磷酸盐、锡酸钠、钛酸钠新化合物合成与结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水热法和固相法是合成晶体材料的两类重要方法,与常温常压比较,水热条件下物质的理化性能均有很大变化,其间既可能产生新的化学反应,又可以使反应速度大为提高,因此作为制备新材料的强有力手段,水热法被广泛应用于制备超细及异型粉体、新型陶瓷、晶体、复合氧化物、新型结构材料等方面。而固相法由于实验条件易于控制,且可得到高温条件下稳定相等优点是较早应用在晶体合成的方法。
     本文通过水热法对磷酸盐体系,高温固相法对钛酸钠、锡酸钠进行了合成的研究,并利用X射线粉末和单晶衍射法,结合EDX能谱和红外吸收光谱等方法确定了合成产物的结构和化学组成,使用SEM扫描电子显微镜和光学显微镜对晶体形貌进行了观察。共合成和表征了五个化合物:
     1、新化合物Rb_3PO_4W_12O_36,该化合物由水热法制得,为典型的Keggin型结构,为立方晶系,空间群为Pn-3m(224),a=11.6608(1)(?),V=1585.56(2) (?)~3。该化合物结构上具备Keggin结构的典型特征,中心原子为PO_4四面体,被12个WO_6八面体包围,WO_6八面体之间每三个形成三金属共边相连,四个三金属与中心四面体共顶角相连,形成空间孔洞结构,Rb原子位于孔洞中。此结构是在化合物K_(2.4)(H_3O)_(0.6)PO_4W_(12)O_(36)单晶结构模型基础上通过X射线粉末衍射法,由Rietveld方法精修而得。
     2、新化合物M_(12)W_8O_(20)PO_4(HPO_4)_8Cl·H_2O(M=NH4_~+、Cs~+),该化合物由水热法制得。为新型的磷酸盐,四方晶系,空间群为P 4/m(83),该化合物结构属于层状结构,P原子存在两种配位环境,其中P(1)O_4四面体与WO_6八面体交替相连形成八元环,P(2)O(1)8基团为局部无序配位,处于垂直于c轴的ab平面,该平面与八元环平行,沿c轴方向上,该基团处垂直于八元环的中心轴向上。P(2)O(1)8中与P(2)配位的O原子在结构中的占有率仅为0.5。即P(2)实际配位数为4而不是8。一个Cs(N)2原子位于八元环的平面中心,4个Cs(N)4原子分布在环外侧,八元环构成在垂直于c轴方向的平面结构,两个八元环之间为Cs(N)3原子。晶体结构在空间上沿c轴方向形成孔洞,在垂直于c轴方向为八元环构成的夹层结构。其中的WO_6基团在同一侧有两个最终键连O原子,从而空间上形成低维的层状结构。(NH_4)_12W_8O_20PO_4(HPO_4)_8Cl·H_2O的结构由X射线单晶衍射法测得,化合物Cs_12W_8O_20PO_4(HPO_4)_8Cl·H_2O的结构是在同构型化合物(NH_4)_12W_8O_20PO_4(HPO_4)_8Cl·H_2O单晶结构模型的基础上通过X射线粉末衍射法由Rietveld方法精修而得。
     3、化合物Na_2TiO_3的结构,该化合物由高温固相法制得,为单斜晶系,空间群为C 2/c,a=9.8853(13)(?),b=6.4133(8)(?),c=5.5048(7)(?),β=115.50(3)°,V=314.99(7)(?)~3,与一般的钛酸钠中氧基团为6配位的八面体不同,该化合物形成5配位的双三角锥对面体,TiO_5多面体通过共边相连,且沿c轴方向形成链状,整个结构通过Na原子的连接形成空间网络结构。此结构通过X射线单晶衍射法测得。
     4、新化合物Na_6Sn_5O_12,该化合物由高温固相法制得,为单斜晶系,空间群为C12/ml(12),a=5.4253(11)(?),b=9.3842(19)(?),c=5.6581(11)(?),β=108.89(3)°,V=272.55(280)(?)~3,其中的Sn原子存在二价和四价两种价态,有两种配位环境,通过两种大小不同的SnO_6八面体连接,构成了垂直于c轴的平面,而Na原子则处在上下两个平面之间,通过NaO_6与SnO_6共顶角O相连形成空间网络结构。此结构通过X射线单晶衍射法测得。
Hydrothermal synthesis and solid state synthesis are two important methods of crystal material synthesis. In comparison with method in normal temperature and pressure, the physical and chemical properties change much under hydrothermal conditions. Under such conditions, new kinds of reactions could be found and the speed of reaction could be improved perhaps. In this way, hydrothermal synthesis has become a powerful method on preparation of advanced materials, and has been widely used in area of advanced ceramic, crystals, complex oxide and new structure materials. The solid state synthesis method on crystal synthesis was the earliest use way because of its easy control on conditions and its stable results under high temperature conditions.
     In this thesis, tungsten phosphates were researched in hydrothermal synthesis way, sodium titanium oxide and sodium tin oxide were researched in solid state synthesis method. By using X-ray powder diffraction and X-ray single crystal diffraction together with EDX and IR method, the chemical structure and composition were confirmed. The appearances of the compounds were observed by SEM., Five compounds were synthensized.
     1、Novel compound Rb_3PO_4W_(12)O_(36) it is a novel 12-tugstun phosphate with typical Keggin structure, it is cubic with the space group Pn-3m(224), a = 11.6608(1) (?), V= 1585.56(2) (?)~3。The compound has the features of the Keggin structure, the PO_4 tetrahedron in the middle is surrounded by 12 WO_6 octahedra, every three metal clusters in the 12 octahedra connected by sharing edges, the four clusters connect the PO_4 tetrahedron in the middle by sharing atoms. The hole is constructed in the three-dimensional structure and Rb atoms stay in it. The structure was determined from powder X-ray diffraction.
     2、Novel compound M_(12)W_8O_(20)PO_4(HPO_4)_8Cl·H_2O(M=NH_4~+、Cs~+), it was a novel tungsten phosphate. It is tetragonal with the space group P 4/m(83), The structure of compound can be best described as made of novel sandwich like layers. The P(1)O_4 tetrahedra and the WO_6 octahedra form a circle, and each W atom of WO_6 units has two terminal oxygen on one side of the layers which are considered as the reason for the low dimensinality of the structure. In the group of P(2)O_8, it has a disordered structure, the occupancies of the O atoms are 0.5, which meas the coordination number of the P atom is 4 instead of 8. 4 Cs(N)4 atoms lie around the P(1)O_4-WO_6 circle. Cs(N)3 atoms lie between circles. The structure of (NH_4)_(12)W_8O_(20)PO_4(HPO_4)_8Cl·H_2O was determined by single crystal X-ray diffractions and the structure of Cs_(12)W_8O_(20)PO_4(HPO_4)_8Cl·H_2O was refined by Rietveld method based on the structure of (NH_4)_(12)W_8O_(20)PO_4(HPO_4)_8Cl·H_2O.
     3、Structure unknown compound Na_2TiO_3, it is monoclinic with space group C2/c, a=9.8853(13)(?), b=6.4133(8)(?), c=5.5048(7)(?),β=115.50(3)°, V=314.99(7)(?)~3. Different with normal sodium titanium oxide, the coordination number of titanium in this compound is five and trigonal bipyramids are formed. TiO_5 trigonal bipyramids are connected by sharing edges, and the chain along c axis is formed in this way. The three-dimensional structure formed by connected with Na atoms. The structure was determined by single crystal X-ray diffractions.
     4、Novel compound Na_6Sn_5O_(12), it is monoclinic with space group of C 1 2/m 1 (12), a=5.4253(11)(?), b=9.3842(19)(?), c=5.6581(11)(?),β=108.89(3)°, V=272.55(280)(?)~3, the Sn atoms have two kinds of coordination atmosphere, a plane vertical to axis c is made up by two kinds of SnO_6 octahedra in different size. The Na atoms situate between the two planes formed by SnO_6 octahedra. The SnO_6 and the NaO_6 connected by O atoms constructured the structure. The structure was determined by single crystal X-ray diffraction.
引文
[1]王恩波,胡长文,许林《多酸化学导论》.[M]北京:化学工业出版社,1997
    
    [2]刘杰等,多金属氧酸盐抗病毒药物研究,化学进展[J],2006,01
    
    [3]刘术侠等,含金刚烷胺的多金属氧酸盐的合成和抗流感病毒活性,化学学报[J],2005年12期
    
    [4]王秀丽等,多金属氧酸盐纳米粒子修饰电极的制备及电催化研究,东北师范大学学报[J],2002年01期
    
    [5]刘术侠等,含有甘氨酸的Keggin型杂多蓝的合成和抗艾滋病毒(HIV-1)活性研究,化学学报[J],2002年2期
    
    [6]余新武,刘术侠,王恩波.化学学报[J].1996,54:864
    
    [7]德格吉乎等,新型混价铜配合物[Cu~Ⅰ Cu~Ⅱ(Ophen)_2Cl]·H_2O(HOphen=2-羟基-1,10-邻菲咯啉)的水热合成和晶体结构,高等学校化学学报[J].2002年第2期
    
    [8]巫平松等, 十钒酸盐[Fe_2~Ⅱ Cl_8V_(10)O_(18)(H_2O)]Cl_2·xH_2O和[Fe_2~ⅢCl_8V_(10)O_(18)(H_2O)]Cl_4·yH_2O的水热合成及表征,东北师大学报[J].2003年04期
    
    [9] Wang E B, Zhou Yunshan. Trans. Met. Chem. [J] 1996, 21: 447
    
    [10]J.J.Berzelius,Poggendrffs Ann. Phys.Chem. [J]1826, 6, 369, 380
    
    [11]L. Svanberg and H. Struve, J.Pract.Chem. [J]1854, 61, 449
    
    [12] J. F.Keggin, Proc. Roy. Soc.[M] London 1934, A 144, 75
    
    [13] H.T.Evans, Jr.J.Am.Chem.Soc. [J] 1929, 51, 2868
    
    [14] B.Dawson, Acta Crystallogr. [J]1953, 6, 113.
    
    [15] G.M.Maksimov,Russ.Chem.Reb. [J] 1995,64,445.
    
    [16] D.E.Katsoulis,Chem.Rev., [J] 1998,98,359.
    
    [17] Molybdenum Catalyst Bibliography (1950-1964); [M]Supplement Ⅰ-Ⅲ; ClimaxMolybdenum Company,Ann Arbor,MI
    
    [18] M. Misono and N. Nojiri, Appl. Catal. [J]1990,64,1
    
    [19] Y. Izumi, K. Urabe and M. Onaka, Zealite, Clay and Heterpoly Acid in Organic Reactions; [J]Kodansha/VCH: Tokyo, 1992
    
    [20]伊万科热夫尼科夫(Kozhevnikov) 《精细化学品的催化合成:多酸化合物及其催化》[M]北京:化学工业出版社,2005.2
    
    [21] Raynaud M, Chemann J C, Plata F et al. C.R. Acad. Sci., Ser.D [J]. 1971,272: 374
    
    [22]王恩波,胡长文,许林《多酸化学导论》.[M]北京:化学工业出版社,1997,
    
    [23]钱逸泰.《结晶化学导论》(第二版)[M].合肥:中国科学技术大学出版社,1999,249-251
    
    [24]Keggin J F.Proc.R.Soc.[J]1934, 144A: 75
    
    [25] Keggin J F. Nature. [J]1933,131:198
    
    [26] Pope M T. Heteropoly and Isopoly Oxometalates.[M] New York: Springerverlag. 1983
    
    [27] Weakley T I R. Structure and Bonding [J]. 1974,18: 131
    
    [28]Kazahckuu ∧Ⅱ Ycn Х и м.[J]1989,10:50
    
    [29]Kazahckuu ∧Ⅱ Ycn Х и м.[J]1974,2:105
    
    [30] Dawson B. Acta Crystallogr. [J] 1953,6:113
    
    [31] H.T.Evans,Jr. J.Am.Chem.Soc. [J] 1948,70,1291
    
    [32] Kang yj, Mao sy, [J]Acta Cryst. (2004). E60, 97-99
    
    [33]王秀峰,王永兰等,水热法制备陶瓷材料研究进展[J].硅酸盐通报,1995,3:25-30.
    
    [34]张克从 张乐漶等,[M]晶体生长科学出版社1981
    
    [35]王立明,韦志仁,[J]河北大学学报(自然科学版)Vol.22 No.4 2002
    
    [36] L IAS ,GRUDENSKI. The growth of high Q quartz at high growth rates[J ]. Journal of Crystal Growth ,1973 ,18 : 1 - 6
    
    [37]茅忠明,罗静舟.水热温差法生长人造水晶及其过程控制[J].上海理工大学学报,1994,16(3):95-98.
    
    [38]苗鸿燕,罗宏杰,王秀峰,等.低压条件下纳米氧化锆的水热结晶合成[J].陶瓷工程,1998,32(5):1-4.
    
    [39] L EE D Y,SONG Y S , KIM D J . Chromaticity, hydrothermal stability , and mechanical properties of t - ZrO2/Al2O3 composites doped with yttrium , niobium ,and ferric oxides[J ]. Materials Science & Engineering, [J]2000 ,289(1 - 2) :1 - 7 .
    
    [40]古映莹等 水热制备PZT压电陶瓷粉体[J].无机材料学报,1999,14(4):665-668.
    
    [41] PITICESCU ,MONTY C ,TALOI D. Hydrothermal synthesis of zirconia nanomaterials[J],Journal of the European Ceramic Society ,2001 ,21(10-11) :2057 - 2060.
    
    [42]田明原,施尔艮,王步国,等.氧化铝-氧化锆复合陶瓷粉体的水热制备及高温灼烧处理[J].硅酸盐学报,1998,26(6):773-781.]
    
    [43]刘江霞,元利剑,曾骥良,等.桂林水热法合成黄色蓝宝石的宝石特性研究[J].宝石和宝石学杂质,2001,3(1):7-12.
    
    [44]韦志仁,王立明,刘清波,等.Ti,Fe离子掺杂对水热法合成蓝宝石晶体的影响[J].人工晶体学报,2002,31(4):336-400.
    
    [45]陈振强,张昌龙,周卫宇.水热生长红宝石技术[J].广西科学,2000,7(4):286-288.
    
    [46] SCHMETZER D R ,PERETT. Characterization of a group of experimental Russian hydrothermal synthetic sapphires[J ]. TheJournal of Cemmology ,2000,27 (1) :1 - 7.
    
    [47]陈振强,张本宏,蔡丽.桂林新型水热法合成祖母绿的宝石学特征[J].宝石利宝石学杂志,2000,2(4):22-27.
    
    [48]元利剑,泰罗斯(TAIRUS).水热法合成红宝石[J].中国宝石,1998,24(1):122-124.
    
    [49]李隽波,张良钜.水热法合成红宝石宝石学特征[J].桂林工学院学报,1 999,1 9(2):126-129.
    
    [50]袁心强,匡永红,狄敬如.桂林水热法合成红宝石的鉴定特征[J].宝石与宝石学杂质,1999,1(1):47-49.
    
    [51]余海陵,张昌龙,曾骥良.桂林水热法合成红宝石的宝石学特征及呈色[J].宝石和宝石学杂志,2001,3(3):21-24.
    
    [52]石国华.桂林水热法合成祖母绿红外光谱特性研究及其意义[J].宝石和宝石学杂志,1999,1(1):40-46.
    
    [53]韦志仁,董国义,李志强,等.水热法合成α-Al2O3晶体[J].人工晶体学报,2002,31(2):90-93
    
    [54]田明原,施尔畏,仲维卓,等.热液条件下α-Al2O3微晶粒的形成机理[J].人工晶体学报,2000,26(3-4):197.
    
    [55]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.)
    
    [56]李汶军,施尔畏,仲维卓,等.负离子配位多面体生长基元的理论模型与品粒形貌[J].人工晶体学报,1999,28(2):117-125.
    
    [57]王步国,施尔畏,仲维卓,等.关于负离子配位多面体生长基元模型[J].中国科学(E辑),1998,28(1):37-45.
    
    [58] 张克从,张乐惠.品体生长科学与技术:上册[M].北京:科学山版社,1997.253-271.]
    
    [59]周公度,郭可信 晶体和准晶的衍射[M]北京:北京大学出版社1999
    
    [60] Rulmont A, Almou M. Vibrational spectra of some metaborates with infinite chain structure : LiBO2 , CaB2O4 , SrB2O4. [J]SpectrochimicaActa, 1989 , 45A(5): 603
    
    [61] Ross S D. The vibrational spectra of some minerals containing tetrahedrally coordinatedboron. [J]Spectrochimica Acta, 1972,28A: 1555
    
    [62] Herzberg G Infrared and Raman Spectra of Polyatomic Molecules. [J] Princeton : VanNostrand, 1945, 131 : 227
    
    [63] Cornilsen B C , Condrate R A Sr. The vibrational spectra of alkaline earth pyrophosphates. [J]J Solid State Chem, 1978 , 23 : 375
    
    [64]廖乾初,蓝芬兰.《扫描电镜分析技术与应用》[M],北京:机械工业出版社,1990
    
    [65]梁敬魁,《粉末衍射法测定品体结构》[M], 北京:科学出版社,2003
    
    [66] Peiser H S et al. X-Ray Diffraction by Polycrystalline Materials. [J] London: Chapman &Hall 1960
    
    [67] Taylor A. X-Ray Metallography,[M] New York: John Willy & Sons, 1961.Chapter Ⅳ Ⅴ
    
    [68] Bunn C W. Chemical Crystallography. 2nd ED. [M] London: Oxford University Press, 1961.Chapter Ⅰ-Ⅳ
    
    [69] Buerger M J. Elementary Crystallography (Trans. By Wooster W A. and Wooster A M.)[M].Berlin: Velag Technik, 1970
    
    [70] GuinierA. X-Ray Diffraction.[M] San Francisco : Freeman, 1963
    
    [71]梁敬魁等 计算机在材料相关晶体结构的研究和新材料的探索中的应用,[J]物理,1996,Vol 25,No.9 524-528
    
    [72]刘红超,郭常霖X射线多品衍射全谱图拟合方法在无机材料研究中的应用,[J]无机材料学报Vol ll,No.3,1996
    
    [73]吴宏翔,马礼敦,孙杰,孔福祥.X射线粉末衍射从头晶体结构测定,[J]化学学报1998,56,1184-1191
    
    [74]马礼敦,X射线粉末衍射的新起点—Rietveld全谱拟合,[J]物理学进展,Vol.16,No.2 June.,1996
    
    [75]梁敬魁, 粉末衍射图形拟合修正晶体结构,结构化学,[J]Vol14,No.4 December 1985
    
    [76] R.J.Cernik, A.K.Cheetham, C.K.Prout, D.J.Watkin, A.P.Wilkinson, B.T.M.Willis, [J]J.Appl.Cryst., 1991, 24, 223
    
    [77] Young R A. Introduction to the Rietveld method "In" The Rietveld Method. Ed. By Young RA. [M]Oxford: IUCr, Oxford University Press, 1995:1-38
    
    [78] Young R A. Prince E. Mathematical Aspects of Rietveld refinement "In" The Rietveld??Method, [M]Oxford: IUCr, Oxford University Press, 1995:43-54
    
    [79] Cooper M J, et al.. Proceeding of Symposium on Accuracy in Powder Diffraction. [M] Heldat NBS Washington, NBS, USA, Maryland, Spec. Publ. 1979(567): 167-187
    
    [80]马礼敦, [M]理学X射线衍射仪用户协会论文选集,1996(9):1
    
    [81]苏免曾,[M]固体化学导论,北京:北京大学出版社
    
    [82]Anthony R.West,苏免曾等译,[M]同体化学及其应用,上海:复旦大学出版社
    
    [83]宏广言,[M]无机固体化学,北京:科学出版社
    
    [84]高新, 应用前景广阔的无机钛酸盐,[J]化工新型材料1998 Vol.3:8-12
    
    [86]罗新辉等,锡酸钠中锡的测定方法,[J]电镀与精饰2004 Vol 26 No.2:36-37
    
    [87]陈小明 等单晶结构分析原理与实践[M]北京:科学出版社2003
    
    [88] Allmann, R.;Amour, H. Zeitschrift fuer Kristallographie, Kristallgeometrie, [J] Kristallphysik, Kristallchemie (-144,1977) (1975), 141, 161-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700