倒伞曝气机驱动氧化沟的计算流体力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
.氧化沟的水力学特征对其设计和运行起着非常重要的作用,利用计算流体力学研究氧化沟,有利于了解氧化沟中的流动形态。本研究以倒伞型表面曝气机驱动的氧化沟为研究对象,对现有的动量源项模型进行改进,假设动量源项来自流体被叶轮作用增加的速度,考虑叶轮和流体之间的摩擦作用,修正了先前提出的动量源项模型,同时提出了一种预测功率方法及评价倒伞曝气机推流性能的方法。
     我们使用试验数据对模型进行了验证。首先,已有的动量源项模型(Model I)和经过改进的两种动量源项模型(Model II和Model III)分别被用来模拟涡轮搅拌槽流场,数值计算结果与大量报道的实验数据进行比较,并与多重参考系法和滑移网格法进行比较,结果表明改进后的模型Model III与实验值的吻合最好,是一种可靠的预测方法,提出的预测功率方法是可行的。而后,采用Model III来模拟倒伞驱动的试验氧化沟流场,比较不同的湍流模型和叶轮模型,并进行实验验证,进一步证明Model III能够用来模拟倒伞曝气机驱动的氧化沟流场,并且功率的预测方法是可行的。最后,利用动量源项Model III模拟不同倒伞的流场,比较它们的推流性能,并预测了一座全尺度卡鲁赛尔氧化沟在不同工况下的流速分布。
The hydrodynamic characteristics play significant roles in design and operation of oxidation ditches. With the help of computational fluid dynamics (CFD), the hydrodynamic characteristics of oxidation ditches can be understood. In this study, based on numerical simulation of the inverse umbrella surface aerator in the oxidation ditch, the developed momentum source term model has been improved, then a method of predicting the power of the surface aerator and a way to value the propelling performance of the surface aerator have been proposed. First of all, the existing momentum source term model (Model I) and two improved momentum source term model (Model II and Model III) were used to investigate the flow characteristics in a Rushton turbine stirred vessel, then the calculated results were compared with the huge reported experimental data, as well as with the results simulated by multiple reference frame(MRF) and sliding mesh(SM), which showed the results of the improved momentum source term Model III were most agreed with the experimental data. It is suggested that Model III is a reliable approach and the proposed power predicting method is feasible. After that, Model III was used to simulate the flow field of the test oxidation ditch driven by an inverse umbrella surface aerator. The results from different turbulence models and impeller models were compared, as well as compared to the experimental data, which further proves that Model III can be applied to simulate the flow in oxidation ditch driving by the inverse umbrella surface aerator and the power of the aerator can be well predicted. In the end, on basis of the simulated flow field of the oxidation ditch driven by different inverse umbrella surface aerators, their propelling performances have been valued. Also, the flow distributions on several operating conditions of a full-scale carrousel oxidation ditch have been predicted with the Model III.
引文
陈吕军,钱易.1993.氧化沟水平轴曝气机性能指标研究[J].中国给水排水,9(5):12-16.
    丁祖荣.2002.流体力学[M].北京:高等教育出版社.
    邓荣森.2006.氧化沟污水处理理论与技术[M].北京:化学工业出版社
    邓荣森,江帆,李媛等.2005.圆形Orbal氧化沟流场三维数值模拟[J].中国科技论文在线.
    勾全增.2008.氧化沟推流设备的计算流体力学模型研究[M].硕士.合肥:中国科学技术大学.
    蒋成义.2007.氧化沟系统中若干计算流体力学模型研究[M].硕士.合肥:中国科学技术大学.
    蒋成义,黄卫东,王淦等.2010.氧化沟流场的计算流体力学数值模型研究[J].环境科学与技术,33(8):135-140.
    李炜,徐孝平. 2000.水力学[M].武汉:武汉水利电力大学出版社.
    李家星.2001.水力学[M](第2版)上册.南京:河海大学出版社.
    罗麟,李伟民,邓荣森等.2003.一体化氧化沟的三维流场模拟与分析[J].中国给水排水,19(12):15-18.
    欧舒JY.1983.流体混合技术[M].王英琛,林猛流,施力田等译.1991.北京:化学工业出版社,103-104.
    庞洪涛,施汉昌,施慧明.2008.气升式氧化沟流体力学特性的数值模拟[J].中国环境科学,28(5):438-443.
    施慧明,刘艳臣,施汉昌等.2008.深水型表面曝气机的模拟计算与构型比较[J].环境工程学报,2(2):154-159.
    王运东,骆广生,刘谦.2002.传递过程原理[M].北京:清华大学出版社.
    吴持恭.2003.水力学[M](第3版)上册.北京:高等教育出版社.
    王红菊,郭亚兵,胡钰贤.2009.氧化沟弯道流场的模拟与改进[J].能源与环境,9:10-12.
    许丹宇,张代钧,艾海男等.2007.氧化沟反应器流体力学特性的数值模拟与实验研究[J].环境工程学报,1(12):20-26.
    张红武.弯道水力学[M].北京:水利电力出版社出版,1993, 111, 120-125.
    张宗才,张新申,张铭让. 2004.氧化沟水力学分析及流场计算[J].中国皮革,33(11):22-25.
    中华人民共和国建设部.2006. GB50014-2006室外排水设计规范[S].北京:中国计划出版社.
    赵星明,王萱,黄廷林.2007.减少氧化沟弯道沉泥的模拟与研究[J].环境工程,25(6):37-39.
    赵星明,张庆华,黄廷林等.2008.氧化沟弯道的污泥沉积分析与水力计算[J].中国给水排水,24(6):38-40.
    Aubin J, Fletcher DF, Xuereb C.2004.Modeling turbulent flow in stirred tanks with CFD: The influence of the modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science, 28:431–445.
    Bartels C, Breuer M, Wechsler K, et al.2002. Computational fluid dynamics applications onparallel-vector computers: computations of stirred vessel flows[J]. Computers and Fluids 31:69-97.
    Brucato A, Ciofalo M, Grisafi F, et al. 1998. Numerical prediction of flows in baffled stirred vessels: a comparison of alternative modelling approaches[J]. Chemical Engineering Science, 53:3653–3684.
    Bruce ER, Perry LM.2001.Environmental Biotechnology: Principles and Applications[M].New York: McGraw-Hill Inc.
    Chen W,Xu MM.2010.The two-dimensional simulation study of flow pattern near guiding wall of oxidation ditch[J]. Journal of Water Resource and Protection,2:814-817.
    Coroneo M, Montante G, Paglianti A. 2011. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations [J]. Computers and Chemical Engineering, doi:10.1016/j.compchemeng.2010.12.007.
    Costes J, Couderc JP. 1988. Study by laser doppler anemometry of the turbulent flow induced by a Rushton turbine in a stirred tank: influence of the size of the units—I.mean flow and turbulence[J].Chemical Engineering Science, 43:2751-2764.
    Derksen JJ, Doelman MS, Akker V.1999. Three-Dimensional LDA Measurements in the Impeller Region of a Turbulently Stirred Tank[J]. Experiments in Fluids, 27:522-532.
    Dhainaut M, Tetlie P, Bech K.2005.Modelling and experimental study of a stirred tank reactor[J].International Journal of Chemical Reactor Engineering, 3:A61.
    Deglon DA, Meyer CJ.2006.CFD modelling of stirred tanks: Numerical considerations[J]. Minerals Engineering, 19:1059-1068.
    Dobbeck P. 1999. Orbal channel computational fluid dynamic analysis[R]. US Filter/Envirex,Los Angeles,California,Internal Report.
    Dyster KN, Koutsakos E, Jaworski Z, et al.1993.An LDA Study of the Radial Discharge Velocities enerated by a Rushton Turbine: Newtonian Fluids, Re>= 5[J].Chemical Engineering Research and Design, A71:11-23.
    Escudi′e R, Lin′e A .2003.Experimental analysis of hydrodynamics in a radially agitated tank[J]. AIChE Journal, 49(3):585-603.
    Fan L, Xu N, Wang ZQ, et al. 2010.PDA experiments and CFD simulation of a lab-scale oxidation ditch with surface aerators[J]. Chemical Engineering Research and Design, 88: 23-33.
    Fayolle Y. 2006.Modélisation de l’hydrodynamique et du transfert d’oxygène dans les chenaux d’aération[D]. Thèse de doctorat, Ecole doctorale Transfert, Dynamique des Fluides, Energétique et Procédés, INSA de Toulouse, 295. + Annexes.
    Fayolle Y, Cockx A, Gillot S, et al.2007. Oxygen transfer prediction in aeration tanks usingCFD[J]. Chemical Engineering Science , 62:7163– 7171.
    Fluent Inc..2006.Fluent 6.3 user’s guide.
    Glover GC, Printemps C, Essemiani K, et al.2005.Modelling of wastewater treatment plants– how far shall we go with sophisticated modelling tools?[J]. Water Science & Technology, 53(3): 79–89.
    Grady CPL, Daigger GT, Lim HC.1998. Biological Wastewater Treatment: second edition, revised and expanded[M]. New York: Marcle Dekker.
    Harvey PS,Greaves MG..1982a.Turbulent flow in an agitated vessel Part-I: A predictive model, Chemical Engineering Research and Design,60:195-200 .
    Harvey PS,Greaves MG..1982b.Turbulent flow in an agitated vessel Part-II: Numerical solution and model predictions[J]. Chemical Engineering Research and Design,60:201-210.
    Joshi JB, Nere NK, Rane CV, et al.2011.CFD Simulation of stirred tanks: comparison of turbulence models. Part I: radial flow impellers[J]. THE Canadian Journal of Chemical Engineering, 89:23-82.
    Khopkar AR, Aubin J, Xuereb C, et al.2003.Gas-Liquid Flow Generated by a Pitched-Blade Turbine: Particle Image Velocimetry Measurements and Computational Fluid Dynamics Simulations[J]. Industrial and Engineering Chemistry Research, 42:5318-533.
    Kresta SM,Wood PE.1991. Prediction of the three-dimensional turbulent flow in stirred tanks[J]. AIChE Journal, 37: 448–460.
    KukukováA, Mo?těk M, Jahoda M, et al.2005. CFD Prediction of Flow and Homogenization in a Stirred Vessel: Part I Vessel with One and Two Impellers[J].Chemical Engineering and Technology, 28(10):1125-1133.
    Launder BE, Spalding DB.1972. Lectures in Mathematical Models of Turbulence. Academic Press, London, England.
    Lesage N, Sperandio M, Lafforgue C, et al.2003. Calibration and application of a 1-D model for oxidation ditches[J]. Chemical Engineering Research & Design,81(A9):1259-1264.
    Littleton HX.,Daigger G.T.2001.Application of computational fluid dynamics to closed loop bioreactors—Analysis of macro-environment variations in simultaneous biological nutrient removal systems[C]. //Proceedings of the Water Environment Federation 74th Annual Conference & Exposition on Water Quality and Wastewater Treatment,Atlanta,GA, CD-ROM.
    Littleton HX, Daigger GT, Strom P F. 2007a. Application of computation fluid dynamics to closed –loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer[J]. Water Environment Research, 79 (6): 600-612.
    Littleton HX, Daigger GT, Strom P F. 2007b. Application of computation fluid dynamics to closed –loop bioreactors: II. simulation of biological phosphorus removal using computational fluid dynamics[J]. Water Environment Research, 79 (6): 613-624.
    Luo L, Li WM, Deng YS, et al. 2005. Numerical simulation of a combined oxidation ditch flow using 3D k-εturbulence model[J]. Journal of Environmental Sciences, 17 (5) : 808–812.
    Marshall E, Haidari A ,Subbiah S.1996.AIChE Meeting held at Chicago, November .
    Montante G., Lee KC, Brucato A, et al.2001.Numerical simulations of the dependency off low pattern on impeller clearance in stirred vessels. Chemical Engineering Science, 56: 3751–3770.
    Murthy JY, Mathur SR, Choudhary D.1994.CFD simulation of flows in stirred tank rectors using a sliding mesh technique[C].// Proceeding of 8th Europe Conference of Mixing: 155–162 .
    Murthy BN, Joshi JB.2008. Assessment of standard k–ε,RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs[J].Chemical Engineering Science,63:5468-5495.
    Nameche T,Vasel JL.1998. Hydrodynamic studies and modelization for aerated lagoons and waste stabilization ponds[J]. Water Research, 32(10): 3039-3045.
    Ng K, Fentiman NJ, Lee KC, et al.1998. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller[J].Chemical Engineering Research and Design, 76: 737-747.
    Patwardhan AW. 2001.Prediction of flow characteristics and energy balance for a variety of axial flow impellers[J]. Industrial and Engineering Chemistry Research, 40:3806-3816 .
    Pericleous KA, Patel MK.1987.The Modelling of Tangential and Axial Agitators in Chemical Reactors[J]. Physico -chimie Chemical Hydrodynamics, 8: 105–123.
    Pope S B. 2000.Turbulent Flows[M]. Cambridge: Cambridge University Press.
    Ranade VV, Joshi JB.1990a.Flow generated by a disc turbine: Part I Experimental[J].Institution of Chemical Engineering, 68A:19–33.
    Ranade VV, Joshi JB.1990b. Flow generated by a disc turbine: Part II Mathematical modelling and comparison with experimental data[J]. Institution of Chemical Engineering, 68A: 34–43.
    Revstedt J, Fuchs L, Trardh C.1998.Large eddy simulations of the turbulent flow in a stirred reactor[J]. Chemical Engineering Science, 53(24): 4041-4053.
    Rushton JH, Costich EW, Everett HJ.1950. Power characteristics of mixing impellers—Part II. Chemical Engineering Progress ,46: 467-476.
    Rutherford K, Mahmoudi MS, Lee KC, et al.1996.The Influence of Rushton Impeller Blade and Disk Thickness on the Mixing Characteristics of the Stirred Vessels[J]. Institution ofChemical Engineers, A 74: 369-377.
    Schneekluth H.1988.Hydromechanik zum Schiffsentwurf[M]. Herford:Koehler Book Company,3.
    Sharp KV, Adrian R J.2001.PIV study of small-scale flow structure around a Rushton Turbine[J]. AIChE Journal, 47: 766-778.
    Sheng J, Meng H, Fox RO.1998.Validation of CFD simulations of a stirred tank using particle image velocimetry data[J].The Canadian Journal of Chemical Engineering, 76 (3): 611-625.
    Sommerfeld M, Decker S.2004.State of the art and future trend sin CFD simulation of stirred vessel hydrodynamics[J]. Chemical Engineering and Technology, 27:215–224.
    Stamou AI.1993. Prediction of hydrodynamic characteristics of oxidation ditches using the k-εturbulence model[C]// 2nd Int. Symposium on Eng. Turbulence Modeling and Measurements. Italy: Florence, 261-271.
    Stoots CM, Calabresc RV.1995.Mean Velocity Field Relative to a Rushton Turbine Blade[J]. AIChE Journal 41, 1-11.
    US EPA.2000. Oxidation Ditches, Wastewater Technology Fact Sheet, US EPA 832-F-00-013, US Environmental Protection Agency, Office of Water, Washington, D.C..
    Wu H, Patterson G.K.1989.Laser-Doppler Measurements of Turbulent Flow Parameters in a Stirred Mixer,”Chemical Engineering Science, 44(10):2207-2221.
    Xu N, Fan L, Pang HT, et al.2010.Feasibility study and CFD-aided design for a new type oxidation ditch based on airlift circulation[J]. THE Canadian Journal of Chemical Engineering, 88(10):728-741.
    Xu Y, McGrath G..1996.CFD predictions in stirred tank flows[J].Chemical Engineering Research and Design, 74: 471-475.
    Yang Y, Wu Y Y, Yang X, et al.2010. Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics[J]. Water Science & Technology, 62(2): 256-265.
    Yang Y, Yang JK, Zuo JL,et al. 2011. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model[J]. Water Research,45(11):3439-3452.
    Yapici K, Karasozen B, Sch¨afer M, et al.2008.Numerical investigation of the effect of the Rushton type turbine design factors on agitated tank flow characteristics[J]. Chemical Engineering and Processing, 47:1340–1349.
    Yianneskis M, Popiolek Z, Whitelaw JH.1987.An Experimental Study of the Steady and Unsteady Flow Characteristics of Stirred Reactors,”Journal of Fluid mechanics, 175: 537-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700