太原盆地土壤重金属元素环境地球化学基线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在太原盆地多目标地球化学调查项目资料的总结和分析基础上,以汞、镉、铅、砷、铬、镍、铜、锌等8种重金属元素为主要研究对象,采用标准化方法,相对累积频率方法和含量-面积法确定了重金属元素的环境地球化学基线。采用地质累积指数法和污染程度评价法对该地区土壤环境质量做出评价,结合太原盆地的地质条件、地理条件和社会活动情况,讨论了重金属元素的自然来源和人为来源。
     首先分析研究区土壤重金属元素的含量分布特征,然后采用标准化方法,相对累积频率方法和含量-面积法分别确定了重金属元素的地球化学基线值。通过对三种方法的比较,本文以含量-面积法确定的基线值为土壤重金属元素污染评价的标准,基线值分别为As 13.02×10-6, Cd 0.18×10-6,Cr 86.67×10-6, Cu 35.68×10-6,Hg 0.22×10-6,Ni 38.07×10-6,Pb 30.25×10-6,Zn 88.46×10-6。
     基于确定的基线值,本文以污染程度指数作为污染分析的标准,对表层土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn元素进行了评价。各元素的污染程度指数大多<1,属无污染和轻度污染,有部分样点污染程度指数>1,为中度污染和强污染。研究区表层土壤各元素污染级别的大小顺序为Hg>Cd>Zn>Pb>Cu>Cr>As>Ni。研究表明,研究区污染最为严重的重金属元素为Hg和Cd,其次为Zn、Pb、Cu、Cr等;受到综合污染最为严重的区域为太原市区、汾阳-孝义区及其附近。
     结合太原盆地的土壤重金属污染分析结果和太原盆地地质、工农业等情况,初步讨论重金属元素的来源。Cd、Hg、Cu、Ni和Zn元素的自然来源主要为边山地层,如靠近周边石炭系和二叠系,但自然来源对土壤中重金属高含量的影响很小,主要的还是人为的影响。Cr、As、Pb的高含量与边山地层无关,局部的元素富集最主要是人类活动影响的结果。
On the basis of summarizing and analyzing geochemical data from the project of Multi-purpose Geochemical Survey of Taiyuan Basin, the geochemical baseline of 8 heavy-metal elements Cd, Cr, Hg, Ni, Pb, Zn, As and Cu in the soil of the Taiyuan Basin were researched using standardized method, relative cumulative frequency method, and content-area method (C-A).Accordingly, the Geoaccumulation Index and Contamination Degree Index were adopted for assessing heavy metal pollution degree,and the sources of heavy metals were discussed.
     First of all, the spatial distribution characters of heavy metals were studied in detail, and the geochemical baselines were calculated by means of standardized method, relative cumulative-frequency method and C-A method. Determined by statistics of C-A method contrasting to other methods, the geochemical baselines of As, Cd, Cr, Cu,Hg, Ni, Pb, and Zn, which were regarded as the evaluating criteria of the heavy metal pollution degree, are 13.02×10-6,0.18×10-6,86.67×10-6,35.68×10-6,0.22×10-6, 38.07×10-6,30.25×10-6, and 88.46×10-6, respectively.
     Secondly, the pollution status of 8 heavy-metal elements were analyzed using Pollution Degree Index. Most of the surficial soil in Taiyuan Basin suffer no or slight pollution, and the pollution degree index of each element is smaller than 1,other than part over 1,suffering mid-pollution or strong pollution. According to the size of pollution degree index, the order of pollution degree is as follows:Hg> Cd> Zn> Pb> Cu> Cr> As> Ni.The study shows that the most polluted heavy metal elements are Hg and Cd, followed by Zn, Pb, Cu, Cr, etc. The most comprehensive polluted areas are Taiyuan, Fenyang-Xiaoyi zone and its vicinity.
     Finally, the sources of heavy metals were discussed by associating pollution status, geology and industrial and agricultural situation of the Taiyuan Basin. The natural source of Cd、Hg、Cu、Ni and Zn is mainly the strata in the mountains around the basin,usually Carboniferous System and Permian System. This kind of source has little impact on high contents of soil heavy metals,but the main factor is anthropogenic source. High contents of elements Cr、As、Pb are not related to the strata near the basin, and locally caused by human activities.
引文
[1]陈怀满.环境土壤学.北京:科学出版社,2005,240~241
    [2]陈怀满,郑春荣,周东美,等.土壤中化学物质的行为与环境质量.北京:科学出版社,2002,112~118
    [3]陈静生,尹玉君.全球变化中的地球化学基线研究及中国的研究现状.地球科学进展,1991,6(2):36~39
    [4]成秋明.多重分形理论与地球化学元素分布规律.地球科学,2000,25(3):311~318
    [5]程小久,卢建杭,宋亮明.铅锌品位分维D值的意义和计算程序.地质与勘探,1994,30(5):32~35
    [6]戴树桂,岳贵春,王晓蓉,等.环境化学.北京:高等教育出版社,1996,6~139
    [7]丁俊,倪师军,魏伦武,等.西南地区城市地质环境风险性分区评价方法.成都:四川科学技术出版社,2006,61~69
    [8]段永惠.太原市污灌区重金属污染现状评价.山西师大学报(自然科学版),1997,11(1):60~63
    [9]郭翠花,黄淑萍,原洪波,等.太原市地表土中五种重金属元素的污染监测及评价.山西大学学报(自然科学版),1995,18(2):222~226
    [10]郭翠花,王应刚,任艳萍,等.太原市地表土汞含量的分布特征.山西大学学报(自然科学版),1996,19(3):339~344
    [11]郭翠花,王爱英.太原市耕作土壤和作物中Cd的污染分析.农业环境保护,2000,19(1):41~42
    [12]龚庆杰,张德会,韩东昱.一种确定地球化学异常下限的简便方法.地质地球化学,2001,29(3):215~220
    [13]范舟.太原盆地土壤重金属污染特征分析及污染等级评价:[硕士学位论文].长沙:中南大学,2006
    [14]侯佳渝.汉源唐家铅锌矿周边农田土壤重金属元素的环境地球化学研究与环境评价:[硕士学位论文].成都:成都理工大学,2006
    [15]贾振邦,周华,赵智杰,等.应用地质累积指数法评价太子河沉积物中重金属污染.北京大学学报(自然科学版),2000,36(4):525~530
    [16]李长江,蒋叙良,徐有浪,等.浙江中生代热液矿床的分形研究.地质与勘探,1996,31(3):264~273
    [17]李长江.快速逼近潜在超大型矿床的新理论和新方法.矿床地质,1998,17(增刊):853~860
    [18]李长江,麻土华,朱兴盛,等.矿产勘查中的分形、混沌与ANN.北京:地质出版社,1999,1-30
    [19]李德胜,杨忠芳,靳职斌.太原盆地土壤微量元素的地球化学特征.地质与勘探,2004,40(3):86~89
    [20]李龙城.山西土地生态环境持续整治与保护总体战略研究.科技情报开发与经济,2000,10(1):2-4
    [21]黎彤.中国陆壳的化学成分.中国地学的发展,北京:地质出版社,1988
    [22]黎彤.岩石圈及其结构层的元素丰度.地质学报,1985,59(3):219~227
    [23]廉雪琼.广西近岸海域沉积物中重金属污染评价.海洋环境科学,2002,21(2):39~43
    [24]廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1992,112~236
    [25]刘爱华,杨忠芳,王建武,等.太原盆地潮土中Hg的空间分布特征.矿物岩石地球化学通报,2007,26(增刊):465~468
    [26]刘爱华.土壤环境中As、Cd、Hg、Pb地球化学背景及通量研究:[博士学位论文].北京:中国地质大学,2005
    [27]刘二永.分形理论在地球化学异常中的应用:[硕士学位论文].成都:成都理工大学,2002
    [28]鲁艳红.太原市土壤重金属污染状况研究:[硕士学位论文].长沙:中南大学,2005
    [29]孟宪国,赵鹏大.论地质现象中的分形统计学.地球科学,1996,22(1):601~603
    [30]秦长兴,翟裕生.矿床学中若干自相似性现象及其意义.矿床地质,1992,11(3):259~265
    [31]申燕.汉源县新县城萝卜岗场地土壤环境地球化学基线及评价研究:[硕士学位论文].成都:成都理工大学,2007
    [32]沈步明,沈远超.新疆某金矿的分维特征及其地质意义.中国科学(B辑),1993,23(3):297~302
    [33]申维.成矿预测中分形模型分维数估计的新方法.长春地质学院学报,1997,1:58~70
    [34]史崇文,赵玲芝,郭新波,等.山西省土壤元素背景值的分布规律及其影响因素.农业环境保护,1996,15(1):24~28
    [35]滕彦国.攀枝花地区土壤地球化学基线研究:[博士学位论文].成都:成都理工大学,2001
    [36]滕彦国,倪师军,张成江,等.攀枝花地区土壤环境地球化学基线的影响因素研究.矿物岩石,2002,22(3):38~42
    [37]滕彦国,庹先国,倪师军,等.应用地质累积指数评价攀枝花地区土壤重金属污染.重庆环境科学,2002,24(4):25~31
    [38]童潜明,杨慧敏.地质学对土壤学的影响.北京:地质出版社,1994,264~270
    [39]王国富,王志忠.应用统计.长沙:中南大学出版社,2003,176
    [40]王济.贵阳市表层土壤重金属污染元素环境地球化学基线研究:[博士学位论文].贵阳:中国科学院地球化学研究所,2004
    [41]王龙.山西煤炭开发与生态环境预警初探.生态经济,1995(5):33~36
    [42]王乃樑,杨景春.山西省地堑系新生代沉积与构造地貌.北京:科学出版社,1996,1~400
    [43]王雄军.太原盆地土壤重金属元素分布特征及预警模型研究:[硕士学位论文].长沙:中南大学,2005
    [44]王应刚,郭翠花,魏威,等.太原市土壤亚系统中镉污染规律的研究.生态学杂志,2002,21(5):12~13
    [45]王应刚,辛晓云,郭翠花.太原市土壤中汞污染及其成因研究.生态学杂志,2003,22(5):40~42
    [46]王云,魏复盛.土壤环境元素化学.北京:中国环境科学出版社,1992,58~192
    [47]魏宜瑞.山西生态环境建设问题及对策.山西科技,2000,10~11
    [48]武强,姜振泉,李云龙.山西断陷盆地地裂缝灾害研究.北京:地质出版社,2003,2~155
    [49]夏汉平.土壤-植物系统中的镉研究进展.应用与环境生物学报,1997,3(3):289~298
    [50]夏增禄.土壤环境容量研究.北京:气象出版社,1986,3~217
    [51]夏增禄.土壤环境容量及其应用.北京:气象出版社,1988,2~188
    [52]项长兴,董雅文,钱君龙,等.南京栖霞山铅锌矿区土壤环境质量评价,1993,25(6):319~323
    [53]谢淑云,鲍征宇.地球化学场的连续多重分形模式.地质地球化学,2002,31(2):191~200
    [54]谢淑云.地球化学场的分形与多重分形特征:[博士学位论文].武汉:中国 地质大学,2003
    [55]殷钟意.铬盐生产区土壤和农作物中铬含量状况调查分析.重庆工商大学学报(自然科学版),2003,20(4):33~35
    [56]张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应.土壤,1996,2(2):64~68
    [57]张汉波,段昌群,胡斌,等.不同年代废弃的铅锌矿渣堆中重金属的动变化.农业环境科学学报,2003,22(1):67~69
    [58]张红,郭翠花.农业环境保护.2000,19(3):169~170
    [59]张济忠.分形.北京:清华大学出版社,1995,42~65
    [60]张家诚.地学基本数据手册.北京:海洋出版社,1986.1~377
    [61]张建东.基于模糊数学的太原盆地土壤地球化学环境质量评价:[硕士学位论文].长沙:中南大学,2005
    [62]张乃明,邢承玉,贾润山.太原污灌区土壤重金属污染研究.农业环境保护,1996,15(1):21~23
    [63]张乃明,张守萍,武丕武,等.山西太原污灌区农田土壤汞污染状况及其生态效应.土壤通报,2001a,32(2):95~97
    [64]张乃明,李保国,胡克林.太原污灌区土壤重金属和盐分含量的空间变异特征.环境科学学报,2001b,21(3):349~353
    [65]张秀芝,杨志宏,马忠社,等.地球化学背景和地球化学基准.地质通报,2006,25(5):626~629
    [66]张学旬.张士灌区镉铅等重金属迁移分布规律及其治理途径.环境科学,1982,3(6):7~10
    [67]张志强.国际科学界跨世纪的重大研究主题——国际全球变化研究实施十年进展与现状.地学前缘,1997,4(1):254~256
    [68]张颖慧.基于环境地球化学基线的合肥地区土壤重金属元素的空间分布及污染评价:[硕士学位论文].合肥:合肥工业大学,2007
    [69]中国科学院地球化学研究所.高等地球化学.北京:科学出版社,1998,16~50
    [70]周永章,Edward H G,Guha J.地质热场中微量元素迁移的方向性和分维结构图象.中国科学(B辑),1994,24(12):1308~1313
    [71]Abraham J. Spatial distribution of major and trace elements in shallow sediments:an example from Lake Waco,Texas. Environmental Geology,1998, 36(3~4):349~363
    [72]Agterberg F P,Cheng Q,Wright D F. Fractal modeling of mineral deposits. International Symposium on the Application of computer and Operations Research in the Mineral Industries Amotreal:Canadian Institute of Mining Metellurgy and Petroleum,1993,43~53
    [73]Allege C J. Scaling laws and geochemistry distribution. EPSL,1995,132(1~4): 1~13
    [74]A.Lima, S.Albanese.Geochemical baselines for the radio elements K,U, and Th in the Campania region, Italy:a comparison of stream sediment geochemistry and gamma-ray surveys. Applied Geochemistry,2005,20:611~625
    [75]Annon.Die Lahn, Ein Fliessgewasseroko system. Regierungsprasidium Giessen, Niedernhausen.1994,87
    [76]Bauer I, Spernger M, Bor J.Die Berechnung Lithogener und geonener Schwermetallgehalte von Lobboden am Beispielen von Cu,Zn and Pb. Mainzer Geowiss Mitt,1992,21:47~70
    [77]Bauer I, Bor J. Vertikale Bilanzierung von Schwermetallen in Boden-Kennzeichnung der Empfindlichkeit der boden gegenuber Schwermetallen unter Berucksichtigung vonlithogenem Grundgehalt,pedogener An-und Abreicherung some antheopogener Zusatzbelastung, Umweltbundesam, Berlin, 1993,56
    [78]Bauer I, Bor J. Lithogene and anthropogene Schwermetallgehalte von Lobboden an den Beispielen von Cu, Zn, Ni, Pb, Hg and Cd. Mainzer Geowiss Mitt,1995, 24:47~70
    [79]Blaser P, Zimmermann S, Shotyk W. Critical examination of trace element enrichments and depletions in soils:As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils. Science of the Total Environment,2000,249:257~280
    [80]Blenkinsop T The fractal distribution of gold depositawo examples from the Zimbabwe Archaen Craton. Burton C C. Fractal in Petroleum Geology and Earth Processes. New York and London:Plonum Press,1994,247~258
    [81]Bolger R, Wiese T E, Ervin K, et al. Rapid screening of environmental chemical for estrogen receptor blinding capacity. Environmental Health Prospectives,1998, 106:551~556
    [82]Carlson C A. Spatial distribution ofore deposit. Geology,1991,19(2):107~110
    [83]Cheng Q.Agterberg F P, Ballantyne B S.The separation of geochemical anomalies from background by fracatal method. Journal of Geochemical Exploration,1994, 43(2):91-109
    [84]Cheng Q, Agterberg F P. Multifractall modeling and spatial point processes. Math. Geol.,1995,27:833~845
    [85]Cheng Q. Discrete multifractals. Math. Geol.,1997,29(2):245~266
    [86]Cheng Q. Markov processes and discrete multifractals. Math. Geol.,1999,31(4): 455~469
    [87]Colizza E,.Fontolan G, Brambati A. Impact of a coastal disposal site for inert wastes on the physical marine environment, Barcola-Bovedo, Trieste, Italy. Environmental Geology,1996,27:270~285
    [88]Covelli S, Fontolan G. Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology,1997,30(1/2):34~45
    [89]Darnley A G.A global geochemical reference.new work:the Foundation for geochemical baselines. Geochemical Exploration,1997,60(1):1~5
    [90]Darnley A G, Plant J A.环境监测及全球变化:对系统性地球化学本底的需求.见:王艳君主编.第30届国际地质大会论文集一地球化学.北京:地质出版社,1998,55~56
    [91]Davies B E. Heavy metal contaminated soils in old industrial area of Wales, Great Britain:source identification through statistical data interpretation. Water Air and Soil Pollution,1997,94(1/2):85~98
    [92]De Wijs H J. Statistics of ore distribution:(1)Frequency distribution of assay values. Geol Mijnbouw,1951,13:365~375
    [93]De Wijs H J. Statistics of ore distribution:(2)Theory of binomial distribution applied to sampling and engineering Geol problems. Mijnbouw,1953,15:12~24
    [94]Donoghue J F, Ragland P C, Chen Z Q, et al. Standardization of metal concentrations in sediments using regression residuals:an example from a large lake in Florida, USA. Environmental Geology,1998,36(1/2):65~76
    [95]Feder J. Fractals. NewYork:Plenum,1988,283
    [96]Ferguson J E. The heavy elements:chemistry environmental impact and health effects. New York:Pergamon Press,1990,412
    [97]Fordyce F, Plant J A, Klaver G, et al.欧洲的地球化学填图.见:王艳君主编.第30届国际地质大会论文集-地球化学.北京:地质出版社,1998,76~90
    [98]Forstner U, Wittmann G T W. Metal pollution in the aquatic environment. Spring, Berlin Heidelberg, New York,1981,486
    [99]Forstner U, Ahlf W, Calmano W, et al. Sediment criteria development-contributions from environmental geochemistry to water quality management. In:Heling D,Rothe P, Forstner U, et al. (ed) Sediments and environmental geochemistryrselected aspects and case histories. Springer-Verlag, Berlin:Heidelberg,1990,311~338
    [100]Goh B P L, Chou L M. Heavy metal levels in marine sediments of Singapore. Environmetal Monitoring and Assessment,1997,44(1/3):67~80
    [101]H. B. Zhang, Y. M. Luo. Defining the geochemical baseline:a case of Hong Kong soils. Environ. Geol.,2007,52:843~851
    [102]H.奥贝尔,M.潘塔著(刘铮等译).土壤中的微量元素.北京:科学出版社,1982,54~88
    [103]Loring D H. Normalization of heavy-metal data from estuarine and coastal sediments.ICES J Mar Sci,1991,48:101~115
    [104]Matschullat J, Ottenstein R, Reimann C. Geochemical background can we calculate it?Environmental Geology,2000,39(9):990~1000
    [105]Martin C W. Heavy metal trends in floodplain sediments and valley fill, River Lahn, Germany. Catena,2000,39(9):53~68
    [106]Miko S, Durn G,Prohic E. Evaluation of terra rossa geochemical baselines from Croatian karst regions. J Geochemical Exploration,1999,66(2):173~182
    [107]Muller G Schwermetalle in den Sedimenten des Rheins-Veranderungen seit. Umsch Wiss Tech,1979,778~783
    [108]Plant J, David S, Barry S, et al. Environmental geochemistry at global scale. Applied Geochemistry,2001,16:1291~1308
    [109]Qiuming Cheng, Agterberg F. P. and Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor..1994,51(2):109~130
    [110]Rapant S, Vrana K, Bodis, D. Geochemical Atlas of the Slovak Republic, Groundwater. Geology Survey Slovak Republic,1997,127
    [111]Rapant S, Raposova M, Bodis D, et al. Environment-geochemical mapping program in the Slovak Republic. Geochemical Exploration,1999,66(2):151~ 158
    [112]Rawlins B G, Webster R, Lister T R. The influence of parent material on topsoil geochemistry in Eastern England. Earth Surface Processes and Landforms,2003, 28:1389~1409
    [113]Reimann C, Filzmoser P. Normal and Lognormal data distribution in geochemistry:death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Enviromental Geology,2000,39(9): 1001~1014
    [114]Rule J P. Assessment of trace element geochemistry of Hampton Roads Harbor and lower Chespeake Bay area sediments. Enviromental Geology and Water Science,1986,8:209~219
    [115]Salminen R, Tarvainen T. The Problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. J Geochemical Exploration,1997,60(1):91~98
    [116]Salminen R, Gregorauskiene V. Considerations regarding the definition of a geochemical baseline of elements in the surfical materials in areas differing in basic geology. Applied Geochemistry,2000,15:647~653
    [117]Schropp S J, Lewis F G, Windom H L, et al. Interpretation of metal concentrations is estuarine sediments of using aluminum as a reference element. Estuarine,1990,13:227~335
    [118]Schiff K C, Weisberg S B. Iron as a Reference Element for Determining Trace Metal Enrichment in Southern California Coastal Shelf Sediments. Marine Enviromnental Research,1999,48:161~176
    [119]Selinus O. Large-scale monitoring in environmental geochemistry. Applied Geochemistry,1996,11:251~260
    [120]Selinus O S, Esbensen K. Separating anthropogenic from natural anomalines in environmental geochemistry. Journal of Geochemical Exploration,1995,55(1): 55~56
    [121]Sigh S P, Tack F M, Verloo M G. Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water Air and Soil Pollution,1998, 102(3/4):313-328
    [122]Singh A K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar Rivera tributary of the lower Ganga, India. Environmental Geology,1999,39(1):90~98
    [123]Slobodan Miko, Goran Durn, Esad Prohic, Evaluation of terra rossa geochemical baselines from Croatian karst regions. Journal of Geochemical Exploration,1999, 66:173~182
    [124]Steinne E, Njasad O.Enrichment of metals in the organic surface layer of natural soil:identification of condition of contribution from different sources. Analyst, 1995,120:1479~1483
    [125]Summers J K, Wade T L, Engle V D, et al. Normalization of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuarines,1996,19:581~594
    [126]Tania L, Micaela P, Malcolm C. Heavy Metal Distribution and Controlling Factors within Coastal Plain Sediments, Bells Creek Catchment, Southeast Queensland. Australia. Environment, International.2003,29:935~948
    [127]Turcotte D L. Fractals and Chaos in Geophysics.2nd ed. Combridge UK: Cambridge University Press,1996:81~99
    [128]Windom H L, Schropp S J, Calder F D, et al. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environmental Science and Technology,1989,23:314~320
    [129]Xie Shuyun, Bao Zhengyu. Fractal and multifractal properties of geochemical fields. Mathematical Geology,2004,36(7):847~864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700