impact on petal colors.Biochem. Systematic and Ecology, 2005, 33:499-510
    Toyama-Kato Y, Yashida K, Fujimori, et al.Analysis of metal elements of hydrangea sepals at various growing stages by ICP-AES.Bio.Engi.J.2003, 14:237-241
    Tressler D K, Pederson C S. Preservation of grape juice II Factors controlling the rate of deterioration of bottled concord juice. Food Research, 1936, 1: 87.
    Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. . Dietary cyaniding 3-o-dglucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition, 2003, 133: 2125-2130.
    Tsuda T, Watanabe M, Ohshima K, et al. Antioxidative activity of the anthocyanin pigments cyaniding 3-O-β-D-glucoside and cyanidin. Journal of Agricultural and Food Chemistry, 1994, 42: 2407-2410
    Tucher A O, Maciarello M J, Tucker S S. A survey of color charts for biological description.Taxon, 1991, 40:201-214.
    Voss D H. Relating colorimeter measurement of plant color to the Royal Horticultural Society Colour Chart. Hortscience, 1992, 27:1256-1260
    Wang S Y, Lin H S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 2000, 48 (2):140-146.
    Wang, L.S., F. Hashimoto, A. Shiraishi, N. Aoki, J.J. Li, K. Shimizu, and Y. Sakata. Phenetics in tree peony species from China by flower pigment cluster analysis. J. Plant Res.2001b.114:213–221.
    Wang, L.S., Hashimoto, F., Shiraishi, A., et al. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation. 2004. J. Plant Res. 117, 47-55.
    Wang, L.S., Hashimoto, F., Shiraishi, A., et al. Petal coloration and pigmentation of tree peony cultivars of Xibei (the Northwest of China). 2000. J. Jpn. Soc. Hort. Sci. 69 (Suppl. 2), 233.
    Wang, L.S., Shiraishi, A., Hashimoto, F., et al. Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars..J. Plant Res. 2001a .114, 33-43.
    White, S.A. and H.L. Scoggins.Fertilizer concentration affects growth response and leaf color of Tradescantia virginiana L. J. Plant Nutr. 2005. 28:1767–1783.
    Whitehead T P, Robinson D, Allaway S, Syms J, Hale A. Effect of red wine ingestion on the antioxidant capacity of serum. Clinical Chemistry, 1995, 41(1): 32-35.
    Williams C A, Grayer R J. Anthocyanins and other flavonoids.Natural product report, 2004, 21:539-573.
    Winkel-Shirley B. Flavonoid Biosynthesis: A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant physiology, 2001, 126(1):485-493
    Yang R.Z., X.L. Wei, F.F. Gao, L.Sh. Wang, H.J. Zhang, Y.J. Xu, Ch.H. Li, Y.X. Ge, J.J. Zhang and J. Zhang. 2009. Simultaneous analysis of anthocyanins and flavonols in petals of lotus (Nelumbo) cultivars by high-performance liquid chromatography-photodiode array detection-electrospray ionization mass spectrometry. J. Chromatogr. A.1216:106–112
    Yashida K, Osanai M, Kondo T. Mechanism of dusky reddish-brown‘kaki’color development of Japanese morning glory, Ipomoea nil cv. Danjuro. Phytochemistry, 2003, 63(6):992-998
    Zhang J J, Wang L Sh, Shu Q Y, et al. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. Scientia Horticulturae. 2007, 114:104-111
    安田齐著.花色的生理生化.北京:中国林业出版社,1989
    鲍海鸥,陈波红.石蒜属植物资源的开发利用.中国野生植物资源,2000,19 (5):31-32
    本恩.颜色技术原理.李小梅,马如,陈立荣等译.北京:化学工业出版社,2002,50-145.
    陈耀华,李樊学.四种石蒜属植物的染色体核型研究.园艺学报, 1985,12(l): 57-60.
    陈勇,张晴.AB-8大孔吸附树脂吸附和分离紫甘薯色素的研究.中国食品添加剂, 2001,(1):6-9
    邓传良,刘建,周坚.长筒石蒜居群遗传多样性RAPD分析.广西植物, 2007, 27(3): 401– 405
    高尚士.观赏地被植物———石蒜类.广东园林,1993(3):43-45.
    胡晓丹,张德权,孙爱东.大孔吸附树脂纯化紫苏叶花色素苷的研究.北京林业大学学报, 2008, 4:34-38
    惠柏棣编著.类胡萝卜素化学和生物化学.北京:中国轻工业出版社,2005
    柯丽霞,孙叶根,郑艳,张定成.石蒜属三种植物的核型研究.安徽师范大学报,1998,21(4):343-348.
    李淑顺,赵九洲,袁娥.几种石蒜属花卉观赏性状的灰色评价.徐州师范大学学报, 2004, 22(1):69-72
    林巾箴,俞志洲.红蓝石蒜和中国石蒜的种间杂交.广西植物, 1988,8(2):165-168
    林巾箴,俞志洲等.石蒜属植物的实验分类.杭州植物园通讯, 1992, 5-11.
    刘琰,徐炳森.石蒜属的核型研究.植物分类学报, 1989, 27(4):257-264.
    卢钰,董现义,杜景平,李永强,王明林.花色苷研究进展.山东农业大学学报(自然科学版), 2004, 35(2): 3l5-320.
    马广恩.加兰他敏治疗老年性痴呆症的研究概况.药学进展,1998,22(3):153-156.
    马永昆,刘晓庚.食品化学.广州:东南大学出版社, 2007: 274.
    秦瑞云,邓传良.长筒石蒜的C带分析.江西农业大学学报. 2007, 29(1):156-157
    任秀芳,周守标,郑艳等.中国石蒜属植物花粉形态的研究.云南植物研究,1995,17(2):182-186
    邵建章,杨积高,张定成.二倍体石蒜在安徽的发现.植物分类学报,1994,32 (6):549-552.
    孙建霞,张燕,胡小松,吴继红,廖小军.花色苷的结构稳定性与降解机制研究进展.中国农业科学2009,42(3):996-1008
    孙叶根,郑艳,张定成,邵建章.安徽石蒜属4种植物核型研究.广西植物, 18 (4):363-367.
    王光萍,陈英,周坚等.长筒石蒜鳞片诱导和植株再生.植物生理学通讯, 2005, 41(4):457
    王祥初.风姿秀逸的石蒜.花木盆景,2000,(10):8
    王晓燕,黄敏仁,韩正敏.石蒜属植物中加兰他敏的分离提取及其应用.南京林业大学学报, 2004, 28 (4):79-83
    王意成.球根花卉石蒜在园林中的应用.中国花卉盆景,1992,(4):71
    徐炳森,黄少甫,赵治芬等.安徽石蒜和中国石蒜染色体核型的分析.云南植物研究,1984,6(l):79-83.
    徐炳森,黄少甫.长筒石蒜的染色体核型分析.植物分类学报, 1984,22(l): 43-45.
    徐渊金,杜琪珍.花色苷分离鉴定方法及生物活性.综述及专题评论, 2006, 32(3): 67-72
    张定成,孙叶根,郑艳,邵建章.三倍体换锦花在安徽发现.植物分类学报, 1999, 37(1):35-39.
    张露,蔡友铭,诸葛强,楼炉焕,邹惠渝,黄敏仁,王明庥.石蒜属种间亲缘关系RAPD分析.遗传学报, 2002,(10):915-921
    张秀丽,李劲涛,杨军.植物花色苷定性定量研究方法.西华师范大学学报, 2006, 27(3): 300-304
    张卓,王晓红,周园,周波. D_101型大孔树脂纯化玉米紫色植株花色苷色素的研究.农业科技与装备2008,1:48-52
    
    Achnine L, Blancaflor EB, Rasmussen S, Dixon RA.Colocalization of Lphenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell,2004,16:3098-3109
    Ambasht NK and Agrawal M.Physiologica responses of field grown Zea mays L.plants to enhanced UV-B radiation.Biotronics,1995,24:15-23.
    Amir Zuker, Tzvi Tzftra, Hagit Ben-Meirl, et al. Modification of flower color and fragrance by antisense suppression of the'lavanone 3-hydroxylase gene. Molecular Breeding, 2002, 9: 33-41
    Anderson PC, Lombard P B, Westwood M N. Leaf conductance, growth, and survival of willow and deciduous fruit tree species under flooded soil conditions. Am.Soc. Hortic. Sci.,1984, 109: 132-138
    Arakana O. Photoregulation of anthocyanin synthesis in apple fruit under UV-B and red light. Plant Cell physiol., 1998, 29:1385-1389
    Austin M B, Noel J P. The chalcone sythase superfamily of type III polyketide synthases. Natural Product Reports, 2003, 20(1):79-110
    Bahler BD,Steffen KL,Orzolek MD.Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar.Hortc.Sci.,1991,26:736.
    Bartel B, Matsuda SPT. Seeing red. Science, 2003, 299: 352-353.
    Benedicte Charrier, Hanh Trinh, Simone Poirier, et al. Flavanone 3-hydroxylase (F3H) expression and flavonoid localization in nodules of three legume plants reveal distinct tissue specificitie. Molecular Plant-Microbe Interaction, 1998, 11(9): 924-932
    Borevitz J.O., Xia Y., Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell,2000,12: 2383–2394.
    Brandt K,Giammini A,Lercari B.Photomorphogeni Responses to UV radiationⅢ:a comparative study of UV-B effects on anthocyanin and flavonoid accumulation in wild-type and aurea mutant of tomato.Photochem.Photobio.,1995, 62:1081-087
    Brenda W S.Flavonoid biosynthesis:A colorful model for genetics, biochemistry, cell biolony, and biotechnolony .Plant Phvsiol, 2001, 126: 485-493
    Britsch L, Ruhnau-Brich B, Forkmann G. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. Journal of Biological Chemistry, 1992, 267(8): 5380-5387.
    Cai YZ, Sun M, Corke H.Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends in Food Science and Technology .2005,16, 370-376
    Chalker-Scott L. Environmental significance of anthocyanin in plant stress responses.Photochem.Photobiol., 1999,70(1):1-9.
    Channeliere S, Riviere S, Scaltiet G et al. Analysis of gene expression in rose petals using expressed sequence tags. FEES Lett. 2002, 515:1-3
    Charrier B, Coronado C, Kondorosi A, Ratet P. Molecular characterization and expression of alfalfa.(Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol Biol, 1989, 29: 773-786
    Charrier,B., Leroux,C., Kondorosi,A. and Ratet,P. The expression pattern of alfalfa flavanone 3-hydroxylase promoter-gus fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ. Plant Mol. Biol., 1996, 30 (6):1153-1168
    Chen M, SanMiguelP, and Bennetzen J L.Sequence organization and conservation in sh2/al-homologous regions of sorghum and rice. Genetics, 1998, 148 (1):435-443
    Christie PJ,Alfenito MR,Walbot V.Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways:enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings.Planta,1994,194:541-549.
    Davies K, Bloor S, Spiller GB, et al.Production of yellow color in flowers: redirection of flavonoid biosynthesis in Petunia.Plant J, 1998, 13:259-266
    Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM.Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica .2003,131:259-268
    Deboo GB, Albertsen MC, Taylor LP. Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J, 1995, 7(5): 703-713.
    Dixon RA, Harrison MJ, Lamb G.. Early events in the activation of plant defense responses. Phytopathol, 1994, 32: 479-501.
    Drumm-Herrel H.Blue/UV light effects on anthocyanins synthesis.In:Senger H(ed).Blue light effects in biological system.Berlin:Springer Verlag,1984,357-383.
    Erich Grotewold.The Genetics and Biochemistry of Floral Pigments. Annu. Rev. Plant Biol. 2006. 57:761-80
    Farzad M, Griesbach R, Weiss MR. Floral color change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. Plant Sci. 2002,162:225-231
    Forkmann G, Dangelmayr B. Genetic control of chalcone isomerase activity IN flowers of Dianthus caryophyllus. Biochem Genet, 1980,18: 519-527
    Forkmann Q, Martens S. Metabolic engineering and applications of flavonoids Current Opinion in Biotechnology, 2001, 12(2): 155-160.
    Gandía-Herrero F, Escribano J, García-Carmona .Betaxanthins as pigments responsible for visible fluorescence in flowers. Planta. 2005, 222:586-593
    Gebhardt Y, Witte S, Forkmann G, Lukacin R, Matern U, Martens S. Molecular evolution of flavonoid dioxygenases in the fanuly Apiaceae. Phytochemistry, 2005, 66:1273-1284
    Given N. K., Venis M. A.and D. Grierson. Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit. J. Plant Physiol., 1998, 133: 25-30
    Goff SA, Cone KC, Chandler VL. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes ofregulatory proteins. Genes Dev. 1992,6:864-875
    Goldslnwugh A P,Tong Y, Yoder J I. Lc as a non-destructive visual reporter and transposition excision marker gene for tomato.Plant J. 1996, 9: 927-933.
    Liu D,Galli M,Crawford N M.Engineering variegated floral patterns in tobacco plants using the Arahidopsis transposable elements Tag I. Plant Cell Physiol, 2001, 42( 4):419- 423
    Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol 1997, 35: 915-927
    Gong ZZ, Yanagishi E, Yamazaki M. et al. A constitutively expressed Myc-like gene involved in anthocyanin bioxynthesis from Perilla futescens:Molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol. Biol. 1999, 41: 33-44.
    Graham TL.Flavonoid and flavonol glycoside metabolism in Arabidopsis.Plant physiol., 1995, 108:36
    Guterman I, Shalit M, Menda N et al. Rose scent:genomics approach to discovering novel floral fragrance-related genes. Plant Cell. 2002 ,14(10):2325-2338
    Hada M,Tsurum S,Suzuki M.Involvement and non-involvement of pyrimidine dimmer formation in UV-B effects on Sorghum bicolor Moench seedlings.J.Plant physiol.,1996,148:92-99
    Harborne JB,Williams CA. Advances in flavonoid research since 1992. Phytochemistry.2000, 55:481-504
    Hekariutta Y , Elomaa P , Kotilainen M . Cloning of cDNA coding for dihydroflavonol-4-fedudtase(DFR)an characterization of dfr expression in the corollas of Gerbera hybrida var.regina.Plant Mo1.Bio1.,1993,22:163-193.
    Hertog MG,Hollman PC. Potential health effects of the dietary flavonol quercetin.European Journal Clinnical Nutrition, 1996, 50(2): 63-71.
    Hollman PC, Katan MB. Health effects and bioavailablility of dietary flavonols.Free Radical Research, 1999, 31(supplement): 75-80.
    Holton TA, Brugliera F, Lester DR,et al. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature, 1993a, 366(6452): 276-279.
    Holton TA, Brugliera F, Tanaka Y Cloning and expression of flavonol synthase from Petunia hybrida. Plant Journal, 1993b, 4(6): 1003-1010.
    Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995,7:1071-1083
    Howe GT,Hackett WP,Furnier GR.Photoperiodic responses of a northern and southern ecoty pe of black cottonwood.Physiol Plant,1995,93:695-708.
    Huits HSM, Gerats AGM, Kreike MM et al. Genetic control of dihydroflavonol 4-reductasegene expression in Petunia hybrida. Plant J, 1994, 6(3): 295-310
    Igarashi Y,et al,.Characterization Of the gene for deltal-pyrrioline-5-carboxylate synthetase and correlatione between the expression of the gene and salt tolerance in Orya saitiva,Plant Mol.biol,1997,33(5):857-865
    Inagaki Y, Johzuka-Hisatomi Y, Mori T, et al. Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene ,1999, 226: 181-188
    J G. Fuglevand, J. A Jackson and G. I. Jenkins. UV-B, UV-A and blue light signal transduction pathways in Arabidopsis. Plant Cell, 1996, 8: 2347-2357
    J. A .Jackson and C.I. Jenkins. Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabiodopsis hy4 mutant. Planta, 1995, 197: 233-239
    Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 2004, 37:104-14
    Koes R E, Francesca Q, Joseph N M. The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays, 1994, 16:123-132
    Koes R E, C. E. Spelt and J. N. Mol. The chalcone synthase multigene family of Petunia hybrida (V30): Differential, light-regulated expression during flower deveopment and UV light induction. Plant Mol. Biol., 1989, 12: 213-225
    Koes R,Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005, 10:236-42
    Koornneef M, Alonso- Blanco C, Peeters A J M,ed al. Genetic control of flowering in Arabidopsis. Ann. Rev. Plant Physiol. Plant Mol. Biol.1998, 49: 345-370
    Krizek DT,Britz SJ,Mirecki RM.Inhibitory effects of ambient levels of solar UV-B radiation on growth of cv.New Red Fire lettuce.,Physiol.Plant,1998,103:1-7.
    Kumar A, Sood A ,Pa1ni1L.M.S. and Guptal A.K. In vitro propagation of Gladiolus hybridus Hort.:Synergistic effect of heat shock and sucrose on morphogenesis Micropropagation of gladiolus. Plant Cell Tissue Organ Cult., 1999, 57:105-112.
    Lange BM, et al. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci., USA 2000, 97(6): 2934-2939
    Lukacin R, Wellmann F, Britsch L, et al. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry, 2003, 62(3): 287-292.
    Markham KR, Gould KS, Winefield CS, Mitchell KA, Bloor SJ, Boase MR. Anthocyanic vacuolar inclusions–their nature and significance in flower colouration. Phytochemistry ,2000, 55:327-36
    Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E. Control of anthocyanin biosynthesis in flowers ofAntirrhinum majus. P1antJ, 1991, 1:37-49
    Martin C. and Getats T, The control of pigment biosynthesis during petal development. Plant Cell 1993,5: 1253-1264.
    Mathews H., Clendennen S.K., Caldwell C.G, et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell .2003,15:1689–1703.
    McKown R,Kuroki G,Warren G.Cold responses of Arabidopsis mutants impaired in freezing tolerance.J.Exp.Bot.,1996,47:1919-1925.
    Mehdy MC, Lambc J. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO., 1987,6: 1527-1533
    Meyer P , Heidmann I , Forkmann G, et al,.A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature, 1987. 330:677-678
    Michael T Clenn, Mary L Durbin. Flower color variation:A model for the experimental study of evolution.Proc. Natl Acad Sci USA, 2000, 97( 13):7016-7023
    Mol J,Jenkins G,Schfer E.Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis.Crit.Rev.Plant Sci.,1996,15:525-557.
    Moorthy P, Kathiresan K. Influence of Ultraviolet-B radiation on photosynthetic and biochemical characteristics o a mangrove Rhizophora apiculata. Photosynthetica, 1997, 34: 465-471.
    Moustafa E, Wong E. Purification and properties of chalcone-flavanone isomerase from soybean seed. Phytochemistry, 1967, 6:625-632
    Nagira Y and Ozeki Y. A system in which anthocyanin synthesis is induced in regenerated torenia shoots.J Pant Res, 2004, 117: 377-383
    Peer WA, Brown DE, Tague BW, et al. Flavonoid accumulation patterns of transparent tests mutants of Arabidopsis. Plant Physiol, 2001, 126: 536-548.
    Pelletier,M.K. and Shirley,B.W. A Genomic Clone Encoding Flavanone 3-Hydroxylase(Accession No. U33932) from Arabidopsis thaliana (PGR95-080) .Plant Physiol. 1995, 109(3):1125
    Piazza P, Procissi A, Jerkins GI, et al. Members of the cl/pll regulatory gene family mediate the response of maize alcurone and mesocotyl to different ling qualities and cytokinins. Plant Physiol. 2002, 128: 1077-1086.
    Prescott AG, Stamford NP, Wheeler G, et al.In vitro properties of a recombinant flavonol synthase from Arabidopsis thaliana, Phytochemistry, 2002, 60(6):589-593.
    Quattrocchio F., Wing J., Woude K, etal. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell ,1999,11:1433–1444.
    Rajendran L, Suvamalatha G, Ravishankar GA, Venkataraman LV. Enhancement production in callus cultures of Daucus carota L. under the influence of fungal of anthocyanin elicitors. Appl. Microbio. Biotechnol., 1994, 42: 227-231.
    Ronchi A, Farina G, Gozzo F. Effects of a triazolic fungicide on maize plant metabolism:modifications of transcript abundance in resistance-related pathways. Plant Sci., 1997, 130: 51-62.
    Schroder J, Raiber S, Berger T, et al., Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones.Biochemistry, 1998, 37(23): 8417-8425.
    Shen G, Pang Y, Wu W, et al.,Cloning and characterization of a flavanone 3-hydroxylase gene from Ginkgo biloba .Biosci.Rep. 2006, 26(1): 19-29
    Sherwin HW and Farrant JM.Protection mechanisms against exess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscose. Plant Growth Reg., 1998,24:203-210.
    Shimada N, Sasaki R, Sato S, Kaneko T, Tabata S, Aoki T, Ayabe S .A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. J. Exp. Bot. 2005, 419: 2573-2585
    Shimada Y, Ohbayashi M, Nakano S R, et al. Genetic of the anthocyanin biosynthetic pathway with flavonoid-3',5'-hydroxylase: Specific engineering switching of the pathway in petunia. Plant Cell Rep., 2001, 20: 456-462.
    Solfanelli C, Poggi A, Loreti E, Alpi A, and Perata P. Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis.Plant Physiol., 2006; 140(2): 637-646.
    Sompormpailin K, Makita Y, Yamazaki M, et al. A WD-repeat-containing putative regulatory protein in anthocyanin biosynthesis in perilla frutescens. Plant Mol. Biol., 2002, 50: 485-495.
    Spelt C., Quattrocchio F., Mol J. and Koes R., ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell, 2002,14:2121–2135.
    Springob K, Nakajima J, Yamazaki M, Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep., 2003, 20: 288-303.
    Stafford H. Flavonoid evolution an enzymatic approach.Plant Physiol., 1991, 96:680-685 Suzuki H, Sawada A, Yonekura-Sakakibara K, et al.Identification of a cDNA encoding malonyl-coenzyme A: anthocyanidin 3-O-glucoside 6"-O-malonyltraferase from Cineraria (Senecio Cruentus) flowers.Plant Biotechnology, 2003, 20(3): 229-234.
    Suzuki H, Nakayama T, Yonekura SK, Fukui et al. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A: anthocyanidin3-O-glucoside-6’’-O-malonyltransferase from Dahlia flowers. Plant Physiology, 2002, 130: 2142-2151.
    Takahahashi A,Takeda K,Ohishi T.Light induced anthocyanin reduces the extent to damage to DNA in irradiated Centaurea cyanus cell in culture.Plant Cell Phyisol.,1991,32:541-547.
    Tanaka Y,Tsuda S, Kusumi T. Metabolic engineering to modify flower color. Plant cellPhiysiology, 1998, (11): 1119-1126
    Theissen G,Saedler H. Floral quartets. Nature ,2001,409: 469-471 Tseng TC, TH Tsai, MY Lue and HT Lee, Identification of sucrose-regulated genes in cultured rice cells using mRNA differential display. Gene, 1995, 161: 179-182
    Tsuada T,Horio F,Osawa T.The role of anthocyanins as an antioxidant under oxidative stress in rats.Biofactor.,2000,131(4):133-139.
    Winkel-Shirley B. Flavonoid Biosynthesis: A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant physiology, 2001, 126(1):485-493.
    Yamazaki M, Yamagishi E, Gong ZZ, et al. Two flavonoid glucosyltransferases from Petunia hubrida: Molecular cloning, biochemical properties and developmentally regulated expression. Plant Molecular Biology, 2002, 48:401-411.
    林泉.色素基因的表达和调控.许智宏,刘春明主编.植物发育的分子机理,北京:科学出版社,1998: 107-119
    孟繁静.植物花发育的分子生物学.北京:中国农业出版社,2000: 225-269
    孙大业,郭艳林,马力耕.细胞信号转导(第二版).北京:科学出版社,1998, 213
    许本波.甘蓝型油菜类黄酮途径CHI, F3H和F3H基因家族的克隆及在黄、黑籽之间的差异表达.西南大学博十学位论文,2006
    周爱琴,祝军,生吉萍等.苹果花青素形成与PAL活性及蛋白质含量的关系.中国农业大学学报,1997, 2: 97-99
    Anyuan Guo, Kun He, Di Liu, et al.DATF: a Database of Arabidopsis Transcription Factors, Bioinformatics, 2005 21: 2568-2569.
    Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M, Phylogeny and divergence of basal angiosperms inferred from APETALA3-and PISTILLATA-like MADS-box genes, Journal of Plant Research, 2004, 117: 229-244.
    Atchley W.R., Wol lenberg K.R., Fitch W.M., et al.Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis, Mol. Biol. Evol., 2000, 17: 164-178
    Becker A, Theissen G, The major clades of MADS-box genes and their role in the development and evolution of flowering plants, Molecular Phylogenetics and Evolution, 2003, 29: 464-489.
    Birkenbihl RP, Jach G, Saedler H, et al. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J Mol Biol. 2005,352(3):585-96.
    Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP, The grapevine transcription factor VvMYBPA 1 regulates proanthocyanidin synthesis during fruit development, Plant Physiol 2007, 143: 1347-l361.
    Borevitz J.O., Xia Y., Blount J., et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis, Plant Cell,2000,12: 2383-2394
    Bovy A., de Vos R., Kemper M., et al.High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1, Plant Cell,2002,14: 2509-2526
    Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR, Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes, Development, 1993, 119: 721-743.
    Bowman JL, Smyth DR, Meyerowitz EM, Genes directing flower development in Arabidopsis, Plant Cell 1985,1: 37-52.
    Buck M.J. and AtchleyW.R. Phylogenetic analysis of plant basic helix-loop-helix proteins, J.Mol. Evol., 2003,56: 742-750
    Cardon G, Hohmann S, Klein J, et al. Molecular characterisation of the Arabidopsis SBP-box genes. Gene. 1999, 237(1):91-104.
    De Bodt S, Raes J, Florquin K, Rombauts S, Rouze P, Theissen G, Van de Peer Y, Genome-wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants, Journal of Molecular Evolution, 2003, 56:573-586.
    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M, The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity, Current Biology, 2004, 14: 1935-1940.
    Dooner H.K., and Kermicle J.L. Displaced and tandem duplications in the long arm ofchromosome 10 in maize, Genetics, 1976, 82(2): 309-322
    Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L, MADS-box protein complexes control carpel and ovule development in Arabidopsis, The Plant Cell, 2003, 15: 2603-2611.
    Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF, Redundant regulation of meristem identity and plant architecture by FRUITFULL,APETALA1 and CAULIFLOWER, Development, 2000, 127: 725-734.
    Flanagan CA, Hu Y,Ma H, Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development, The Plant Journal, 1996, 10: 343-353.
    Gao, G., Zhong, Y., Guo, A., Zhu, Q., Tang, W., Zheng, W., Gu, X., Wei, L., Luo, J. DRTF: a database of rice transcription factors, Bioinformatics 2006, 22 (10):1286-7.
    Goff S.A., Klein T.M., Roth B.A., et al., Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J 1990,9: 2517-2522
    Goodrich J., Carpenter R., and Coen E.S., 1992, A common gene regulates pigmentation pattern in diverse plant species, Cell, 68(5): 955-964
    Grotewold E,Chamberlin M M., Snook K., et al., Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant cell. 1998, 10(5): 721-740
    Gu Q, Ferr andiz C, Yanofsky MF, Martienssen R, The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development, Development, 1998, 125: 1509-1517.
    Heim M.A., Jakoby M., Werber M.et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity,Mol. Biol. Evol., 2003,20: 735-747
    Hugo K.D., and Robbins T.P. Genetic and developmental control of anthocyanin biosynthesis, Annu. Rev. Genet., 1991, 25: l73-l99
    Huits H, S. M,Gerats A,QM,KreIke,M. M,eta 1,Genetic control of dihydroflavonol 4-reductase gene expression in petumiahy bride,Plant J,1994, 6: 295-310.
    Irish VF, Litt A, Flower development and evolution: gene duplication, diversification and redeployment, Current Opinion in Genetics&Development, 2005, 15: 454-460.
    Kaufmann K, Melzer R, Theissen G,MIKC-type MADS-domain proteins: structuralmodularity, protein interactions and network evolution in land plants, Genes, 2008, 347:183-198.
    Kempin SA, Savidge B, Yanofsky MF, Molecular basis of the cauliflower phenotype in Arabidopsis, Science, 1995, 267: 522-525.
    Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE, Phylogeny and diversificatoin of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication, American Journal of Botany, 2004, 91: 2102-2118.
    Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putativetranscriptional regulatorsof the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet. 1996,250(1):7-16.
    Kramer EM, Jaramillo MA, Di Stilio VS, Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms, Genetics, 2004, 166: 1011-1023.
    Lamb RS, Irish VF, Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages, Proceedings of the National Academy Sciences, 2003, 100: 6558-6563.
    Lander E, Linton L, Birren B et al. Initial sequencing and analysis of the human genome. Nature, 2001.409(6822):860-921
    Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF, SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis, Nature, 2000, 404: 766-770.
    Lioyd A M,Walbot V, Davis RW,Arabidopsis and nicotiana anthocyanin activated by maize regulators R and C1.Science. 1992, 258:-1775
    Litt A, Irish VF, Duplication and Diversification in the APETALA1/FRUITFULL Floral Homeotic Gene Lineage: Implications for the Evolution of Floral Development, Genetics, 2003, 165: 821-833.
    Ludwig S.R., Habera L.F., Dellaporta S.L.et al. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region, Proc. Natl. Acad. Sci., USA,1989, 86(18): 7092-7096
    Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. Control of organ asymmetry in flowers of Antirrhinum. Cell, 1999, 99(4): 367-376.
    Marc A Heim,Marc Jakoby,Martin Werber et al,The Basic Helix-Loop-Helix Transcription Factor Family in Plants A Genome-Wide Study of Protein Structure and Functional Diversity, Mol Biol Evol, 2003, 20(5): 735-747.
    Meissner R.C., Jin H.L., Cominelli E., et al.Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYBgenes, Plant Cell, 1999,11: 1827-1840
    Meyerowitz EM, Plant and the logic of development, Genetics, 1997, 145: 5-9.
    Mouradov A, Hamdorf B, Teasdale RD, Kim JT, Winter KU, Theissen G, A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes, Dev Genet, 25: 245-252.
    Nakano T, Suzuki K, Fujimura T, Shinshi H. Genomewide analysis of the ERF gene family in Arabidopsis and rice. Plant Physio, 2006, 140: 411-432.
    Ng M, Yanofsky MF, Function and evolution of the plant MADS-box gene family, Nature Reviews Genetics, 2001, 2:186-195.
    Ooka H, Satoh K, Do I K, et al, Comprehensive analysis of NAC family genes in O ryza sativa and Arabidopsis thaliana, DNA Res, 2003, 10 (6): 239-247.
    Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L, Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world, The Plant Cell, 2003, 15: 1538-1551.
    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF, B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature, 2000, 405: 200-203.
    Quattrocchio F., Wing J.F., Leppen H.TC., et al., Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell. 1993, 5:1497-1512.
    Quattrocchio,F. M,Regulato y Genes cont ro liing flower pigmetation in petumia hybrids. PHD. Dissertation.Amsterdam: Vrije Universitieit. 1994, 365-376.
    Riechmann JL, Krizek BA, Meyerowitz EM, Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS, Proceedings of the National Academy Sciences, 1996, 93: 4793-4798.
    Riese M, Hohmann S, Saedler H, et al. Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene. 2007,401(1-2):28-37.
    Sablowski RW, Meyerowitz EM, A homolog of NO APICALMERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA, Cell, 1998, 92 (1): 93-103.
    Sablowski RW, Moyano E, Culianez-Macia FA et al.A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. Embo J,1994,13: 128-137
    Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009.
    Shinozaki K, Dennis E. Cell signaling and gene regulation global analyses of signal transduction and gene expression profiles. Curr Opinion Plant, 2003, 6:405-409.
    Shore P, Sharrocks AD, The MADS-box family of transcription factors, European Journal Biochemistry, 1995, 229:1-13.
    Theissen G, Saedler H, Floral quartets, Nature, 2001, 409: 469-471.
    Toledo-OrtizG., Huq E., and Quail P.H. The Arabidopsis basic/helix-loop-helix transcription factor family, Plant Cell, 2003, 15: l749-1770
    Unte US, Sorensen AM, Pesaresi P, et al. An SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell. 2003, 15(4):1009-19.
    Venter J, Adams M, Myers E et al. The sequence of the hmnan genome.Science, 2001.291(5507):1304-1351
    Wang RL, Stec A, Hey J, Lukens L, Docbley J. The Limits of selection during maize domestication. Nature, 1999, 398: 236-239.
    Wurschum T, Gross-Hardt R, Laux T. APETALA2 regulates the stem cell niche in theArabidopsis shoot meristem.. Plant Cell 2006, 18: 295-307.
    Yang Y, Fanning L, Jack T, The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA, The Plant Journal, 2003, 33: 47-59.
    Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, de Pamphilis CW, Ma H, The evolution of the SEPALLATA subfamily of MADS-box genes: re-angiosperm origin with multiple duplications throughout angiosperm history, Genetics, 2005, 169:2209-2223.
    Zahn LM, Leebens-Mack J, dePamphilis CW, Ma H, Theissen G, To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms, Journal of Heredity, 2005, 96: 225-240.
    Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, dePamphilis CW, Becker A, Theissen G, Ma H, Conservation and divergence in the AGAMOUS subfamily of MADS-Box genes:Evidence of independent sub-and neo-functionalization events, Evolution and Development, 2006, 8: 30-45.
    Zhang Y, Schwarz S, Saedler H, Huijser P. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol. 2007, 63(3):429-39.
    Zhu Q-H, Guo A-Y, Gao G, Zhong Y-F, Xu M, Huang M-R, Luo J-C, DPTF: A Database of Poplar Transcription Factors, Bioinformatics, 2007, 23 (10):1307-1308.
    李洁,植物转录因子与基因调控,生物学通报,2004,39( 3):9-11.
    刘强,张贵友,陈受宜,植物转录因子的结构与调控作用,科学通报,2000,45:1465-1474.
    Adams MD,et al.Complementary DNA sequencing:expressed sequence tags and human genome project. Science, 1991, 252(5013):1651-1656
    Bandopadhyay R, Shailendra S, Rustgi S, et al. DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST-SSRs. Plant Sci, 2004, 66:349-356
    Barrett B, Griffiths A, Schreiber M, et al.A microsatellite map of white clover.Theor.Appl.Genet, 2004, 109:596-608.
    Botstein D, White R.L, Skolnick M. Construction of genetic linkage map in man using restriction fragment length polymorphisms.Am.J.Hum.Genet, 1980, 32:314-331
    Bryan GJ, Collins AJ, Stephenson P et al. Isolation and characterization of microsatellites from hexaploid bread wheat. Theor Appl Genet, 1997, 94:557-563.
    Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of Chao S, Sharp PJ., Worland A.J,et al.RFLP-based gentic maps of wheat homoeologous soup 7 chromosomes. Theor. Appl. Genet.1989, 78:495-504
    Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156:847-854.
    Cifarelli RA, Gallitelli M, Cellini F. Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. Nucleic Acids Research, 1995, 23:3802-3803
    Costanzo F,et al. Cortese R.Cloning of several cDNA segments coding rot human liver proteins. EMBO ,1983, 2:57-60
    Fisher PJ, Gardner RC, Richardson TE. Single locus microsatellites isolated using 5'-anchored PCR. Nucleic Acids Research, 1996, 24:4369-4371
    Fraser L.G, Harvey C.F, Crowhurst R.N, et al. EST-derived microsatellites from Actinidia species and their potential for mapping .Theor.Appl.Genet,2004,108:1010-1016
    Gao L.F, Tang J.F, Li H.W,et al.Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mo1.Breed, 2003, 12:245-261.
    Gupta P.K, Rustgi S, Sharma S, et al.Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat[J]Mo1.Genet.Genom,2003,270: 315-323
    Hayashi A, Saito T, Mukai Y, et al. Genetic variations in Lycoris radiata var. radiate in Japan .Genes Genet Syst, 2005, 80:199-212
    Hayden MJ, Sharp PJ. Sequence-tagged microsatellite profiling (STMP): a .rapid technique for developing SSR makers. Nucleic Acids Research, 2001, 29(8): 43e-43
    Hori T, Hayashi A, Sasanuma, et al. Genetic variations in the chloroplast genome and phylogenetic clustering of Lycoris species. Genes Genet Syst, 2006, 81: 243-253
    Jung S, Abbott A, Jesudurai C, et al. Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct.Integr.Genom, 2005, 5: 136-143.
    Kandpal RP, Kandpal C, Weissman SM. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. PNAS, 1994, 91:88-92
    Kantety R.V, Rotal M.L, Matthews D.E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol.Bio1, 2002, 48:501-510.
    Karagyozov L, Kalcheva ID, Chapman VM. Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Research, 1993, 21:3911-3912
    Lench NJ, Norris A, Bailey A, Booth A, Markham AF. Vectorette PCR isolation of microsatellites repeat sequences using anchored dinucleotide repeats primers.Nucleic Acids Research, 1996, 24:2190-2191
    Litt M and Luty J.A. A hypervariable microsateilite evealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene.Am J Hum Genet. 1989, 44(3):397-401
    Lunt DH, Hutchinson WF, Carvalho GR. An efficient method for PCR-based identification of microsatellite arrays (PIMA). Molecular Ecology, 1999, 8:893-894
    Nei M, Li W.H. Mathematical model for studying genetic variation in terms of restrictionendonucleases.Proc.Natl.Acad.Sci, 1979, 76:5269-5273
    Okubo K,Hori N,Matoba R,Niiyama T,Fukushima A,Kojima Y, Matsubara K.Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat.Genet.1992, 2:173-179
    Ostrander EA, Jong PM, Rine J, Duyk G Construction of small-insert genornic DNA Libraries highly enriched for microsatellite repeat sequences. PNAS, 1992, 89:3419-3423
    Pestsova E, Ganal M.W., RoderM.S.Isolation end mapping of microsatellite markers specific for the D genome of bread wheat Genome.2000, 43:689-697
    physically clustered simple sequence repeats in plants.Genetics, 2000,156 :847-854
    Rassmann K, Schlotterer C, Tautz D. Isolation of simple sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis,1991,12:113-118
    Roder M.S., Korzun V, Gill B.S., and Ganal M.W.The physical mapping of microsatellite markers in wheat.Genome. 1998a, 41: 278-283
    Roder M.S., Korzun V, Wendehake K,et al. A microsatellite map of wheat. Genetics. 1998,149: 2007-2023
    Roh, M. S., Kurita, S., Zhao, X. Y et al. Identification and Classification of the genus Lycoris using molecular markers. J. Kor. Hort. Sci, 2002, 43: 120-132.
    Rota L.R, Kantety R.V, Yu J.K. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barly. BMC Genomics, 2005, 6:23 Saha M.C, Mian M.A, Eujayl I, et al. Tall fescue EST-SSR markers with transferability acrossseveral grass species. Theor.Appl.Genet, 2004, 109:783-791
    Scott K.D, Eggler P, Seaton G, et al. Analysis of SSRs markers in plants: features and derived from grape ESTs.Theor.Appl.Genet, 2000, l 00: 723-726
    Shi S D,Qiu Y X,U E X, et al. Phylogenetic Relationships and Possible Hybrid Origin of Lycoris Species (Amaryllidaceae) Revealed by ITS Sequences. Biochemical Genetics, 2006a, 44 (5): 198-208
    Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet, 1998, 97, 308-315
    Tae Kyoung-Hwan Ko Sung-Chul Relationship of the Korean Lycoris (Amaryllidaceae) using the RAPDs analysis. Korean Journal of Plant Taxonomy. 1997, 27 (3):349-358
    Tautz D, Trick M, and Dover GA. Cryptic simplicity in DNA is a major source of genetic variation. Nature, 1986,322:652-656
    Thiel T, Michalek W, Varshney R.K, et al. Exploiting EST database for the development and characterization of gene derived SSR-markers in barley(Hordeum vulgare L.)Theor.Appl.Genet, 2003, 106:411-422
    Thiel, T, Michalek R.K, Varshney A.G. Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor.Appl.Genet, 2003, 106,411-422
    Xu Z, Dhar A.K, Wyrzykowski J, et al. Identification of abundant and information microsatellites from shrimp (Penaeus monodon)genome.Animal Genetics,1999,30:1-7
    Varshney R.K, Graner A, Sorrells M.E.Genic microsatellite applications.Trends in Biotechnology, 2005, 23(1):48-55
    陈绘丽,杨频.错配核酸的研究进展.生物化学和生物物理进展,2002, 14(3):133-140
    范三红,郭蔼光,单丽伟等.拟南芥基因密码子偏爱性分析.生物化学与生物物理进展,2003, 30(2): 221-225
    傅荣昭,孙勇如,贾十荣.植物遗传转化技术手册.北京:中国科学技术出版社,1994,131-136.
    金基强,崔海瑞,陈文岳等.茶树EST SSR的信息分析与标记建立.茶叶科学,2006,26(1):17-23
    史树德.石蒜属种间关系和杂交起源的研究.杭州:浙江大学博士学位论文,2005,33-41
    忻雅,崔海瑞,张明龙等.白菜EST-SSR标记的通用性研究.细胞生物学杂志,2006,28:248-252
    杨新泉,刘鹏,韩宗福等.普通小麦Genomic-SSR和EST-SSR分子标记遗传差异及其与系谱遗传距离的比较研究.遗传学报,2005,32(4 ) :406-416
    张露,蔡友铭,诸葛强,等.石蒜属种间亲缘关系RAPD分析.遗传学报,2002, 29 (10):915-921
    Bender J. DNA methylation and epigenetics. Annu Rev Plant Biol.2004, 55: 41-68
    Bestor T H. The DNA methyltransferases of mammals. Human Mol Genet 2000, 9(16): 2395-2402
    Bird A P, Wolffe A P. Methylation-induced repression-Belts braces and chromatin. Ce11.1999, 99: 451-454
    Butkus M Petrauskiene L, Maneliene Z,etal.Cleavage of methylated CCCGGG sequences containing either N4-methylcytosine or 5-methylcytosine with MspI, HpaII, SmaI, XmaI and Cfr9I restriction endonucleases.NucleicAcids Re, 1987,15:7091-7102
    Chakraharty D, Yu KW,Paek KY.Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng(Eleuterococcus senticosus). Plant Sci,2003, 165: 61-68
    Chan S W, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 2005,6(5): 351-360 Chen ZJ & Ni Z, Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays, 2006, 28: 240–252.
    Curradi M,Izzo A, Badaracco G, et al.Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation.Mol Cell Biol, 2002.22:3157-3173
    Fang Y C, Huang H C, Juan H F. MeInfoText: associated gene methylation and cancer information from text mining. BMC Bioinfonmatics, 2008, 9: 22
    Finnegan EJ, Peacock WJ & Dennis ES, DNA methylation, a key regulation of plant development and other processes. Curr Opion Genet Develop, 2000, 10: 217-223.
    Friso S, Choi SW, Danikowski CC. A method to assess genomic DNA methylation using high-performance Liquid Chromatography Electroapray Ionization Mass Specmanetry. Anal Chem, 2002, 74(17): 4526-4531
    Gehring M, Choi Y, Fischer RL. Imprinting and see development. Plant Cell.2004,16(Suppl): 5203-S213
    Guo M, Davis D & Birchler JA, Dosage effects on gene expression in a maize ploidy series. Genetics 142: 1996, 1349–1355.
    Han FP, Fedak G, Ouellet T & Liu B, Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome, 2003, 46: 716-723.
    Ikeda Y & Kinoshita T, DNA demethylation: a lesson from the garden, Chromosoma, 2008, DOI: 10.1007/s00412-008-0183-3.
    Jacobsen SE, Sakai H, Finnegan EJ, Cao XF, Meyerowitz EM. Ectopic hypermethylation of flower-specific genes in Arabidopisis. Curr Biol, 2000, 10:179-186
    Lynch M and J S. Conery. The Evolutionary Fate and Consequences of Duplicate Genes. Science, 2000, 290: 1151 - 1155
    Madlung A, Masuelli RW, Watson B, et al.Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiology, 2002,129: 733–746.
    Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms.Science, 1994, 264:421-424.
    Matthes M, Singh R, Cheah SC, Karp A. Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. TheorAppl Genet, 2001, 102: 971-979.
    McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonuclease and DNA modification methyltransferases. Nucleic Acids Res, 1994, 22: 3640-3659
    Novik K L, Nimmrich I, Genc B, Maier S, Piepenbrock C, Olek A, Beck S.Epigenomics: genome-wide study of methylation phenomena. Curr lc.sue.s Mol Biol, 2002, 4:111-128
    Peraza-Echeverria S, Herrera-Valencia VA, James-Kay A. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 2001, 161: 359-367
    Razin A., Cedar H. DNA methylation and gene expression. Microbiol Rev,1991.55, 451-458.
    Richards E J. DNA methylation and plant development. Trends Genet, 1997, 13: 319-323
    Shaked H, Kashkush K, Ozkan H,et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. The Plant Cell, 2001, 13: 1749–1759.
    Stach D, Schmltzl OJ, Stilgenbauer. Capillary electrophoretic analysis of genomic DNA methvlation level. Nucleic Acids Res. 2003, 31:2
    Stenson PD, Ball EV, Mort M, et al. Human Gene Mutation Database (HGMD):2003 update. Hum Mutat, 2003;21(6):577-81
    Wassenegger M, RNA-directed DNA methylation. Plant Mol Biol, 2000, 43: 203–220.
    Wassenegger M. RNA-directed DNA methylation .Plant Mol Biol. 2002, 43: 203-220
    Xiong L Z,Xu C G, Saghai Maroof M A,Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines detected by a methylation-sensitive amplification polymorphism technique .Mol Gen Genet, 1999, 261:439-446.
    Xiong LZ, Xu CG,Saghai Maroof MA et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet, 1999, 261: 439-446
    Yi Z B, Sun Y, Niu T T, et al. Patterns of DNA cytosine methylation between hybrids and their parents in sorghum genome. Acta Agron Sin, 2005, 31(9): 1138-1143
    Zhang X. The epigenetic landscape of plants. Science, 2008, 320:489-492
    Zilberman D, The evolving functions of DNA methylation, Current Opinion in Plant Biology, 2008, 11:554–559.
    Zhou Sh B, Yu Bqi, Luo Q, et al. Karyotypes of six populations of Lycoris radiata and discovery of the tetraploid. Acta Phyto Sinica, 2007, 45 (4): 513–522
    黄庆,府伟灵.DNA甲基化分析技术.Chin J Lab Diagn, 2005,9:304-306
    武立鹏,朱卫国,DNA甲基化的生物学应用及检测方法进展.中华检验医学杂志,2004, 27:468-474
    Arumuganathan E,Earle ED.Estimation of nuclearDNA content of plants by flow cytometry.Plant. Mol Biol Rep 9,229-241 Beaulieu JM, Leitch IJ, Knight CA. Genome size evolu-tion in relation to leaf strategy and metabolic rates revis-ited. Ann Bot, 2007, 99(3): 495–505. Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. Correlated evolution of genome size and seed mass. New Phytol, 2007, 173(2): 422–437. Bennett MD, Bhandol P, Leitch IJ. Nuclear DNA amounts in angiosperms and their modern uses-807 new estimates. Ann Bot, 2000, 86(4): 859–909. Bennett MD. Variation in genomic form in plants and its eco-logical implications. New Phytol, 1987, 106(11): 177–200. Bill H, James MS. 2005. Estimation of the nuclear DNA content of Gossypium species. Annals of Botany 95: 789-797. Bose S. A new chromosome number and karyotype evolution in lycoris. 1963. Nucleus 6(2): 141-156. Dolezel J, Bartos J, Voglmayr H, Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51A: 127–128. Dolezel J, Bartos J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cy-tometry, 2003, 51(2): 127–128. Doolittle WF, Sapienza C. Selfish the phenotype paradigm and genome evolution.Nature, 1980, 284: 601-603 Fay MF, Cowan RS, Leitch IJ. The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fin-gerprints. Ann Bot, 2005, 95(1): 237–246. Fay MF, Cowan RS, Leitch IJ. The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fin-gerprints. Ann Bot, 2005, 95(1): 237–246. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozababy E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051. Garner TW. Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome, 2002, 45 (1): 212–215. Garner TW. Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome, 2002, 45 (1): 212–215. Gregorp TR.A bird' s-eye view of the C-value enigma:genome size,Cell size,and metabolic rate in the class Aves.Evolution,2002a.56:121-130. Gregorp TR,Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals.Genome 2000,43: 895-901. Gregory TR. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolicrate in the class aves. Evolution, 2002, 56(1): 121–130. Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc, 2001, 76(1): 65–101. Gregory TR. Genome size and developmental complexity. Genetica, 2002, 115(1): 131–146. Gregory TR. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class aves. Evolution, 2002, 56(1): 121–130. Gregory TR. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol Dis, 2001, 27(5): 830–843. Gregory TR.Coincidence, coevolution,or causation? DNA content, cell size, and the C-value enigma.Biol.Bev. 2001a, 76:65-101. Gregory TR.Genome size and developmental parameters in the bomeotbermie vertebrates.Genome, 2002b, 45:833-838 Gregory TR.The bigger the C-value,the larger the cell:gemnoe size and red blood cell size in vertebrates.Blood Cells Mo1.Dis.2001b,27:830-843 Greilhuber J, Borsch T, Muller K, Worberg A, Porembski S, Barthlott W. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol (Stuttg), 2006, 8(6): 770–777. Griffith OL.Genome size and longevity in fish. Experimental Gerontology, 2002, 38:333-337Monahgan P,Metcalfe NB,2000.Genome size and longevity.Trends in Genetics.16:331 Han TH, van Eck HJ, De Jeu MJ, Jacobsen E. Optimiza-tion of AFLP fingerprinting of organisms with a large-sized genome: a study on Alstroemeria spp. Theor Appl Genet, 1999, 98(3?4): 465?471. Hardie DC, Gregory TR, Hebert PD. From pixels to pico-grams: a beginners' guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cyto-chem, 2002, 50(6): 735–749. Jovtchev G, Schubert V, Meister A, Barow M, Schubert I. Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Cytogenet Genome Res, 2006, 114(1): 77–82. Knight CA, Beaulieu JM. Genome size scaling through phenotype space. Ann Bot, 2008, 101(6): 759–766. Knight CA, Molinari NA, Petrov DA. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann Bot, 2005, 95(1): 177–190. Leitch IJ, Soltis DE, Soltis PS, Bennett MD. Evolution of DNA amounts across land plants (Embryophyta). Ann Bot, 2005, 95(1): 207–217. Lynch M,Conery JS. The origins of genome complexity. Science, 2003, 302(5649): 1401–1404. Masterson J. Stomatal size in fossil plants: evidence for poly-ploidy in majority of angiosperms. Science, 1994, 264(5157): 421–424.Nie LW, Zhang DC, Zhang HJ, Zhang XA, Liu LW, Zhang KY. 2003. A study on three isozymes in plant of Lycoris herb. Journal of Biology 20(2): 27-29. Orgel LE,Crick FHC.Selfish DNA:the ultimate parasite Nature,1980,284:604-607 Swift H. The constancy of deoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA, 1950, 36(11): 643–654 Teresa G, Sonia G, Roser V, Joan V. 2006. Genome size variation in the genus carthamus (Asteraceae, Cardueae): Systematic implications and additive changes during allopolyploidization. Annals of Botany 97: 461-467. Thomas CA, Jr. The genetic organization of chromosomes. Annu Rev Genet, 1971, 5: 237–256. Vinogradov AE. Genome size and extinction risk in verte-brates. Proc R Soc B: Biol Sci, 2004, 271(1549): 1701–1705. Vinogradov AE. Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet, 2003, 19(11): 609–614. Vinogradov AE.Nucleotypic effect in homeotberm:body-mass-corrected basal metalnllic rate of mammals is related to genome size.Evolution,,1995,49:1249-1259. Vinogradov AE.Nudeotypic effect in homeotherm:body-mass independent metablic rate of passerine birds is related to genome size Fvolution,1997,51:220-225 Wakamiya I, Ronald JN, Johnston JS, Price HJ. Genome size and environmental factors in the genus Pinus. Am J Bot, 1993, 80(11): 1235–1241. Zhang L, Cai YM, Zhu GQ, Lou LH, Zou HY, Huang MR, Wang MX. 2002. Analysis of the Inter-species Relationships on Lycoris ( Amaryllidaceae) by Use of RAPD. Acta Genetica Sinica:29 (10): 915~921. 耿慧霞,王来,王强.流式细胞仪在生物学中的应用.生物学杂志,2005,22(4):44-45. 宋平根,李素文.流式细胞术的原理和应用.化京:化京师范大学出版社.1992, pp.1-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700