溶解性转糖酶C(LtgC)功能部位对淋球菌生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淋病是由淋球菌引起的泌尿生殖系统的化脓性感染,严重危害着人类的健康。临床上主要采用抗生素治疗,近年来因抗生素的滥用和乱用,耐药菌株大量出现,急需调整抗生素用药策略和研发新型的抗淋球菌药物和药物作用靶点。溶解性转糖酶C(LtgC)通过催化切割肽聚糖β-1,4糖苷键断裂,在淋球菌分裂和生长中发挥重要作用,可能是潜在的药物作用靶点。本实验采用分子克隆和同源重组技术研究溶解性转糖酶C的活性位点和特异的结构域三对淋球菌生长分裂的影响,阐述作用机制,为研发新型抗淋球菌药物提供一定的理论和实践依据。
     采用分子生物学方法获得淋球菌FA19ltgC敲除株(FA19△ltgC)、D393A突变株(FA19ltgC_(D393A))、D405A突变株(FA19ltgC_(D405A))和结构域三缺失株(FA19ltgC_(△DM3))和结构域三表面七个氨基酸突变株(FA19ltgC_(7M))。野生型淋球菌FA19菌落表面光滑且明亮、无褶皱、边缘完整;但FA19△ltgC的菌落表面出现褶皱和凸凹不平,菌体生长缓慢,四小时停止生长;且FA19ltgC基因的遗传修复株(FA19 ltgC-com)可回复为FA19的表型,上述结果表明LtgC是淋球菌内重要的、保守的功能性蛋白,该蛋白的缺失导致淋球菌细胞分裂不完全,生长缓慢。FA19ltgC_(D393A)和FA19ltgC_(D405A)菌落表型和FA19△ltgC菌落表型一致。FA19ltgC_(D393A)、FA19ltgC_(D405A)和FA19△ltgC细胞生长速度相近,均比FA19野生株生长缓慢,该结果暗示393位和405位的天冬氨酸共同作用切割肽聚糖糖苷键断裂。
     本实验采用分子克隆技术敲除LtgC结构域三163-244位氨基酸,以及用氨基酸RGR替换LtgC的167-244位氨基酸,重组表达纯化获得两个LtgC结构域三突变体蛋白(LtgC_(△163-244)和LtgC_(△167RGR244)). LtgC_(△163-244)突变体蛋白在大肠杆菌体内没有表达,但LtgC_(△167RGR244)蛋白表达量高且可溶性良好。将LtgC_(△167RGR244)基因同源重组到淋球菌基因组,获得LtgC结构域三缺失株(FA19ltgC_(△DM3)). FA19ltgC_(△DM3)的表型和FA19△ltgC表型相似,生长速度缓慢。但FA19ltgC_(7M)的表型和野生型未见显著性差异。该结果表明,结构域三是LtgC帮助淋球菌生长的关键结构区域,但不是其他蛋白结合位点。
     大肠杆菌溶解性转糖酶A( MltA)和淋球菌LtgC是同源蛋白,在结构和功能方面有很多相似性.分别用mltA和ltgC基因对ltgC缺失株进行遗传修复,发现ltgC和MltA的互补株完全回复淋球菌野生株的表型,而且MltA对淋球菌生长的促进作用比LtgC更强.在检测MltA对淋球菌肽聚糖的切割作用时,观察到MltA酶切活性受到淋球菌高度乙酰化的肽聚糖的抑制,但可溶表达的LtgC蛋白切割未见酶切肽聚糖活性。
     在LtgC的N端加入19个氨基酸的脂蛋白后, LtgC蛋白在E.coli Bl21中表达量很低,可能该脂蛋白对E.coli产生毒性作用使表达受到抑制,暗示LtgC蛋白需要脂蛋白序列协助发挥作用;携带脂蛋白序列的LtgC_(D393A)和LtgC_(D405A)突变株蛋白在大肠杆菌中表达量和LtgC可溶蛋白表达量相近,说明Asp393和Asp405位点突变抑制LtgC对大肠杆菌的毒性作用;但结构域三表面的七重氨基酸突变体蛋白表达量仍然很低,证明结构域三可能不是其他协同作用蛋白和LtgC的结合部位。
     综上所述,本研究证实LtgC是淋球菌生长和分裂的重要功能性酶,首次证明Asp393和Asp405是LtgC影响淋球菌生长的重要功能部位;结构域三的缺失抑制淋球菌细胞分裂,但它不是多酶复合体的结合位点;首次发现MltA可修复由LtgC缺失引起的淋球菌表型变化,并促进淋球菌生长;无脂蛋白序列的LtgC无酶切活性,表明脂蛋白序列是LtgC的重要结构。首次鉴定MltA体外活性受到淋球菌肽聚糖乙酰化抑制,可能与淋球菌避免自溶有关。本论文初步证明LtgC可能是潜在的淋球菌药物作用靶点,尤其是LtgC的Asp393和Asp405可视为筛选抑制剂的潜在靶标,为研发新型抗淋球菌药物提供一定的理论依据。
Gonorrhea, is a common sexually transmitted diseases worldwide caused by N.gonorrhoeae, which evokes the pyogenic infection of urogenital system. Even though Gonorrhea could be successfully cured with antibiotics, drug resistant strains are an increasing issue in many countries due to misuse and overuse of antibiotics. So therapeutic strategy need to be adjusted based on the bacterial sensitivity and there is an urgent need to identify new drug targets in anti-gonoccoci and develop new drugs. Lytic transglycosylase C(LtgC) is essential for growth and division of N.gonorrhoeae by cleavingβ-1,4 glycosidic bond of peptidoglycan, considered as a promising targets for antimicrobials. In the present study, the effect of active sites and domain 3 (DM3)of LtgC on Gonococcal growth and duplication was demonstrated by molecular cloning and homelogens DNA technology, the mechanism of LtgC catalysis was exhibited to provide a theoretical basis for research and development of novel drug.
     N.gonorrhoeae FA19△ltgC, FA19ltgC_(D393A), FA19ltgC_(D405A), FA19ltgC_(△DM3) and FA19ltgC_(7M)(which includes 7 a.a. mutations in DM3 of LtgC) were generated by homologous recombination technology. Under light microscopic observation, colony morphologyof N. gonorrhoeae FA19 showed shiny and smooth, convex, however colonies of FA19△ltgC were winkled, dull, rough and flatat bacterium surface,exhibited abnormal growth,stopped growing after 4 h cultivation. And colony morphology of the complemented strains was indistinguishable from that of FA19 wild type strain. These results proved LtgC is a conservative and functional protein in N.gonorrhoeae. The colony morphology of FA19ltgC_(D393A) and FA19ltgC_(D405A) mutants are identity with that of FA19△ltgC. Growth of three strains showed the similar retarded growth characteristic, suggesting both Asp393 and Asp405 in LtgC are essential for cleaving peptidoglycan of LtgC.
     163-244 Amino acid deletion mutant of LtgC(LtgC_(△163-244)) and amino acid 167-244 replaced by RGR mutant of LtgC(LtgC_(△167RGR244)) were constructed, expressed and purified. Although LtgC_(△163-244) couldn’t be expressed in E.coli, LtgC167RGR244 mutant protein was expressed considerable quantities and soluble. The gene of LtgC_(△167RGR244)was transformed into FA19 to generate the FA19 LtgC_(△DM), which showed the similar phenotype with FA19△LtgC, grew very tardily. Seven-amino-acid sites mutation in LtgC domain 3 in FA19 (FA19 ltgC_(7M)) was generated, morphology of its colony was consistent with that of FA19’s. These result showed DM3 was the critical domain of LtgC involved in growth and division of N. gonorrhoeae, but it’s not the binding site of other proteins in the multi-enzyme system.
     Murein Lytic transglycosylase A (MltA) in E.coli and LtgC are homologous proteins, containing many similarity in the structure and function. MltA or LtgC was transformed into the genome of FA19△LtgC to generate two complemented strains. Both ltgC and mltA complemented strains totally recovery the morphology deficiency in FA19△LtgC, and MltA complemented strain grew and separated faster than ltgC complemented strain. This data coincided with the result of MltA and LtgC digesting PG in vitro. The truncated LtgC didn’t show any activity in PG digestion, but truncated MltA can cleave PG with low-density O-acetylated, but be inhibited by high-density acetylated PG.
     LtgC was also expressed in E.coli as lipoprotein, but its expression quantity was weak by western blot detection, possible LtgC was toxic to E.coli, and the lipoprotein-sequence collaborated LtgC to fulfill its function. The expression of LtgC_(7M) protein also was inhibited by E.coli, proving DM3 was not the binding position of other factors as 7-a.a mutation in DM3 still was toxic to E.coli.
     In conclusion, LtgC is a critical enzyme in gonococci growth and division. The residues of Asp 393 and Asp405 was firstly proved to collaborate to surport the growth of N.gonorhoeae; DM 3 deletion in LtgC inhibits cell separation, but DM3 is not the binding sites of multi-enzymatic complex; MltA could rescue the morphology of FA19?LtgC; We firstly identified the activity of MltA in vitro was inhibited by O-acetylated gonoccocal PG, and sLtgC didn’t show any enzymatic activity. In this thesis, we primarily proved LtgC is a crucial and concerved protein the residues of Asp393 and Asp405 could be the great inhibitors binding target of anti-gonoccoci.
引文
[1] Holtje, J.V., Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev, 1998. 62(1): p. 181-203.
    [2] Holtje, J.V. and C. Heidrich, Enzymology of elongation and constriction of the murein sacculus of Escherichia coli. Biochimie, 2001. 83(1): p. 103-8.
    [3]吴兴中,曾维英,黄进梅,潘慧清,李美玲,淋球菌流行株抗生素敏感性监测.岭南皮肤性病科杂志, 2008. 15(3): p. 121-123.
    [4] Aral, S.O., W.D. Mosher, and W. Cates, Jr., Self-reported pelvic inflammatory disease in the United States, 1988. JAMA, 1991. 266(18): p. 2570-3.
    [5] Deshpande, P., et al., New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: treatment options with carbapenems compromised. J Assoc Physicians India, 2010. 58: p. 147-9.
    [6]王季武,马亦林,传染病学淋球菌感染. 2005. 536-543.
    [7] Cao, V., et al., Antimicrobial susceptibility of Neisseria gonorrhoeae strains isolated in 2004-2006 in Bangui, Central African Republic; Yaounde, Cameroon; Antananarivo, Madagascar; and Ho Chi Minh Ville and Nha Trang, Vietnam. Sex Transm Dis, 2008. 35(11): p. 941-5.
    [8]黄敏,等.微生物学与免疫学. 2007,人民卫生出版社.
    [9] Buchanan, T.M. and J.F. Hildebrandt, Antigen-specific serotyping of Neisseria gonorrhoeae: characterization based upon principal outer membrane protein. Infect Immun, 1981. 32(3): p. 985-94.
    [10] Sandstrom, E.G., K.C. Chen, and T.M. Buchanan, Serology of Neisseria gonorrhoeae: coagglutination serogroups WI and WII/III correspond to different outer membrane protein I molecules. Infect Immun, 1982. 38(2): p. 462-70.
    [11] Elkins, C., et al., Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol, 1991. 173(12): p. 3911-3.
    [12] Chen, A., et al., Induction of HIV-1 long terminal repeat-mediated transcription by Neisseria gonorrhoeae. AIDS, 2003. 17(4): p. 625-8.
    [13] Workowski, K.A. and S.M. Berman, CDC sexually transmitted diseases treatment guidelines. Clin Infect Dis, 2002. 35(Suppl 2): p. S135-7.
    [14] Sheung, A., et al., Mucosal Neisseria gonorrhoeae coinfection during HIV acquisition is associated with enhanced systemic HIV-specific CD8 T-cell responses. AIDS, 2008. 22(14): p. 1729-37.
    [15] Morgan, J., Testing and detection trends of Chlamydia trachomatis and Neisseria gonorrhoeae in Waikato, New Zealand: 1998-2006. N Z Med J, 2008. 121(1278): p. 41-9.
    [16] Tapsall, J.W., et al., Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti Infect Ther, 2009. 7(7): p. 821-34.
    [17] Prevention(CDC), C.f.D.C.a., Increases in gonorrhea--eight western states, 2000--2005. MMWR Morb Mortal Wkly Rep, 2007. 56(10): p. 222-5.
    [18] Martin, I.M. and C.A. Ison, Rise in gonorrhoea in London, UK. London Gonococcal Working Group. Lancet, 2000. 355(9204): p. 623.
    [19]贺安,淋病及其耐药性的流行现状.中国麻风皮肤病杂志, 2008. 25(5): p. 377-378.
    [20] Tapsall, J.W., Antibiotic resistance in Neisseria gonorrhoeae. Clin Infect Dis, 2005. 41 Suppl 4: p. S263-8.
    [21] CDC, Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the WHO Western Pacific Region, 2001. World Health Organization. Commun Dis Intell, 2002. 26(4): p. 541-5.
    [22] Martin, I.M., S. Hoffmann, and C.A. Ison, European Surveillance of Sexually Transmitted Infections (ESSTI): the first combined antimicrobial susceptibility data for Neisseria gonorrhoeae in Western Europe. J Antimicrob Chemother, 2006. 58(3): p. 587-93.
    [23] Enders, M., A. Turnwald-Maschler, and T. Regnath, Antimicrobial resistance of Neisseria gonorrhoeae isolates from the Stuttgart and Heidelberg areas of southern Germany. Eur J Clin Microbiol Infect Dis, 2006. 25(5): p. 318-22.
    [24] Herida, M., P. Sednaoui, and V. Goulet, Gonorrhoea surveillance system in France: 1986-2000. Sex Transm Dis, 2004. 31(4): p. 209-14.
    [25] Zarakolu, P., B. Sakizligil, and S. Unal, [Antimicrobial resistance of Neisseria gonorrhoeae strains isolated from sex workers in Ankara]. Mikrobiyol Bul, 2006. 40(1-2): p. 69-73.
    [26] Ray, K., et al., Antimicrobial resistance of Neisseria gonorrhoeae in selectedWorld Health Organization Southeast Asia Region countries: an overview. Sex Transm Dis, 2005. 32(3): p. 178-84.
    [27] Govender, S., T. Lebani, and R. Nell, Antibiotic susceptibility patterns of Neisseria gonorrhoeae isolates in Port Elizabeth. S Afr Med J, 2006. 96(3): p. 225-6.
    [28]叶顺章,苏晓,中国1993~2000年分离淋球菌的流行病学和细菌学特征.中华流行病学杂志, 2003. 24: p. 119-122.
    [29]顾伟鸣,吴磊, 1988~2002年上海分离的淋球菌对抗菌药的敏感性监测.中华皮肤科杂志, 2004. 37(6): p. 323-325.
    [30]唐桂林,李伟, 694株淋病奈瑟菌对环丙沙星、头孢曲松耐药性测定.广西医学, 2008. 30(11): p. 1742 - 1743.
    [31]方谷芬,刘.,袁正泉,岳阳地区266株淋球菌药敏结果分析.医学临床研究, 2007. 24(4): p. 617 - 619.
    [32]柯丹,代详安淋球菌对5种抗菌药物敏感性的监测分析.中国皮肤性病学杂志, 2008. 22(9): p. 549 - 550.
    [33]郑映玉, 106株淋病奈瑟菌的耐药性分析.现代医院, 2007. 7(3): p. 25 - 26.
    [34]侯存军,刘.,吴学忠,济南地区淋球菌耐药性检测及质粒谱型分析.中国皮肤性病学杂志, 2008. 22(1): p. 34 - 136.
    [35] Demchick, P. and A.L. Koch, The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol, 1996. 178(3): p. 768-73.
    [36] van Heijenoort, J., Assembly of the monomer unit of bacterial peptidoglycan. Cell Mol Life Sci, 1998. 54(4): p. 300-4.
    [37] Melly, M.A., Z.A. McGee, and R.S. Rosenthal, Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis, 1984. 149(3): p. 378-86.
    [38] Garcia-Bustos, J.F. and T.J. Dougherty, Alterations in peptidoglycan of Neisseria gonorrhoeae induced by sub-MICs of beta-lactam antibiotics. Antimicrob Agents Chemother, 1987. 31(2): p. 178-82.
    [39] Dougherty, T.J., Analysis of Neisseria gonorrhoeae peptidoglycan by reverse-phase, high-pressure liquid chromatography. J Bacteriol, 1985. 163(1): p. 69-74.
    [40] Goldman, W.E., D.G. Klapper, and J.B. Baseman, Detection, isolation, andanalysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect Immun, 1982. 36(2): p. 782-94.
    [41] Cookson, B.T., A.N. Tyler, and W.E. Goldman, Primary structure of the peptidoglycan-derived tracheal cytotoxin of Bordetella pertussis. Biochemistry, 1989. 28(4): p. 1744-9.
    [42] Flak, T.A. and W.E. Goldman, Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol, 1999. 1(1): p. 51-60.
    [43] Dokter, W.H., et al., G(Anh)MTetra, a natural bacterial cell wall breakdown product, induces interleukin-1 beta and interleukin-6 expression in human monocytes. A study of the molecular mechanisms involved in inflammatory cytokine expression. J Biol Chem, 1994. 269(6): p. 4201-6.
    [44] Fleming, T.J., D.E. Wallsmith, and R.S. Rosenthal, Arthropathic properties of gonococcal peptidoglycan fragments: implications for the pathogenesis of disseminated gonococcal disease. Infect Immun, 1986. 52(2): p. 600-8.
    [45] Swim, S.C., et al., Strain distribution in extents of lysozyme resistance and O-acetylation of gonococcal peptidoglycan determined by high-performance liquid chromatography. Infect Immun, 1983. 42(2): p. 446-52.
    [46] Franklin, M.J., W.S. Brusilow, and D.J. Woodbury, Determination of proton flux and conductance at pH 6.8 through single FO sectors from Escherichia coli. Biophys J, 2004. 87(5): p. 3594-9.
    [47] Franklin, M.J. and D.E. Ohman, Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J Bacteriol, 1996. 178(8): p. 2186-95.
    [48] Elmros, T., L.G. Burman, and G.D. Bloom, Autolysis of Neisseria gonorrhoeae. J Bacteriol, 1976. 126(2): p. 969-76.
    [49] Dillard, J.P. and K.T. Hackett, Mutations affecting peptidoglycan acetylation in Neisseria gonorrhoeae and Neisseria meningitidis. Infect Immun, 2005. 73(9): p. 5697-705.
    [50] Blackburn, N.T. and A.J. Clarke, Characterization of soluble and membrane-bound family 3 lytic transglycosylases from Pseudomonas aeruginosa. Biochemistry, 2002. 41(3): p. 1001-13.
    [51] Powell, A.J., et al., Crystal structures of the lytic transglycosylase MltA from N.gonorrhoeae and E.coli: insights into interdomain movements and substratebinding. J Mol Biol, 2006. 359(1): p. 122-36.
    [52] Tonshoff, B. and O. Mehls, Treatment of growth failure in renal disease with recombinant human growth hormone: 2 years' experience. Dev Pharmacol Ther, 1992. 18(3-4): p. 171-3.
    [53] Holtje, J.V., et al., Novel type of murein transglycosylase in Escherichia coli. J Bacteriol, 1975. 124(3): p. 1067-76.
    [54] Scheurwater, E., C.W. Reid, and A.J. Clarke, Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol, 2008. 40(4): p. 586-91.
    [55] Rosenthal, R.S., et al., Major fragment of soluble peptidoglycan released from growing Bordetella pertussis is tracheal cytotoxin. Infect Immun, 1987. 55(9): p. 2117-20.
    [56] Sinha, R.K. and R.S. Rosenthal, Release of soluble peptidoglycan from growing conococci: demonstration of anhydro-muramyl-containing fragments. Infect Immun, 1980. 29(3): p. 914-25.
    [57] Blackburn, N.T. and A.J. Clarke, Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol, 2001. 52(1): p. 78-84.
    [58] Kraft, A.R., et al., Interference with murein turnover has no effect on growth but reduces beta-lactamase induction in Escherichia coli. J Bacteriol, 1999. 181(23): p. 7192-8.
    [59] Thunnissen, A.M., N.W. Isaacs, and B.W. Dijkstra, The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes. Proteins, 1995. 22(3): p. 245-58.
    [60] Van Straaten, K.E., et al., Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol, 2005. 352(5): p. 1068-80.
    [61] Van Asselt, E.J., et al., Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure, 1999. 7(10): p. 1167-80.
    [62] Leung, A.K., et al., Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. Biochemistry, 2001. 40(19): p. 5665-73.
    [63] Reid, C.W., N.T. Blackburn, and A.J. Clarke, The effect of NAG-thiazoline on morphology and surface hydrophobicity of Escherichia coli. FEMS Microbiol Lett, 2004. 234(2): p. 343-8.
    [64] Reid, C.W., N.T. Blackburn, and A.J. Clarke, Role of arginine residues in the active site of the membrane-bound lytic transglycosylase B from Pseudomonas aeruginosa. Biochemistry, 2006. 45(7): p. 2129-38.
    [65] Holtje, J.V., A hypothetical holoenzyme involved in the replication of the murein sacculus of Escherichia coli. Microbiology, 1996. 142 ( Pt 8): p. 1911-8.
    [66] Vollmer, W., M. von Rechenberg, and J.V. Holtje, Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J Biol Chem, 1999. 274(10): p. 6726-34.
    [67] Romeis, T. and J.V. Holtje, Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur J Biochem, 1994. 224(2): p. 597-604.
    [68] Koraimann, G., Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci, 2003. 60(11): p. 2371-88.
    [69] Heidrich, C., et al., Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol, 2002. 184(22): p. 6093-9.
    [70] Cloud, K.A. and J.P. Dillard, Mutation of a single lytic transglycosylase causes aberrant septation and inhibits cell separation of Neisseria gonorrhoeae. J Bacteriol, 2004. 186(22): p. 7811-4.
    [71] Cloud, K.A. and J.P. Dillard, A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycan-derived cytotoxin production. Infect Immun, 2002. 70(6): p. 2752-7.
    [72] Reid, C.W., et al., Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline. FEBS Lett, 2004. 574(1-3): p. 73-9.
    [73] Lommatzsch, J., et al., Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J Bacteriol, 1997. 179(17): p. 5465-70.
    [74] Jennings, G.T., et al., GNA33 from Neisseria meningitidis serogroup B encodes a membrane-bound lytic transglycosylase (MltA). Eur J Biochem, 2002. 269(15): p. 3722-31.
    [75] Adu-Bobie, J., et al., GNA33 of Neisseria meningitidis is a lipoprotein required for cell separation, membrane architecture, and virulence. Infect Immun, 2004. 72(4): p. 1914-9.
    [76] Mehta, S.D., et al., Adult male circumcision does not reduce the risk of incident Neisseria gonorrhoeae, Chlamydia trachomatis, or Trichomonas vaginalis infection: results from a randomized, controlled trial in Kenya. J Infect Dis, 2009. 200(3): p. 370-8.
    [77] Bala, M., et al., Experience with an external quality assurance scheme for antimicrobial susceptibility testing of Neisseria gonorrhoeae in India, 2001-2007. Epidemiol Infect. 138(1): p. 69-75.
    [78] Castillo, R.M., et al., A six-stranded double-psi beta barrel is shared by several protein superfamilies. Structure, 1999. 7(2): p. 227-36.
    [79] Schindelin, H., et al., Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A, 1994. 91(11): p. 5119-23.
    [80] Murzin, A.G., OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J, 1993. 12(3): p. 861-7.
    [81] Thunnissen, A.M., et al., Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry, 1995. 34(39): p. 12729-37.
    [82] van Asselt, E.J., A.M. Thunnissen, and B.W. Dijkstra, High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. J Mol Biol, 1999. 291(4): p. 877-98.
    [83] van Asselt, E.J., K.H. Kalk, and B.W. Dijkstra, Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry, 2000. 39(8): p. 1924-34.
    [84] Vocadlo, D.J., et al., Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature, 2001. 412(6849): p. 835-8.
    [85] Pizza, M., et al., Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science, 2000. 287(5459): p. 1816-20.
    [86] Cloud-Hansen, K.A., et al., Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers. J Bacteriol, 2008. 190(17): p. 5989-94.
    [87] Kohler, P.L., et al., Characterization of the role of LtgB, a putative lytic transglycosylase in Neisseria gonorrhoeae. Microbiology, 2005. 151(Pt 9): p.3081-8.
    [88] Graves, J.F., G.D. Biswas, and P.F. Sparling, Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J Bacteriol, 1982. 152(3): p. 1071-7.
    [89] van Straaten, K.E., et al., Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage. J Biol Chem, 2007. 282(29): p. 21197-205.
    [90] Ferrari, G., et al., Outer membrane vesicles from group B Neisseria meningitidis delta gna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics, 2006. 6(6): p. 1856-66.
    [91] Rosenthal, R.S. and R. Dziarski, Isolation of peptidoglycan and soluble peptidoglycan fragments. Methods Enzymol, 1994. 235: p. 253-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700