南亚果实蝇种群特征及其对食料和热胁迫的生理调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南亚果实蝇Bactrocera tau Walker属双翅目Diptera,实蝇科Tephritidae,果实蝇属Bactrocera Macquart,是危害黄瓜Cucumis Sativus L.、南瓜Cucurbita Moschala L.、丝瓜Luffa Cylindrical L.、冬瓜Benincasa hispida(Thunb)Coqn和苦瓜Momordica Charantia L.等果蔬作物的一种重要害虫。近年来,在我国广东、福建以及云南、四川和重庆等省市发生,危害程度呈加重的趋势,严重影响果蔬作物的生产。尽管南亚果实蝇在果蔬作物生产过程中具有重要经济意义,然而其成灾及适应环境的机理尚不明确。据此,本论文立足于国内外的研究现状,借助昆虫生态、昆虫生理、生物化学以及生物统计等学科知识,在研究南亚果实蝇种群特征的基础上,探讨种群适应食料和温度的生化机理。本研究得到教育部博士点基金项目(20050625005)以及重庆市科委攻关项目(7468)的资助,经过近3年的努力,取得以下研究结果。
     1重庆实蝇类害虫的种类及地理分布
     2005-2006年,采用诱蝇醚、诱蝇酮和水解蛋白等5种实蝇诱集剂,对重庆市30多个区县的实蝇类害虫进行全面诱集,共收集、整理和鉴定实蝇标本174879头。分属以下8个种内,即南亚果实蝇Bactrocera tau Walker、黑颜果实蝇B.diaphora Hendel、宽带果实蝇B.scutellata Hendel、桔大实蝇B.minax Enderlein、瓜实蝇B.cucurbitae Coquillett、桔小实蝇B.dorsalis Hendel、普通果实蝇B.caudate Fabricius和三点棍腹实蝇Dacus trimacula。其中,桔小实蝇、瓜实蝇和三点棍腹实蝇在重庆地区属首次发现。
     采用优势度指数分析了重庆地区各类实蝇害虫的优势度。2005年,南亚果实蝇、黑颜果实蝇、宽带果实蝇、桔大实蝇、瓜实蝇、桔小实蝇和普通果实蝇的优势度指数分别为0.8225,0.1333,0.0376,0.0055,0.0009,0.0001和0.0001;2006年,以上7种实蝇和三点棍腹实蝇的优势度指数则分别为0.7651,0.0889,0.1304,0.0003,0.0028,0.0104,0.0010和0.0011。表明南亚果实蝇是重庆地区的优势实蝇种群;黑颜果实蝇和宽带果实蝇次之;其余实蝇种群数量较低。
     南亚果实蝇、黑颜果实蝇和宽带果实蝇分布于重庆设置诱集点的各个区县。桔大实蝇、普通果实蝇和三点棍腹实蝇分布于重庆局部区域。2005年诱集到桔小实蝇9头,分布于江北、永川、垫江和涪陵4个区县;2006年诱集到95头,分布于江北、九龙坡等16个区县,分布范围扩大。2005年诱集到瓜实蝇10头,2006年诱集到956头,分布于巴南、九龙坡、秀山、合川和长寿5个区县,诱集数量增加,分布区域不变。
     2南亚果实蝇的为害特性及风险分析
     对南亚果实蝇种群的危害特性及风险性进行了系统评价。在重庆地区,南亚果实蝇幼虫主要危害黄瓜、南瓜、丝瓜、冬瓜和苦瓜等多种果蔬作物,导致果实腐烂,提前脱落,在受害区域常造成严重的经济损失。以上5种作物中,该虫对南瓜和丝瓜的危害重,黄瓜次之,苦瓜轻。根据有害生物危险性评价指标体系和有害生物的危险性综合评价标准,对该虫的风险性进行了综合评价,发现南亚果实蝇的危险性R值为1.96,属于中度危险的有害生物。
     3南亚果实蝇种群特征及其与环境湿度的关系
     通过室内外实验,对南亚果实蝇的行为特性、结构特征以及环境湿度对该种群的影响等方面进行了研究。在重庆地区,南亚果实蝇1年发生3-5代,世代重叠明显。成虫集中在近地面范围内活动,具有多次交尾习性。幼虫取食果肉,破坏果实组织,老熟后钻出果实,入土化蛹。70%以上的老熟幼虫在0-5cm厚的土层中化蛹,存活率达88%以上;3.74%老熟幼虫的化蛹深度超过10cm,存活率低于65%;当土壤深度超过25cm时,仅3.33%的个体能够存活。蛹在一天内各个时段均可羽化,但以每天上午6:00-10:00羽化的数量较多,占全天羽化量的85.80%。
     南亚果实蝇对黄瓜、南瓜、冬瓜、丝瓜、苦瓜和柑桔幼果具有不同的取食和产卵选择性。在黄瓜、南瓜和丝瓜上,成虫的落虫数量分别为25.33,21.33和22.67头,产卵量分别为98.00,86.00和103.33粒,均显著高于其余3种果实上的平均落虫量和产卵量。幼虫在黄瓜、南瓜和丝瓜上取食的数量亦较高,分别占幼虫总量的23.33%,31.44%和21.67%;而在柑桔上仅占幼虫总量的2.22%。成虫和幼虫均对受害与未受害果实的选择特性表现出一定的差异,在受害果实上的虫口数量较多,未受害果实上的虫口数量较少。因此,在这6种寄主植物中,南亚果实蝇喜好选择在黄瓜、南瓜和丝瓜以及受害的果实上取食和产卵。
     土壤相对水分含量(SRWC)以及空气相对湿度(RH)对南亚果实蝇蛹的生长发育和失水动态均有影响。占78.83%的老熟幼虫集中在SRWC 20-60%的土壤中化蛹。当SRWC为100%时,蛹不能羽化;当SRWC为40%和60%时,蛹具有较短的发育历期(7.54d和7.65d)和较高的羽化率(83.58%和93.3%)。在0%,52%,76%和100%这4个RHs下,蛹的水分损失率随着处理时间的延长而增加,7日蛹水分损失率分别达到63.521%(RH0%),45.42%(RH52%),34.23%(RH76%)和10.99%(RH100%)。在这4个RHs下,蛹的发育历期和羽化率亦存在显著差异,在RH100%时,具有较短的发育历期(8.07d)和较高的存活率(90.55%);而RH0%时,仅3.03%的蛹能够羽化。因此,SRWC 100%和RH0%均不利于南亚果实蝇蛹的发育和存活。
     4不同食料对南亚果实蝇生长发育及酶学特性的影响
     在室内温度28±0.5℃、相对湿度RH 70±5%、光周期14 L:10 D条件下,研究了南亚果实蝇分别取食黄瓜、南瓜、丝瓜、苦瓜、柑桔和人工饲料时的生长发育特性和繁殖能力。结果表明,南亚果实蝇取食以上各种食料后,幼虫的发育历期和存活率均存在显著差异,分别为4.58d,5.08d,4.50d,6.15d,5.38d,5.72d和86.83%,83.39%,81.19%,51.17%,45.67%,30.33%;成虫的产卵量分别为99.56,84.67,85.91,33.97,8.24和3.87粒,表明取食黄瓜、南瓜和丝瓜后成虫的产卵量较高,取食人工饲料的较低。南亚果实蝇分别取食以上6种食料后,内禀增长率分别为0.0844,0.0572,0.0601,0.0604,-0.0014和-0.0159;种群的趋势指数分别为31.69,20.78,22.62,3.52,0.54和0.11。以上结果均表明,黄瓜、南瓜和丝瓜是该种群生长发育的适宜食料。
     超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)是生物体内清除活性氧自由基的多酶复合体系,测定了南亚果实蝇分别取食黄瓜、南瓜、冬瓜、丝瓜和苦瓜后,幼虫、蛹和成虫体内SOD、POD和CAT的活性。结果表明,南亚果实蝇幼虫、蛹和成虫体内SOD、POD和CAT的活性均以取食苦瓜时较高,取食冬瓜时次之,取食黄瓜和南瓜时则较低。SOD的活性以幼虫阶段较高,成虫阶段较低;POD和CAT的活性均以成虫阶段较高,蛹阶段较低。表明南亚果实蝇幼虫取食适宜的食料,虫体抗氧化酶的活性较低;而取食相对不适合的食料时,抗氧化酶的活性提高。
     羧酸酯酶(CarE)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(ALP)、细胞色素氧化酶(P450s)和谷胱甘肽S-转移酶(GST)是生物体内降解内源和外源性有毒化合物的重要解毒酶,研究了5种食料对南亚果实蝇这些解毒酶活性的影响。双因子方差分析表明,南亚果实蝇取食黄瓜、南瓜、丝瓜、冬瓜和苦瓜后,解毒酶活性存在显著差异。其中,羧酸酯酶(CarE)活性在黄瓜和南瓜上较高,细胞色素氧化酶P450 O-脱甲基和谷胱甘肽S-转移酶(GST)活性在苦瓜上较高,酸性磷酸酯酶(ACP)和碱性磷酸酯酶(ALP)活性却分别在黄瓜和南瓜上较低。幼虫、蛹和成虫解毒酶的活性亦存在显著差异,成虫具有较高的CarE活性;幼虫具有较高的细胞色素P450 O-脱甲基、GST和ALP活性,但具有较低的ACP活性:除ACP外,蛹的解毒酶活性均较低。因此,南亚果实蝇解毒酶活性受寄主果实种类以及该种群本身发育阶段的影响。
     多酚氧化酶是昆虫生命活动过程中的重要调节酶,研究了南亚果实蝇以南瓜为食料时,不同虫态多酚氧化酶的活性和性质。以邻苯二酚为底物,南亚果实蝇不同虫态多酚氧化酶活力大小依次为:3龄幼虫>成虫>2龄幼虫>1龄幼虫>蛹。在pH6.5,温度34-37℃时的活性较高;在40℃以上时,随着温度的升高酶活性下降。2龄幼虫的K_m和V_(max)较大,表明多酚氧化酶对底物的亲和力较弱,催化能力较强。而以L-多巴为底物时,成虫K_m和3龄幼虫V_(max)较大,表明成虫多酚氧化酶对底物的亲和力较弱,3龄幼虫多酚氧化酶对底物的催化能力较强。因此,南亚果实蝇体内多酚氧化酶的活性和性质与个体的发育阶段密切相关。
     5温度对南亚果实蝇生长发育及能源物质含量的影响
     以南瓜为食料,研究了6个温度梯度对南亚果实蝇种群生长发育和繁殖的影响。从19℃至28℃,南亚果实蝇幼虫的发育历期随温度的升高而缩短,存活率则随温度的升高而增加;当温度高于28℃时,发育历期随温度的升高而延长,存活率则降低。从19℃至32℃,成虫寿命均随温度的升高而缩短,产卵量在28℃时较高。生殖力生命表参数和种群趋势指数均表明28℃时是南亚果实蝇生长发育和繁殖的适宜温度。
     探讨了42℃高温胁迫不同时间对南亚果实蝇成虫寿命以及虫体能源物质即多糖、甘油三酯和可溶性蛋白含量的影响。结果表明,连续处理10d,以每天胁迫10min时成虫寿命较长;连续处理15d时,则以每天胁迫5min时成虫寿命较长。高温胁迫导致虫体多糖贮存量下降,连续处理15d,每天分别胁迫为5,15,30和60min后,多糖含量的损失百分率分别达到为2.04%,2.08%,5.04%和5.93%。对于甘油三酯,当胁迫时间为5min时,虫体甘油三酯的含量较低,此后随着胁迫时间的延长,虫体甘油三酯含量的累积却增加。高温胁迫也会促进南亚果实蝇对蛋白质的利用,随着胁迫时间的延长,虫体蛋白质的贮存量下降。以上结果可以推出,高温胁迫将提高南亚果实蝇虫体对多糖和蛋白质的消耗,而增加甘油三酯的累积。
     本文研究了重庆地区南亚果实蝇优势种群的生物生态学特性以及环境因子胁迫后体内多种化学物质含量和活性的变化规律,揭示了南亚果实蝇在重庆地区的发生规律、成灾机理以及适应环境食料和温度的生化机理。研究结果不仅为南亚果实蝇的发生预测和综合治理提供必要的科学依据,亦为南亚果实蝇的分子生物学研究奠定重要的理论基础。
The fruit fly Bactrocera tau Walker, belonging to the order Diptera and the family Tephritidae, mainly infests Cucumis L., Cucurbita L., Luffa L., Benincasa Savi, Momordica L. and other fruits and vegetables. It has taken place in tropic and subtropic regions such as China, Japan, Thailand, Malaysia, Laos, Philippines, Cambodia, India, Bhutan, Indonesia, Sri Lanka and has caused enormous economic losses to fruit and vegetable growers. In China, the fruit fly caused Siraitia grosvenorii Swingle damage up to 21-34% in Guangxi province in 1990 and was injurious to various types of vegetables in Chongqing district in 2004. Due to its economic importance, the study on biological and biochemical characters of this fruit fly was very necessary in the course of the production of fruit and vegetable crops. Based on the research status, the study on the population biological and biochemical characters, especially the physiological mechanisms of the fruit fly adaptable to diets and environmental temperature was carried out systematically. This study was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20050625005) and the Basic Research Foundation of Chongqing Science Committee (7468), and lasted almost 3 years. The main results are summarized as follows.
     1 The species richness and geographical distribution of fruit flies in Chongqing
     By the Regional Fruit Fly Project in 2005-2006, systematic trapping using methyl eugenol, cue-lure and hydrolytic protein had been conducted in almost 30 regions of Chongqing. The total 174879 fruit fly samples trapped had confirmed the presence of Bactrocera tau Walker, B. diaphora Hendel, B. scutellata Hendel, B. caudate Fabricius, B. minax Enderlein, B. cucurbitae Coquillett, B. dorsalis Hendel and Dacus trimacula. Among them, B. cucurbitae, B. dorsalis and Dacus trimacula was firstly found in Chongqing district.
     Species relative abundance of fruit flies in Chongqing region was analyzed by dominance indexes. The dominance indexes of these fruit flies varied greatly among the 8 kinds of species. In 2005, the dominance indexes of B. tau, B. diaphora, B. scutellata, B. caudate, B. minax, B. cucurbitae and B. dorsalis were 0.8225, 0.1333, 0.0376, 0.0055, 0.0009, 0.0001 and 0.0001, respectively. In 2006, they were 0.7651, 0.0889, 0.1304, 0.0003, 0.0028, 0.0104, 0.0010 and 0.0011 (Dacus trimacula), respectively. The result indicated that B. tau was the dominant population in Chongqing region, B. diaphora and B. scutellata were the second great population, and the others were relatively low in quantities.
     According to the identification result of samples collected from different regions of Chongqing, they showed that B. tau, B. diaphora and B. scutellata widely distributed in Chongqing district, but B. minax, B. caudate and D. trimacula were found just in several locations. For B. dorsalis, 9 individuals were captured and distributed in Jiangbei, Yongchuan, Xiushan, Dianjiang and Fuling in 2005, and 95 individuals were captured and distributed in 16 regions including Jiangbei, Jiulongpo, Beibei, and so on in 2006. It showed that the distribution range obviously expanded in 2006. For B. cucurbitae, 10 individuals were trapped in 2005 and 956 individuals were trapped in 2006, and it indicated that the quantity captured in 2006 was significantly higher than that in 2005.
     2 The damage character and risk analysis of B. tau population
     By the field investigation and the previous study, we comprehensively evaluated the damage character and risk of B. tau. The result showed that B. tau mainly infected cucumber, pumpkin, towel gourd, white gourd, balsam pear and other fruits and vegetables in Chongqing district. Host surveys for this fruit fly in field had confirmed that the damage rate was highest on pumpkin and towel gourd, then on cucumber, and lowest on balsam pear among the five kinds of host fruits above-mentioned. Based on the system and indices of pest risk analysis, we estimated the risk of this fruit fly, and found that the index value of pest risk analysis (R) attained to 1.96. From the result, it could be inferred that this fruit fly was dangerous to some fruits and vegetables, and had posed a threat to other regions in China.
     3 The population character of B. tau and its relation with environmental humidity
     B. tau had 3-5 generations a year and the generations overlapped in Chongqing district. It was divided into 3 instars in larval stages, and overwintered as pupae in loose soils. Generally, adults mated for several times in the whole life, and the female laid its eggs in clutches under the skin of fruits. The larva or maggot fed on the flesh of fruits. In the process, bacteria were introduced into the fruit causing the fruit to break down or rot. More than 70% mature larvae pupated in the soil with 0-5cm depth, and the survival rate of pupae was higher than 88%. There were 3.74% individuals digging into the soil with 10-25cm depth, and the survival rate was lower than 65%. Only 3.33% individuals could survive in the soil depth over 25cm. The adult could emerge at every time of a day, but mostly aggregated on the time 6: 00-10: 00.
     The taxis response and selective propensity of B. tau to six types of fruits cucumber, pumpkin, towel gourd, white gourd, balsam pear and orange were evaluated under indoor experimental conditions. The result demonstrated that most of the adults would obviously prefer to aggregate on cucumber, pumpkin and towel gourd to gain nutrition or lay eggs. Among them, 23.68%, 19.94% and 21.18% of individuals gathered to cucumber, pumpkin and towel gourd, and 21.57%, 18.93% and 22.74% of eggs were lay on the same three host fruits, respectively. It was suitable, adopting linear regress equation, to describe the relationship between the mean quantities and the mean oviposition quantities. As adults, most larvae also aggregated on cucumber (23.33%), pumpkin (31.44%) and towel gourd (21.67%), but little individuals aggregated on orange (2.22%). In addition, the taxis response of the fruit fly to damaged and undamaged fruits was also different in the six kinds of host fruits, and>50% of individuals would gather to the damaged fruits. From these results, it could seen that the fruit fly preferred to aggregate on cucumber, pumpkin, towel gourd and damaged fruits, but little on orange to gain nutrition or lay eggs.
     The effect of soil relative water content (SRWC) and air relative humidity (RH) on the pupal development and survival and the water loss dynamics of B. tau were evaluated under indoor experimental conditions. The pupating selectivity of mature larvae, the pupal duration and eclosion rate varied significantly in the soils with SRWC 0%, 20%, 40%, 60%, 80% and 100%. Most of the mature larvae aggregated on the soils with SRWC 20-60% although they could become pupae in the soils with different water content. When SRWC attained to 100%, all of the pupae failed to survive; SRWC 40% and 60% were most suitable for the pupal development, with the shortest pupal duration (7.54d and 7.65 d) and the highest eclosion rate (83.58% and 93.3%). In the 4 air RHs of 0%, 52%, 76% and 100%, the pupal water loss rates increased with the increase of the treatment time, and reached up to 63.521% for RH 0%, 45.42% for RH 52%, 34.23% for RH 76% and 10.99% for RH 100% at the last day before eclosion. It was suitable, adopting the quadratic equations, to describe the relationship between the water loss rate of pupae accumulated by day and pupal age in day. The pupal duration and eclosion rate were also significantly different in the 4 air RHs. The shortest duration (8.07d) and the highest survival rate (90.55%) of pupae were attained in the air RH 100%, and little individuals could survive in the air RH 0%. The results implied that high soil water content and low air humidity were unfit for the development and survival of B. tau pupae.
     4 The influence of diets on the growth and enzyme characterization of B. tau
     The effect of different diets including cucumber, pumpkin, towel gourd, balsam pear, orange and artificial diet on the growth and fecundity of B. tau were evaluated at 28±0.5℃, RH 70±5% and photoperiod of 14:10 hours (L: D). The result demonstrated that the developmental duration and survival rate of larvae and the reproduction rate of adults differed significantly among the 6 kinds of diets. When the larva were reared on the above diets, the larval durations were 4.58d, 5.08d, 4.50d, 6.15d, 5.38d, 5.72d, the survival rates were 86.83%, 83.39%, 81.19%, 51.17%, 45.67%, 30.33%, and the total reproduction quantities per female were 99.56, 84.67, 85.91, 33.97 and 8.24, respectively. The result suggested that the larval durations were shorter, the survival rates were higher and the reproduction quantities per female were also higher on cucumber, pumpkin and towel gourd. According to the life-table parameters and the population trend indexes, it could be concluded that cucumber, pumpkin and towel gourd were the most suitable diets for the development and fecundity of this fruit fly, but contrary for orange and artificial diet.
     Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) are considered to be an important physiological and biochemical mechanism of organisms against adverse environmental factors. The soluble protein contents and those enzyme activities in B. tau fed on cucumber, pumpkin, towel gourd, white gourd and balsam pear were determined by biochemical methods. The result indicated that the protein contents and those detoxification enzyme activities varied significantly when the fruit fly were reared on different diets—cucumber, pumpkin, towel gourd, white gourd and balsam pear. Among the 5 kinds of diets, the protein contents in this fruit fly were highest on balsam pear while lowest on cucumber and white gourd. The SOD, POD and CAT activities were highest on balsam pear, then white gourd, but lowest on cucumber and pumpkin, and those enzyme activities also varied greatly in different developmental stages of this fruit fly. The SOD activity was highest at the larval stage, and lowest at the adult stage; the POD and CAT activities were highest at the adult stage, but lowest at pupal stage. Based on the above study, it indicated that the antioxidant activity in B. tau was lower when the fruit fly was reared on suitable diets, than that on unsuitable diets.
     This study was conducted to determine whether the activity of detoxification enzymes, such as carboxylesterase (CarE), acid phosphatase (ACP), alkaline phosphatase (ALP), cytochrome P450-dependent O-demethylase and glutathione S-transferase (GST) in Bactrocera tau (Walker), respond to different diets and developmental stages of this fruit fly. Two-way ANOVA showed that protein contents and these detoxification enzyme activities varied significantly when the fruit fly were reared on different diets cucumber, pumpkin, towel gourd, white gourd and balsam pear. Among the five kinds of diets, protein contents in the fruit fly were highest on balsam pear while lowest on cucumber and white gourd. The CarE activity was highest on cucumber and pumpkin, cytochrome P450-dependent O-demethylase and GST activities were highest on balsam pear, but ACP and ALP activities were lowest on cucumber and pumpkin, respectively. In addition, these detoxification enzyme activities were also significantly different in the larval, pupal and adult stages of the fruit fly. Adults had the highest CarE activity, and larvae had the highest ALP, cytochrome P450-dependent O-demethylase and GST activities, but the lowest ACP activity. Generally, these detoxification enzyme activities in the pupal stage were lower than those in the larval and adult stages except for ACP. The result indicated that these detoxification enzyme activities of B. tau were closely related to host plant species and developmental stages of this fruit fly.
     Polyphenoloxidase (PPO), a group of copper proteins thatare widely distributed from bacteria to mammals, catalyzes the oxidation of hydroxyphenols to their quinone derivatives, which then spontaneously polymerize. The kinetic properties of PPO from B. tau different stages were compared and determined by a series of chemical methods. The result showed that PPO activity differed significantly at different stages in this insect. The PPO activity of the 3rd instar was highest and that of pupae was lowest among the 1st instar, the 2nd instar, the 3rd instar, pupae and adults. The order of the enzyme activity was the 3 instar>adults>the 2nd instar>the 1st instar>pupae. The optimum pH was 7.0 and the best temperature was 34-37℃for the tested PPO. The kinetic parameter for the oxidation of catechol by PPO from the different stages was determined and compared, and it showed that the affinity of PPO to the substrates catechol was higher, but the catalytic activity was lower for the 2nd instar. At the same time, for the substrates L-DOPA, the K_m for adults and V_(max) for the 3rd instar of PPO were highest, it showed that the affinity of PPO for adults was lower, and the catalytic activity for the 3rd instar was higher than the other stages. From the above conclusion, it could be inferred that the property of PPO activities is closely associated with the developmental stages of B. tau.
     5 The influence of temperature on the growth and energy resources of B. tau
     The growth and fecundity of B. tau fed on pumpkin were investigated at 6 constant temperatures 19℃, 22℃, 25℃, 28℃, 31℃and 34℃in a series of indoor trials. ANOVA showed that temperature affected significantly the developmental duration and reproduction capacity. The developmental duration of larvae varied from 6.31d at 28℃to 10.09d at 19℃, and the survival rate varied from 27.03% at 34℃to 74.76% at 28℃. The female adult at 19℃and 22℃had significantly greater longevity (96.29d and 94.00d) than those at the other temperature, and had the greatest reproduction capacity (105.91 eggs per female) at 28℃. Accordingly, the intrinsic rate of increase (r_m) and the population trend index were highest (0.0572 and 17.28, respectively) for this fruit fly at 28℃. The results implied that the temperature of 28℃were the most suitable for the population development and fecundity.
     The longevity and energy sources including polysaccharides, triacylglycerol and soluble protein of B. tau submitted to heat shocks (42℃) of various durations (5,15, 30 or 60 min daily) for 10d or 15d were determined systematically by ecological and biochemical methods. A slight longevity increase was observed in 15min daily for 10d and in 5min daily for 15d, but longer shocks had negative effects. Fruit flies submitted to the procedure providing a longevity increase did not show a higher polysaccharide and protein contents than those in the other treatment durations. However, the highest polysaccharide and protein contents were observed in the control flies. Except for the control flies, the accumulation of triacylglycerol of this fruit fly increased responding to the treated durations. The above results suggested that under the heat shocks conditions, polysaccharides and soluble protein were the main energy sources, while the utilization of triacylglycerol decreased.
     Generally, the study on the bio-ecological characteristics, and the influence of diets and heat shock on the physiological and biochemical properties of B. tau has clearly elucidated the occurrence regulation, formative mechanism and biochemical mechanism of this fruit fly suitable to diets and temperature. The result will provide necessary information for IPM program, and enrich the whole theoretical system of fruit flies.
引文
1.蔡笃程,余雪标,徐振华,余凤玉.2004.美洲斑潜蝇幼虫自然种群数量动态和气候因子的典型相关分析.热带作物学报,25(1):54-57.
    2.蔡霞,施祖华,郭玉玲,等.2005.半闭弯尾姬蜂的寄主选择性及寄生对寄主发育和取食的影响.中国生物防治,21(3):146-150.
    3.陈兵,康乐.2005.昆虫对环境温度胁迫的适应与种群分化.自然科学进展,15(3):265-271.
    4.陈法军,翟保平,张孝羲.2003.棉铃虫蛹期土壤水分对其种群发生的影响.生态学报,23(1):112-121.
    5.陈海东,周昌清,杨平均.1995.瓜实蝇、桔小实蝇、南瓜实蝇在广州地区的种群动态.植物保护学报,22(4):348-354.
    6.陈宏,李冠雄,古锦煌.1996.3种Bactrocera属实蝇幼虫的形态特征.植物检疫,10(6):355-358.
    7.陈洪俊,范小虹,李尉民.2002.我国有害生物风险分析的历史与现状.植物检疫,(1):28-32.
    8.陈乃中,沈佐锐.2002.水果果实害虫.北京:中国农业科学技术出版社.
    9.陈鹏,叶辉.2007.云南六库桔小实蝇成虫种群数量变动及其影响因子分析.昆虫学报,50(1):38-45.
    10.陈尚文,杨振德.1996.马尾松毛虫和荔蝽体内多酚氧化酶的初步研究.广西科学,3(2):45-50.
    11.陈田飞,乐波灵.2004.家蚕滞育机理研究概况.广西蚕业,41(3):12-16.
    12.陈文龙,申科,黎坚,等.2006.水稻褐飞虱灯诱种群数量动态分析.植物保护,32(1):59-63.
    13.陈晓虹.2002.热休克蛋白与肿瘤免疫治疗.中国肿瘤生物治疗杂志,9(1):65-67.
    14.陈亚琼,肖调江,周浙昆.2006.热激蛋白与生物环境适应及进化的关系.自然科学进展,16(9):1066-1073.
    15.程伟霞,王进军,陈志永.2005.杀虫剂胁迫下嗜卷书虱和嗜虫书虱能源物质的代谢比较.动物学研究,26(5):545-550.
    16.邓亚评.1992.罗汉果园南瓜实蝇生物学特性及防治.植物保护,18(2):24-25.
    17.丁世飞.2000.麦蚜复合种群动态预测的Fuzzy推理模式及应用.生物数学学报,15(2):169-174.
    18.杜家纬.2001.植物—昆虫间的化学通讯及其行为控制.植物生理学报,27(3):193-200.
    19.高泽正,吴伟坚,崔志新,等.2005.环境因素对黄曲条跳甲种群扩散的影响.应用生态学报,16(6):1082-1085.
    20.顾耘,孙立宁,孙丽娟.2006.不同温度下温室白粉虱的实验种群生命表.莱阳农学院学报(自然科学版),23(2):96-98.
    21.韩宝瑜,周孝贵,周鹏,等.2006.茶园绒茧蜂数量和空间动态及其与茶尺蠖的相关性.浙江农业学报,18(4):203-206.
    22.胡学难,梁广文,庞雄飞.2003.玉米螟赤眼蜂在甜玉米地寄生率和扩散规律的研究.昆虫知识,40(3):224-228.
    23.黄蓬英,黄建,荆英.2002.湿度对小黑瓢虫生长发育及存活的影响.华东昆虫学报.11(2):88-91.
    24.贾文明,周益林,丁胜利,等.2005.外来有害生物风险分析的方法和技术.西北农林科技大学学报(自然科学版),33(增刊):195-200.
    25.蒋青,梁忆冰,王乃杨,等.1995.有害生物危险性评价的定量分析方法研究.植物检疫,9(4):208-211.
    26.蒋小龙,任丽卿,汪兴鉴.2002.云南边境检疫性实蝇监测体系的建立.16(2):103-105.
    27.李典谟,王莽莽.1986.快速估计发育起点温度及有效积温的研究.昆虫知识,23(4):184-186.
    28.李典谟,周立阳.1997.协同进化—昆虫与植物的关系.昆虫知识,3(1):45-49.
    29.李绍文,王孟淑,曾耀辉(译).1988.昆虫生物化学.北京:科学出版社,151-156.
    30.李顺珍,曾虹,卢爱平,等.1993.柑桔介壳虫寄生蜂研究Ⅰ:印巴黄蚜小蜂的引进和实验饲养.昆虫天敌,15(2):60-63.
    31.李小珍,刘映红,田艳.2004.六种寄主植物对二点叶蝉生长发育和繁殖的影响.应用生态学报,15(8):1431-1434.
    32.李小珍,刘映红,赵志模,等.2004.二点叶蝉自然种群的时空动态.动物学研究,25(3):221-226.
    33.李小珍,刘映红.2004.二点叶蝉的生物学特性及人工饲养.西南农业大学学报(自然科学版),26(2):143-145.
    34.李志刚,韩诗畴,郭明劝,等.2005.取食不同食料植物对安婀珍蝶的营养利用及中肠四种酶活力的影响.昆虫学报,48(5):674-678.
    35.李周直,沈惠娟,蒋巧根,等.1994.几种昆虫体内保护酶系统活力的研究.昆虫学报,37(4):399-403.
    36.林智慧,杨建全,郑敏琳,等.2005.烟田蓼科杂草的重要天敌—褐背小萤叶甲的行为习性.华东昆虫学报,14(3):214-218.
    37.刘春英,罗万春,李方正,等.2004.槐尺蠖多酚氧化酶的纯化及酶学特征.昆虫学报, 47(2):184-188.
    38.刘建宏,叶辉.2006.光照、温度和湿度对桔小实蝇飞翔活动的影响.昆虫知识,43C2):211-214.
    39.刘丽红,刘映红,周波,等.2005.南亚实蝇在不同寄主上数量动态及危害研究.西南农业大学(自然科学版),27(2):176-179.
    40.刘锐,李志红,孙晓,等.2006.首次发现沃尔巴克氏体Wolbachia对我国南亚果实蝇的感染现象.昆虫知识,43(3):368-370.
    41.刘文华,王义飞,徐汝梅.2006.两种共存网蛱蝶幼期的生命表研究.昆虫学报,49(4):656-663.
    42.刘向东,翟保平,张孝羲,等.2003.棉蚜飞行行为与卵巢发育的关系.昆虫知识,40(1):39-42.
    43.刘向东,翟保平,张孝羲.2004.蚜虫迁飞的研究进展.昆虫知识,41(4):301-307.
    44.刘新,华跃进,徐步进,等.2001.昆虫脑神经肽的研究进展:抑前胸腺肽PTSE浙江大学学报(农业与生命科学版),27(5):479-482.
    45.刘玉章,林明莹.2000.南瓜实蝇(Bactrocera tau)(双翅目:实蝇科)的形态、发育、寿命及其交尾行为.中华昆虫,20(4):311-325.
    46.刘志军,马忠秋,党申.2001.国内外昆虫种群动态研究综述,山西林业科技(增刊):1-3.
    47.娄永根,程家安.1997.植物—植食性昆虫—天敌三营养层次的相互作用及其研究方法.应用生态学报,8(3):325-331.
    48.罗峰,熊强,王健,等.2004.温度对传粉甲虫—棉露尾甲生长发育、存活及繁殖的影响.生态学报,24(12):2789-2793.
    49.马春森,马罡,杜尧,等.2005.连续温度梯度下昆虫趋温性的研究现状与展望.生态学报,25(12):3390-3397.
    50.马世骏.1983.昆虫种群的生态适应.进化论选集.
    51.马志卿,颜瑞莉,陈根强,等.2004.松油烯-4-醇对粘虫体内保护酶活力的影响.西北农林科技大学学报,32(10):85-88.
    52.钦俊德,王琛柱.2001.论昆虫与植物的相互作用和进化的关系.昆虫学报,44(3):360-365.
    53.钦俊德.1987.昆虫与植物的关系—论昆虫与植物的相互作用及其演化.北京:科学出版社.
    54.钦俊德.1996.昆虫与寄主植物的适应性及协调进化.生物学通报,31(1):1-3.
    55.任璐,陆永跃,曾玲,等.2006.寄主对桔小实蝇耐寒性的影响.昆虫学报,49(3):447-453.
    56.阮永明,吴坤君.2001.不同食料植物对棉铃虫生长发育和繁殖的影响.昆虫学报,44(6): 205-212.
    57.施伟,张智英,叶辉.2003.桔小实蝇对寄主水果气味的趋向反应测试.云南大学学报(自然科学版),25(1):77-80.
    58.时超美,黄复生,况明书,等.2000.斯氏按蚊血淋巴酚氧化酶与约氏疟原虫卵囊黑化的关系.中国寄生虫学与寄生虫病杂志,18(1):11-13.
    59.孙俊铭,韦刚,周先文,等.2003.三化螟种群动态、大发生原因及防治对策.昆虫知识,40(2):124-127.
    60.孙伟,杜子州,沈媛,等.2005.江苏扬州地区蔬菜烟粉虱寄主调查及种群动态.华东昆虫学报,14(1):38-43.
    61.唐振华.1993.昆虫抗药性及其治理.北京:中国农业出版社.
    62.万方浩,叶正楚,Peter H. 1997.生物防治作用物风险评价的方法.中国生物防治,13(1):37-41.
    63.汪信庚,刘树生,吴晓晶,等.1997.杭州郊区菜蚜种群的空间动态.应用生态学报,8(6):599-604.
    64.汪兴鉴.1992.中国偶角实蝇属记述(双翅目:实蝇科).昆虫学报,35(1):105-107.
    65.汪兴鉴.1995a.重要果蔬类有害实蝇概论(双翅目:实蝇科).植物检疫,9(1):20-30.
    66.汪兴鉴.1995b.五个重要果蔬类有害实蝇属的鉴定.植物检疫,9(2):84-90.
    67.汪兴鉴.1996.东亚地区双翅目实蝇科昆虫.动物分类学报增刊,21:3.
    68.王慧,吴国星,叶恭银,等.2006.铜和镉在棕尾别麻蝇体内的累积及其对三种抗氧化酶活性的影响.浙江大学学报(农业与生命科学版),32(1):77-81.
    69.王联德,黄建,刘波.2006.蜡蚧轮枝菌毒素对温室中烟粉虱种群控制作用的评价.生态学报,26(2):391-398.
    70.王宪辉,陈兵,康乐.2003.飞蝗热休克蛋白70cDNA片段的克隆和序列分析.动物学研究,24(5):349-354.
    71.王小平,薛芳森.2006.昆虫滞育后的生物学特性.昆虫知识,43(1):10-15.
    72.王荫长.2001.昆虫生物化学.北京:中国农业出版社,129-130.
    73.王荫长.2004.昆虫生理学.北京:中国农业出版社.
    74.吴孔明,郭予元,吴燕. 2002.环渤海湾地区棉铃虫成虫的卵巢发育特点及与迁飞行为的关系.生态学报,22(7):1075-1078.
    75.吴坤君,陈玉平,李明辉.1980.温度对棉铃虫实验种群生长的影响.生态学报,23(4):358-367.
    76.吴坤君,龚佩瑜.2001.棉铃虫蛹期在极端湿度下的失水动态.昆虫学报,44(4):512-517.
    77.吴坤君,李明辉.1993.棉铃虫营养生态学研究:取食不同蛋白质含量饲料时的种群生命表.昆虫学报,36(1):21-28.
    78.吴坤君.2002.关于昆虫休眠和滞育的关系之浅见.昆虫知识,39(2):154-156,160.
    79.吴名全.2003.植物—植食性昆虫—天敌相互关系中化学物质的变化.宜春学院学报,25(5):71-74.
    80.席景会,潘洪玉,陈玉江,等.2002。四种食料植物对八字地老虎生长发育和繁殖的影响.昆虫知识,39(6):428-429.
    81.夏栋,卞疆.2000.龙虾多酚氧化酶的纯化及其部分生化特性.江苏食品与发酵,(1):16-19.
    82.修冰,吴强.2002.酵母粉对果蝇繁殖力和生长发育的影响.同济大学学报(医学版),23(3):204-206.
    83.徐洪富,牟少敏,许永玉,等.2000.棉区夏玉米田害虫及天敌群落结构.植物保护学报,27(3):199-204.
    84.徐汝梅.1984.昆虫种群生态学.北京师范大学出版社.
    85.徐卫华,王永杰,张刘宾,等.2000.烟实夜蛾性信息素合成激活肽基因的分子克隆.昆虫学报,43(2):113-119.
    86.徐艳聆,王振营,何康来,等.2006.转Bt基因抗虫玉米对亚洲玉米螟幼虫几种主要酶系活性的影响.昆虫学报,49(4):562-567.
    87.徐裕华.1991.西南气象.北京:气象出版社.
    88.许益镌,陆永跃,曾玲,等.2006.红火蚁局域扩散规律研究.华南农业大学学报,27(1):34-36.
    89.薛超彬,陈清西,王勤,等.2004.菜青虫不同虫态及虫龄的多酚氧化酶性质比较.昆虫学报,47(3):305-309.
    90.阎凤鸣,许崇任,Marie B.,等.2002.转Bt基因棉挥发性气味的化学成分及其对棉铃虫的电生理活性.昆虫学报,45(4):425-429.
    91.颜增光,阎云花,康乐,等.2006.棉铃虫齿唇姬蜂对植物挥发物和寄主性信息素腺体化合物的EAG反应.昆虫学报,49(1):1-9.
    92.杨秀清,高希武,郑炳宗.2001.烟粉虱与温室白粉虱羧酸酯酶、谷胱甘肽转移酶和乙酰胆碱酯酶性质的比较研究.农药学学报,3(4):38-43.
    93.杨益众,张建军,戴志一,等.2000.影响禾缢管蚜翅型分化的因子初探.江苏农业研究,21(1):56-59.
    94.袁盛勇,肖春,孔琼,等.2005.桔小实蝇的产卵选择性.江西农业大学学报,27(1):81-84.
    95.袁盛勇,肖春,李正跃,等.2003.桔小实蝇实验室饲养技术研究.江西农业大学学报,25(4):577-580.
    96.曾志将,陈国荣.1993.蜜蜂性比的研究.蜜蜂杂志,(4):3-5.
    97.张慧杰,段国琪,张战备,等.2004.空气和土壤湿度对美洲斑潜蝇发育与存活的影响.生态学报,24(3):538-541.
    98.张钧.1991.引诱剂对实蝇类害虫的诱捕效果.植物检疫,5(6):401-403.
    99.张刘宾,沈晋良.1999.棉铃虫滞育激素cDNA的克隆和序列测定.科学通报,44(3):279-283.
    100.张清源,林振基,刘金耀.1991.南亚寡鬃实蝇生物学特性.植物检疫,5(3):164-167.
    101.张帅,曾鑫年,骆悦.2004.寄主植物与昆虫抗药性的关系.广西农业科学,35(3):213-215.
    102.张孝羲.1982.昆虫生态及预测预报.北京:中国农业出版社.
    103.张宗炳,冷欣夫.1993.杀虫药剂毒理及应用.北京:化学工业出版社,331-337.
    104.赵建铭主编.1996.动物分类学报—东亚地区双翅目实蝇科昆虫.北京:科学出版社.
    105.赵志模,周新远.1984.生态学引论.重庆:科学技术文献出版社重庆分社.
    106.周波,刘映红,刘丽红.2005.不同食料对南亚实蝇生长发育及繁殖的影响.西南农业大学学报(自然科学版),27(3):301-304.
    107.周昌清,陈海东,林佩卿.1995.光温湿因子对三种果实蝇种群生殖力影响的比较研究.中山大学学报(自然科学版),34(1):68-75.
    108.周昌清,梅流柱.1999.瓜实蝇和南瓜实蝇的种内竞争.中山大学学报,38(2):60-64.
    109.周国梁,李尉民,印丽萍,等.2006.有害生物风险分析研究工作的发展.植物检疫,20(3):162-164.
    110.周琼,梁广文.2001.植物挥发性物质在蚜虫寄生定位中的作用.昆虫知识,38(5):334-336.
    111.周崧.1983.蜜蜂生殖.生物学通报,5:13-15.
    112.周兴苗,姜勇,牛长缨,等.2004.光温条件对狭翅大刀螳生长发育的影响及其捕食功能研究.应用生态学报,15(8):1423-1426.
    113.周亦红,韩召军,张小敏,等.2003.水稻品种对褐飞虱代谢酶的影响.南京农业大学学报,26(2):24-28.
    114.周亦红,赵志模,邓新平.2000.美洲斑潜蝇和南美斑潜蝇幼虫分龄的研究.西南农业大学学报,22(4):339-341.
    115.祝树德,陆自强,陈丽芳,等.2000.温度和食料对斜纹夜蛾种群的影响.应用生态学报,11(1):111-114.
    116. Agelopoulos NG, Chamberlain K, Pickett JA. 2000. Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: Variability of quantities and stability of ratios. J. Chem. Ecol., 26 (2): 497-511.
    117. Ahmad S. 1992. Biochemical defense of pro-oxidant plant allelochemicals b,y herbivorous insects. Biochem. System. Ecol., 20:269-296.
    118. Ahmad S. 1995. Oxidative stress from environmental pollutants. Arch. Insect Biochem. Physiol.,29:135-157.
    119. Alfredo JP, Wang W. 2004. Effect of body weight on reproductive performance in Cnephasia jactatana (Lepidoptera: Tortricidae). J. insect behav., 17(4): 511-522.
    120. Anspaugh DD, Kennedy GG, Roe RM. 1995. Purification and characterization of a resistance-associated esterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pestic. Biochem. Physiol., 53:84-96.
    121. Argentine JA, Lee SH, Sos MA, et al. 1995. Permethrin resistance in a near isogenic strain of Colorado potato bettle. Pestic. Biochem. Physiol., 53: 97-115.
    122. Arking R, Dudas SP, Baker GT. 1993. Genetic and environmental factors regulating the expression of an extended longevity phenotype in a long lived strain of Drosophila. Genetica, 91: 127-142.
    123. Baimai V, Phinchongsakuldit J, Sumrandee C. 2000. Cytological evidence for a complex of species within the taxon Bactrocera tau (Diptera: Tephritidae) in Thailand. Biol. J. Linn. Soc., 69:399-409.
    124. Bale JS, Master GJ, Hodkinson ID, et al. 2002. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biol., 8:1-16.
    125. Bale JS. 1996. Insect cold hardiness: A matter of life and death. Eur. J. Entomol., 93:369-382.
    126. Bauerfeind SS, Fischer K. 2005. Effects of food stress and density in different life stages on reproduction in a butterfly. Oikos, 111 (3): 514-524.
    127. Baugh BA, Phillips SA. 1991. Influence of population density and plant water potential on Russian wheat aphid (Homoptera: Aphididae) alate production. Environ. Entomol, 20:1344-1348.
    128. Becerra JX. 1997. Insects on plants: Macroevolutionary chemical trends in host use. Science, 276:253-256.
    129. Bell CH. 1976. Factors governing the induction of diapause in Ephestia ehutella and plodia interpunctella (Lepidoptera). Physiol. Entomol., 1(2): 93-101.
    130. Benjamin ND, Montgomery MW. 1973. Polyphenol oxidase of royal anncherries: purification and characterization. J. Food Sci., 38:799-806
    131. Berry RE, Yu SJ, Terriere LC. 1980. Influence of host plants on insecticide metabolism and management of variegated cutworm. J. Econom. Entomol., 73:771-774.
    132. Bessy DA, Lowry OH, Brock MJ. 1946. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem., 164:321-329.
    133. Birch IC. 1948. The intrinsic rate of natural increase in an insect population. J. Anim. Ecol., 17: 15 - 26.
    134. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37:103 -115.
    135. Bradfold MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Ann. Biochem., 72: 248 - 254.
    136. Brattsten LB, Ahmad S. 1986. Molecular aspects of insect-plant associations. New York: Plenum Press.
    137. Brattsten LB. 1988. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. J. Chem. Ecol, 14:1919 - 1939.
    138. Brown JM, Leebens-Mack JH, Thompson JN, et al. 1997. Phylogeography and host association in a pollinating seed parasite, Greya politella (Lepidoptera: Prodoxidae). Mol. Ecol., 6: 215 -224.
    139. Bush G. 1994. Sympatric speciation in animal: New wine in old bottle. Trends Ecol. Evol., 9: 285-288.
    140. Byrne DN. 1999. Migration and dispersal by the sweetpotato whitefly, Bemisia tabaci. Agric. Forest Meterol., 91: 309-316.
    141. Cervera A, Maymo AC, Martinez-Pardo R. el al. 2003. Antioxidant enzymes in Oncopeltus fasciatus (Heteroptera: Lygaeidae) exposed to cadmium. Environ. Entomol, 50: 705 - 710.
    142. Chance B, Machly AC. 1955. Assay of catalase and peroxidase. In: Colowick SP, eds. Methods of enzymology (2nd). New York: Academic press, 764 - 775.
    143. Chen B, Kang L. 2004. Variation in cold hardiness of Liriomyza huidobrensis (Dipera: Agromyzidae) along latitudinal gradients. Environ. Entomol, 33:155 - 164.
    144. Chen B, Kang L. 2002. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis. CryoLetters, 23:173 - 182.
    145. Chen QX, Kubo I. 2002. Inhibition kinetics of tyrosinase by quercetin. J. Agric. Food Chem., 50:4108-4112.
    146. Chinajariyawong A, Kritsaneepaiboon S, Drew RAI. 2003. Efficacy of protein bait sprays in controlling fruit flies (Diptera: Tephrididae) infesting angled luffa and bitter gourd in Thailand. Raffles bull Zool., 51 (1): 7-15.
    147. Christenson LD, Richard HF. 1960. Biology of fruit flies. Ann. Rev. Entomol, 5: 171 - 192.
    148. Claridge MF, Hollander JD. 1983. The biotype concept and its application to insect pests of agriculture. Crop Prot., 2: 85 - 95.
    149. Clark AG. 1989. The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp. Biochem. Physiol.,92:419-446.
    150. Danks HV. 1996. The wider integration of studies on insect cold-hardiness. Eur. J. Entomol., 93: 383-403.
    151. Dautal H. 1999. Water loss and metabolic water in starving Argas reflexus nymphs (Acari: Argasidae). J. Insect Physiol., 45:55-63.
    152. Doddapaneni H, Chakraborty R, Yadav JS. 2005. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: Evidence for gene duplications and extensive gene clustering. BMC Genomics, 14:1-24.
    153. Domínguez-Gily OE, McPheron BA. 2000. Effect of diet on detoxification enzyme activity of Platynota idaeusalis (Walker) (Lepidoptera: Tortricidae) larvae strains. Rev. Fac. Agron,, 17: 119-138.
    154. Drew RAI, Raghu S. 2002. The fruit fly Fauna (Diptera: Tephritidae: Dacinae) of the rainforest habitat of the Western Ghats, India. Raffles Bull. Zool., 50:327-352.
    155. Drew RAI, Romig MC. 1997. Overview-Tephritidae in the Pacific and Southeast Asia. In: Allwood A J, Drew RAI, eds. Management of fruit flies in the Pacific: A regional symposium. Canberra: Australian Centre for International Agricultural Research Proceeding, 76:46-53.
    156. Dudas SP, Arking R. 1995. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J. Gerontol., 50: 117-127.
    157. Ehrlich P, Raven P. 1964. Butterflies and plants: a study in coevolution. Evolution, 18:586-608.
    158. FAO. 1996. Guidelines for pest risk analysis. International Standards for Phytosanitary Measures (2nd). Secretariat of the IPPC. FAO, Rome.
    159. Fenton B, Woodford JAT, Malloch G. 1998. Analysis of elonal diversity of the peach-potato aphid, Myzus persicae Sulzer, in Scotland, UK and evidence for the existence of a predominant clone. Mol. Ecol., 7(11): 1475-1487.
    160. Feyereisen R. 1999. Insect P450 enzymes.Ann. Rev. Entomol., 44:507-533.
    161. Giannoplitis CN, Ries SK. 1977. Superoxide dismutase purification and quantitavive relationship with water-soluble protein in deedings. Plant Physiol., 59:315-318.
    162. Gibbs AG, Fukuzato F, Matzkin ML. 2003. Evolution of water conservation mechanisms in Drosophila. J. Exp. Biol., 206:1183-1192.
    163. Gilbert L, Raven P. 1975. Coevolution of animals and plants. Texas: University of Texas Press.
    164. Guerrieri E, Poppy GM, Powell W, et al. 1999. Induction and systemic release of herbivore induced plant volatiles mediating in flight orientation of Aphidius ervi. J. Chem. Ecol., 25 (6): 1247-1261.
    165. Guilebeau LP. 1994. Risk-benefit analysis of pesticides: The U. S. environmental protection agency perspective. Am. Entomol., 173-179.
    166. Gupta D, Verma AK, Divender G. 1992. Population fluctuations of the maggots of fruit flies (Dacus cucurbitae Coquillett and B. tau Walker) infesting cucurbitaceae crops. Adv. Plant Sci., 5(2): 518-523.
    167. Hagstrum DW, Silhacek DL. 1980. Diapause induction in Ephestia cautella: an interaction between genotype and crowding. Entomol. Exp. Appl., 28(1): 29-37.
    168. Han ZJ, Han ZJ, Wand YC, et al. 2003. Biochemical features of a resistant population of the rice stem borer, Chilo suppressalis (Walker).Acta Entomol. Sin., 46(2): 161-170.
    169. Hardie J, Vaz Nunes M. 2001. Aphid photopefiodic clocks. J. Insect Physiol., 47:821-832.
    170. Hoffman AA, Sorensen JG, Loeschcke V. 2003. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Theor. Biol., 28:175-213.
    171. Hoffmann AA, Parson PA. 1991. Evolutionary genetics and environmental stress. New York: Oxford University Press.
    172. Hoffmann KH. 1985. Metabolic and enzyme adaptation to temperature. In: Hoffmann KH, eds. Environmental Physiology and Biochemistry of Insects. Berlin, Heidelberg, New York and Tokyo: Springer Verlag.
    173. Hsu AL, Murphy CT, Kenyon C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 300:1142-1145.
    174. Hua YJ, Taanaka Y, Kataoka H. 2000. Molecular cloning Of prothoracicostatic peptide (PTSP) in the larval of the silkworm, Bomtryx mori. ⅩⅪ-international Congress of Entomology. Brazil: Embrapa.
    175. Hung CF, Kao CH, Liu CC, et al. 1990. Detoxifying enzymes of selected insect species with chewing and sucking habits. J. Econ. Entomol., 86:1631-1638.
    176. Jakoby WB, Habig WH. 1980. Glutathione transferases (Vol 2). In: Jakoby WB, eds. Enzymatic basis of detoxification. New York: Academic Press, 63-94.
    177. Jamnongluk W, Baimai V, Kittayapong P. 2003. Molecular phylogeny of tephritid fruit flies in the Bactrocera tau complex using the mitochondrial COI sequences. Genome, (46): 112-118.
    178. Jermy T. 1976. Insect-host plant relationships-coevolution or sequential evolution. Symp. Biol. Hung., 16:109-113.
    179. Jian F, Jayas DS, White NDG, et al. 2002. Temperature and geotaxis preference by Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in response to 5℃/m temperature gradients at optimum and hot temperatures in stored wheat and their mortality at high temperature. Environ. Entomol., 31:816-826.
    180. Johnson B. 1966. Wing polymorphism in aphids Ⅲ. The influence of the host plant. Entomol. Exp. Appl., 9:213-222.
    181. Johnson KS. 1999. Comparative detoxification of plant (Magnolia virginiana) allelochemicals by generalist and specialist Saturniid silkmoths. J. Chem. Ecol., 25:253-269.
    182. Johnston IA, Bennett AF. 1996. Animals and temperature: Phenotypic and evolutionary adaptation. Cambridge: Cambridge University Press.
    183. Kapoor VG. 1993. Indian fruit flies (Insecta: Diptera: Tephritidae). Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 228.
    184. Katsoyannos BI, Pittara IS. 1983. Effect of size of artificial oviposition substrates and presence of natural host fruits on the selection of oviposition site by Dacus oleae. Entomol. Exp. Appl., 37:326-332.
    185. Kawakami A, Kataoka H, Oka T et al. 1990. Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science, 24(7): 1333-1335.
    186. Keppler D, Decher K. 1974. Glycogen determination with amyloglucosidase. In: Bergmeyer HU, eds. Method of enzymatic analysis. New York: Academic Press, 1127-1131.
    187. Kivan M, Kilic N. 2005. Effects of temperature on reproductive capacity and longevity of Trissolcus simoni, an egg parasitoid of Eurygaster integriceps. J. Pest Sci., 78(2): 105-108.
    188. Krebs RA, Loeschke V. 1994. Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Funct. Ecol., 8:730-737.
    189. Krieger RL, Feeny PP, Wilkinson CF. 1971. Detoxification enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? Science, 172:579-581.
    190. Larsen PL. 1993. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 90:8905-8909.
    191. Lazzari CR. 1991. Temperature preference in Triatoma infestans (Hemiptera: Reduviidae). Bull. Entomol. Res., 81:273-276.
    192. Le Bourg E, Minois N. 1999. A mild stress, hypergravity exposure, postpones behavioral aging in Drosophila melanogaster. Exp. Gerontol., 34:157-172.
    193. Le Bourg E, Valenti P, Lucchetta P, et al. 2001. Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology, 2:155-164.
    194. Lee RE. 1991. Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL, eds. Insects at Low Temperature. New York: Chapman and Hall, 17-18.
    195. Li J, Tracy JW, Christensen BM. 1992. Relationship of the hemolymph phemoloxidase and mosquito age in Aedes aegypti.J. Invertebr. Pathol., 60:188 - 191.
    196. Li YY. 1984. The effect of ~(60)Co gamma-irradiation on the esterase isozyme of pupae of the corn borer. Appl. Atom. Energy Agric., 3: 44 - 48.
    197. Lis J, Wu C. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell, 74,1-4.
    198. Liu YC. Lee YK. 1986. Soil physical factors affecting pupal population of the oriental fruit fly, Dacus dorsalis Hendel. Chinese J. Entomol., 6,15 - 30.
    199. Maestri E, Klueva N, Perrotta C, et al. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol., 48: 667 - 681.
    200. Marron MT, Markow TA, Kain KJ, et al. 2003. Effects of starvation and desiccation on energy metabolism in desert and mesic Drosophila. J. Insect Physiol., 49, 261 - 270.
    201. Meksongsee M, Liewvanich A, Jirasuratana M. 1991. Fruit flies in Thailand. In: Vijaysegaran S, Ibrahim AG, eds. 1st International symposium on fruit flies in the tropics. Selangor: Malaysian Agricultural Research and Development Institute (MRDI), 83 - 98.
    202. Michele B, Paul P, Marie-Odile, et al. 2000. Esterases in marine dinoflagellates and resistance to the organophosphate insecticide parathion. Int. Microbiol., 3:117 - 123.
    203. Migula P, Glowacka E, Nuorteva SL. el al. 1997. Time related effects of intoxication with cadmium and mercury in the red wood ant. Ecotoxicology, 6: 307 - 320.
    204. Morimoto RI. 1993. Cells in stress: Transcriptional activation of heat shock genes. Science, 259: 1409-1410.
    205. Nakano K, Iwama GK. 2002. The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp 70 and thermal tolerance. Comp. Biochem. Physiol, 133:79 -94.
    206. Nationl JL. 1995. Radiation-induced changes in melanization and phenoloxidase in Caribbean fruit fly larvae Diptera: Tephritidac as the basis for a simple test of irradiation. Ann. Entomol. Soc. Am., 88(2): 201 -205.
    207. Neal F, Gordon NF, Clark B. 2004. Heat shock proteins and immune response, the challenges of bringing autologous HSP-based vaccines to commercial reality. Methods, 32 (1): 63 - 69.
    208. Nicol D Armstrong KF, Wratten SD, et al. 1997. Genetic variation in an introduced aphid pest (Metopolophium dirhodum) in New Zealand and relation to individuals from Europe. Mol. Ecol., 6(3): 255 -265.
    209. O'Brien ML, Tew KD. 1996. Glutathione and related enzymes in multidrug resistance. Europ. J. Cancer, 32: 967 -978.
    210. Petiff FL, Loader CA, Schon MK. 1994. Reduction of nitrogen concentration in the hydroponic solution on population growth rate of the aphids (Hompoptera: Aphididae) Aphis gossyppi on cucumber and Myzus persicae on pepper. Environ. Entomol., 23: 930 - 936.
    211. Pires HHR, Lazzari CR, Schilman PE, et al. 2002. Dynamics of thermopreference in the Chagas disease vector Panstrongylus megistus (Hemiptera: Reduviidae). J. Med. Entomol., 39: 716-719.
    212. Prasad HH. 1983. Effect of irradiation on free acids of the oriential fruit fly, Dacus dorsal Hendel. Indian J. Econ. Entomol., 45(4): 402 - 405.
    213. Price PW. 1986. Ecological aspects of host plant resistance and biological control: Interaction among three trophic levels. In: Boethel DJ, Eikenbary RD, eds. Interactions of plant resistance and parasitoids and predators of Insects. Wiley, New York, 11-27.
    214. Puche H, Midgarden DG, Ovalle O, et al. 2005. Effect of elevation and host availability on distribution of sterile and wild Mediterranean fruit flies (Diptera: Tephritidae). Florida Entomol, 88: 83 - 90.
    215. Ranuch N Nauen R. 2004. Characterization and molecular cloning of a glutathione S-transferase from the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. Biol., 34: 321 - 329.
    216. Renwick JAA. 1989. Chemical ecology of oviposition in phytophagous insects. Experientia., 45:223-228.
    217. Robert J. 2003. Evolution of heat shock proteins and immunity. Dev. Comp. Immunol., 27: 449 -464.
    218. Robert R. 1994. Gamma radiation effect on production of four pheromonal components of male mediterranean fruit flies (Diptera: Tephritidae) . J. Econ. Entomol., 87(4): 904 - 909.
    219. Rodriguez L, Sokolowski, MB, Shore JS. 1992. Habitat selection by Drosophila melanogaster larvae. J. Evol. Biol, 5: 61 -70.
    220. Rudolph AS, Crowe JH. 1985. Membrance stabilization during freezing: the role of two natural cryoprotectants, trehalose and priline. Cryobio., 22: 367 - 377.
    221. Saikia DK, Dutta SK. 1997. Efficacy of some insecticides and plant products against fruit fly, Dacus cucurbitae Coq. On ridge gourd, Luffa acutangula L. J. Agric. Sci. Soc. North East India, 10(1): 132 -135.
    222. Saunders DC. 1982. Insect clocks (2nd). Oxford: Pergmon Press.
    223. Schilman PE, Lazzari CR. 2004. Temperature preference in Rhodnius prolixus, effects and possible consequences. Acta Tropica, 90:115 -122.
    224. Schopf A. 1980. Zur diapause des Puppenparasiten pimpla turionellae L. (Hymenoptera: Ichneumonidae). Zool. Jb. Syst, 107 (4): 537 - 567.
    225. Shahar T, Hennig N, Gutfinger T, et al. 1992. The tomato 66.3kDa polyphenoloxidase gene: molecular identification and developmental expression. Plant Cell, 4:135 - 147.
    226. Shukla RP, Prasad VG. 1985. Population fluctuation of the oriental fruit fly, Dacus dorsalis Hendel in relation to host and abiotic factors. Trop. Pest Manage., 31: 273 - 275.
    227. Sijerkilde M, Sorensen J G, Loeschche V. 2003. Effects of cold and heat hardening on thermal resistance in Drosophila melanogaster.J. insect physiol., 49: 719-726.
    228. Siminszky B, Corbin FT, Ward ER, et al. 1999. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Plant Biol., 96(4): 1750-1755.
    229. Simon LM, Fatral Z, Jonas DE. 1974. Study of peroxide metabolism enzymes during the development of Phaseolus vulgaris. Biochem. Physiol., 166:387 - 392.
    230. Sinclair B J, Addo-Bediako A, Chown SL. 2003. Climatic variability and the evolution of insect freeze tolerance. Biol. Rev., 78:181 -195.
    231. Sivori JL, Casabe N, Zerba EN et al. 1997. Induction of glutathione S-transferase activity in Triatoma infestans. Mem. Inst. Oswaldo. Cruz., 92 (6): 797 - 802.
    232. Skinner RH. 1996. Leaf temperature effects on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition. Environ. Entomol., 25:1371 -1375.
    233. Smith D, Nannan L. 1988. Yeast autolysate bait sprays for control of Queensland fruit fly on passionfruit in Queeensland. Queensland J. Agric. Anim. Sci., 45 (2): 169 -177.
    234. Sorensen JG, Kristensen TN, Loescheke V. 2003. The evolutionary and ecological role of heat shock proteins. Ecol. Letters, 6:1025 - 1037.
    235. Stanley SM, Parsons PA, Spence GE, et al. 1980. Resistance of species of the Drosophila melanogaster subgroup to environmental extremes. Aust. J. Zool., 28: 413 - 421.
    236. Storey KB, Storey JM. 1983. Regulation of cryoprotectant metabolism in the overwintering gall fly larvae, Eurosota solidaginis. J. Comp. Physiol., 149: 495 - 502.
    237. Storey KB, Storey JM. 1988. Freeze tolerance in animals. Physiol. Rev., 68: 27 - 84.
    238. Storey KB, Storey JM. 1991. Biochemistry of cryoprotectants. In: Lee RE, Denlinger DL, eds. Insects at low temperature. New York: Chapman and Hall, 65 - 93.
    239. Stratman R, Markow LA. 1998. Resistance to thermal stress in desert Drosophila. Funct. Ecol., 12:965-970.
    240. Sujinda T, Urusa T. 2003. Relationships of forms within the Bactrocera tau (Walker) (Diptera: Tephritidae) taxon based on heat shock protein 70 cognate sequences. Ann. Entomol. Soc. Am., 96(1): 44 - 53.
    241. Sung DY, Kaplan F, Lee KJ. 2003. Acquired tolerance to temperature extremes. Trends in plant Sci., 8 (4): 809-810.
    242. Sunnucks P, Lushai G, Lushai G. 1997. Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated loneages and host specialization. Mol. Ecol., 6(11): 1059-1073.
    243. Terriere LC. 1984. Induction of detoxification enzymes in insects. Ann. Rev. Entomol., 29:71-88.
    244. Thomas CD, Cameron A, Green RE, et al. 2004. Extinction risk from climate change. Nature, 427:145-148.
    245. Thompson SN. 1999. Nutrition and culture of entomophagous insects. Ann. Rev. Entomol., 44: 561-593.
    246. Tigvattananont S. 1986. The importance of Dacus tau (Walker) in Thailand. Kaen Kaset, 14: 114-118.
    247. Valles SM. 1998. Toxicological and biochemical studies with field populations of German cockroach Blattela germainca. Pestic. Biochem. Physiol., 62:190-200.
    248. van Asperen K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol., 8:401-416.
    249. Vanfleteren JR. 1993. Oxidative stress and ageing in Caenorhabditis elegans. Biochem. J., 292: 605-608.
    250. Vanlerberghe-Masutti, Chavigny P. 1998. Host based genetic differentiation in Aphis gossypii Glover evidenced from RAPD fingerprints. Mol. Ecol., 7(7): 905-914.
    251. Vargas RI, Walsh WA, Dale Kanehisa, et al. 2000. Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Ann. Entomol. Soc. Am., 93(1): 75-81.
    252. Visser JH, Ave DV. 1978. General green leaf volatiles in the olfactory orientation of the Colorado beetle Leptinotarsa decemlineata. Entomol. Exp. et Appl,, 24: 538-549.
    253. Walters KFA, Dixon AFG. 1984. The effect of temperature and wind on the flight activity of cereal aphids. Ann. Appl. Biol., 104:17-26.
    254. Wang JJ, Zhao ZM, Zhang JP. 2004. The host plant-mediated impact of simulated acid rain on the development and reproduction of Tetranychus cinnabarinus (Acari: Tetranychidae). J. Appl. Entomol., 397-402.
    255. Wang JJ, Zhao ZM. 2003. Accumulation and utilization of triacylglycerol and polysaccharides in Liposcelis bostrychophila (Psocoptera: Liposcelididae) selected for resistance to carbon dioxide. J. Appl. Entornol., 127:107-111.
    256. Wang XH, Qi XL, Kang L. 2003. Rapid cold hardening process of insects and its ecologically adaptive significance. Prog. Nat. Sci., 13: 1128-1133.
    257. Watt A. 1979. The effect of cereal growth stages on the reproductive activity of Sitobion avenae and Metopolophium dirhodum. Ann. Appl. Biol., 91: 147-157.
    258. White IM, Elson-Harris MM. 1992. Fruit flies of economic significance: their identification and bionomics. Wallingford: Centre for Agriculture and Biosciences International.
    259. Wightman JA. 1978. The control of voltinism in Costelytra zealandica (Coleoptera: Scarabaeidae). N. Z. Ent., 6(4): 364.
    260. Wiktelius S. 1987. Distribution of Rhopalosiphum padi (Homoptera: Aphididae) on spring barley plants. Ann. Appl. Biol., 110:1-7.
    261. Wink M, Schmeller T, Latz-Brüning B. 1998. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA and other molecular targets. J. Chem. Ecol., 24:1881-1937.
    262. Winston PW, Bates DH. 1960. Saturated solutions for the control of humidity in biological research. Ecology, 41:232-237.
    263. Yang P, Carey JR, Dowell R. 1994. Host specific demographic studies of wild Bactrocera tau (Walker) (Diptera:Tephritidae). Pan-Pacific Entomol., 1994, 70(3): 253-258.
    264. Yang X, Margolies DC, Zhu KY, et al. 2001. Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mite (Acad: Tetranychidae). J. Econ. Entomol., 94 (2): 381-387.
    265. Ye H, Liu JH. 2007. Population dynamics of oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae) in Xishuangbanna, Yunnan Province, China. Front. Agric. China., 1(1): 76-80.
    266. Yost HJ, Lindquist S. 1986. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell, 45:185-193.
    267. Yu SJ. 1982. Host plant induction of glutathione S-transferase in the fall armyworm. Pestic. Biochem. Physiol., 18:101-106.
    268. Yu SJ. 1983. Induction of detoxifying enzymes by allelochemicals and host plants in the fall armyworm. Pestic. Biochem. Physiol., 1983, 19:330-336.
    269. Yu SJ. 1984. Interactions of allelochemicals with detoxication enzymes of insecticide-susceptible and resistant fall armyworms. Pestic. Biochem. Physiol., 22:60-68.
    270. Yu SJ. 1986. Consequences of induction of foreign compound-metabolizing enzymes in insects. In: Brattsten LB, Ahmad S, eds. Molecular aspects of insects-plant associations. New York: Plenum Press. 153-174.
    271. Yu SJ. 1992. Plant-allelochemical-adapted glutathione transferases in Lepidoptera. In: Mullin CA, Scott JG, eds. Molecular mechanism of insecticide resistance. American Chemical Society, Washington DC, 174-190.
    272. Zachariassen KE. 1985. Physiology of cold tolerance in insects. Physiol. Rev., 65:799-832.
    273. Zamam K, MacGill RS, Johnson JE, el al. 1994. An insect model for assessing mercury toxicity: effect of mercury OR antioxidant enzyme activities of the housefly (Musca domestica) and the cabbage looper moth (Trichoplusiani). Arch. Environ. Contain Toxicol., 26:114-118.
    274. Zhou CQ, Wu KK, Chen HD, et al. 1994. Effect of temperature on the population growth of Bactrocera tau (Walker) (Diptera. Tephritidae). J. Appl. Entornol., 117:332-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700