用户名: 密码: 验证码:
可扩展并行代数多重网格算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高性能计算机系统的日益普及和性能的大幅度提升,复杂物理系统的精细数值模拟成为可能。此时,偏微分方程组隐式离散后,通常需要求解大规模稀疏线性代数方程组。当前,迭代法是求解该类方程组唯一可行的方法。但是,由于物理系统的复杂性和系数矩阵的大规模,普通的迭代方法难以适应。这种不适应主要表现在两个方面:第一,迭代法不具备良好的算法可扩展能力,即算法的收敛迭代次数严重地依赖于系数矩阵的规模和性质;第二,迭代法不具备良好的并行可扩展能力,即单次迭代的并行效率低。一个高效的并行迭代法,应该同时具备良好的算法可扩展能力和并行可扩展能力。因此,针对复杂物理系统,设计适应数百乃至数千甚至数万个处理器的高效迭代法是当前高性能科学计算的一个前沿课题,具有重要意义。
     代数多重网格方法(AMG)是具备良好算法可扩展性能的一类迭代法,在复杂物理系统的串行数值模拟中得到广泛应用。在AMG算法中,网格粗化策略是影响算法可扩展能力的重要因素,一个最优的粗化策略应该具有尽可能低的算子复杂度,并保持良好的迭代收敛性质。遗憾的是,这种策略通常是内在串行的,不具备并行度。因此,长期以来,网格粗化策略的串行本性一直是阻碍其应用于大规模并行计算的关键因素。近年来,大量的研究工作通过牺牲算法可扩展能力获取并行度,提出了一系列并行粗化策略,力争在算法可扩展能力和并行可扩展能力之间寻求最佳的权衡点,以便AMG算法适应大规模并行计算。本文围绕这一前沿课题开展研究,具有重要的理论和实际应用价值。
     本文的主要贡献如下:
     1.针对迭代法,发展了一套具有普适性的、衡量算法可扩展能力和并行可扩展能力的分析方法。该方法从算法可扩展和并行可扩展的两个角度,衡量它们对并行计算时间的贡献。如果固定每个处理器的计算规模,增加处理器个数时,相对于单机情形的执行时间,并行计算时间将被放大。此时,算法可扩展能力和并行可扩展能力可分别由各自对放大倍数的贡献因子来定量描述。运用该方法,本文剖析了并行AMG算法的性能瓶颈,获得了若干有启示性的结论,明确了课题的研究方向。
     2.提出了两个松弛型并行粗化策略:RRS和RCLJP。它们是当前保持良好算法可扩展能力的前提下,在数百个处理器上,获得最佳并行迭代性能的并行粗化策略。该类策略的主要思想是:针对完全并行的RSO和CLJP策略严重破坏算法可扩展能力的缺陷,通过设置同步条件并在同步时交换拟边界层网格粗化信息,各个处理器协同地完成并行粗化。
     3.基于稀疏线性代数方程组中未知量之间依赖关系的强弱程度,从代数角度,提出单尺度矩阵和多尺度矩阵的概念,并根据这些概念,提出网格结块技术。该技术基于图搜索算法,将网格划分成互不重叠的若干单尺度块。在每块的内部,未知量之间的依赖程度是近似相同的,于是,高度并行的粗化策略和简单的点松弛光滑算子可以直接运用,它们不会降低算法可扩展能力。但是,块的边界是单尺度向多尺度的过渡区域,其中称之为代数界面的子区域,需要认真对待。多尺度矩阵概念和网格结块技术为并行AMG算法的设计提供了新的启示性思路。
     4.针对多尺度稀疏线性代数方程组,基于网格结块技术,提出了两类AMG算法:小尺度优先松弛和粗化的AMG算法(SPRC-AMG),以及界面优先松弛和粗化的AMG算法(IPRC-AMG)。前者通过不断地粗化小尺度块内的网格结点,配合块内的点松弛,逐步消除或消弱矩阵的多尺度性,使得所构造的粗网格方程组易于求解;后者认为代数界面决定AMG算法的收敛性质,因此,首先应该粗化代数界面的网格点,然后粗化单尺度块内的网格点,从而在保持低算子复杂度的前提下,获得良好的收敛因子。对于SPRC-AMG算法,在对称正定的情形下,本文给出了收敛性证明,并估计了收敛因子。
     5.将界面优先粗化的启示性思想应用于松弛型并行粗化中,得到了界面优先松弛型并行粗化策略(RIPC)。该策略视界面优先粗化为松弛型并行粗化中的同步条件,需要分别在界面和非界面区域执行并行粗化。更进一步,采用当前国际上最具并行可扩展能力的PMIS方法,可得到RIPC-PMIS并行粗化策略。基于该策略的并行AMG算法继承了PMIS的低算子复杂度和高并行度,同时,保持了IPCR良好的收敛性质,是一个高效的并行粗化策略。百个处理器上的并行数值实验验证了算法的有效性。
     6.针对二维三温能量方程,提出了基于物理量的网格粗化策略和一个两层迭代算法。该算法基于物理量粗化策略和相应的C/F块松弛光滑算子,将求解三个温度耦合的稀疏线性代数方程组化为若干个单温方程组的求解。在此基础上,将IPRC-AMG算法应用于求解这些单温方程组。模型问题和实际应用问题的数值实验均表明了两层迭代算法和IRPC-AMG算法的有效性。
With the development and application of advanced parallel computers, the high-resolution numerical simulation for complicated multi-physics system is possible. Solving large scale sparse linear systems arising from the discretization of Partial Differential Equations(PDEs) are required in many numerical simulations, and iterative method is the only feasible way to solve such type of equations due to the storage and time complexity constraint. However, due to the complexity of the physical model and large scale of the systems, scalable iterative methods are required. Many factors contribute to the scalability of the iterative method, mainly including two aspects: algorithmic scalability and parallelization scalability. The former describes how the total computational works grow with the size of problem and the number of processors. The later describes the parallel efficiency of a single iteration on a parallel computer. Most iterative methods used today, however, lack the scalability mentioned above. So, it is urgent to design scalable iterative methods to address the difficulties encountered in the large-scale complicated physics simulations using hundreds or thousands of processors.
     Algebraic multigrid (AMG) is a well known iterative method with optimal algorithmic scalability for many complicated real applications. However, the parallelization of AMG is challenging because of the component of grid coarsening is sequential. In recent years. Many parallel coarsening strategies have been presented by balancing the algorithmic scalability and the parallelization scalability. This dissertation mainly focus on this topic and presents some new methods and techniques.
     The main contributions of this dissertation are summarized as follows:
     1. Firstly, in order to measure the algorithmic scalability and the parallelization scalability of a iterative method, a suit of scalability analysis approach is presented. We introduce the concept of scalability factor to describe how the parallel execution time will be enlarged while compared to the serial execution. So, the algorithmic scalability and parallelization scalability are described by their contributions on the scalability factor. Secondly, we analyze the scalability of parallel AMG algorithms using this method. Some important results are got for the design of scalable algorithms.
     2. Two new parallel coarsening strategies are proposed: Relaxed-type RS and CLJP (RRS & RCLJP). The main idea of these strategies is to smartly synchronize processors during the coarsening process of well-known RS0 or CLJP strategies. Qualitative analyses and numerical experiments show that our new strategies perform better using hundreds of processors, not only in faster convergence but also in smaller operator complexity. They show better scalability if we compare them to well-known parallel coarsening strategies such as RS3, Falgout and CLJP.
     3. The concepts of single-scale and multi-scale for sparse matrix are presented according to the strength of connection among grid points from the algebraic point of view. These concepts discover the difficulties on the solution of the linear systems. A blocking technique is presented to find all single-scale blocks partitioning the grid. In each block, connections have the same scale of strength, so, inherent parallel coarsening strategies and simple point relaxation scheme can get good algorithmic scalability. However, in the regions linking different scales of blocks, we call them the algebraic interfaces, the coarsening and relaxation should be especially designed. Based on these observations, new heuristic approaches for effective AMG algorithms are presented.
     4. Based on the blocking technique, two new AMG algorithms are presented. One is the SPRC-AMG method using the Smallest-scale Primary Relaxation and Coarsening strategies, another is the IPRC-AMG method using the Interface Primary Relaxation and Coarsening strategies. The main idea of the former is to decrease or eliminate the multi-scale property of the coarse operator through relaxation and coarsening in the local blocks with smallest scale property. The later method firstly selects coarse points within the algebraic interfaces, and second selects other coarse points in the interior of blocks. Numerical experiments show the effectiveness of our methods. The convergence analysis of the SPRC-AMG method is also presented.
     5. By integrating the interface primary coarsening into the relaxed-type parallel coarsening strategies, interface primary relaxed-type parallel coarsening strategies (RIPC) is introduced. In this strategy, interface primary coarsening is regarded as the synchronization condition of the relaxed-type method. Specially, we use the well-known parallel coarsening strategy of PMIS in both the algebraic interfaces and the blocks. So, RIPC-PMIS coarsening strategy is formed. Numerical results on hundreds of processors show the effectiveness.
     6. A novel two-level iterative method is presented for solving 2D radiative diffusion equations with photon, electron, ion temperatures. The main idea of this method is to decouple one temperature from the other two by a special coarsening strategy, where all the variables related to electron temperature are forced selected coarse points, other variables (photon and ion temperatures) are all forced to be fine points. So, only several single temperature equations need to be solved instead of the coupled linear systems. Because of the multiscale property of the single temperature equations, we use the IPRC-AMG method presented in this dissertation to solve those single temperature equations. Numerical results show the effectiveness of our method.
引文
30 当然,在2D结构网格情形还是比较理想,如Prb4.1
    31 这里距离的概念是基于邻接图而言的,具体含义见文献[stuben99]。
    [adarns98] M.F.Adams, Multigrid equation solvers for large scale linear finite element simulations, Ph.D thesis, University of California at Berkeley, 1998.
    [adams03] M.F.Adams, H.H.Bayraktar, T.M.Keaveny, P.Papadopoulos, Applications of algebraic multigrid to large-scale finite element analysis of whole bone micro-mechanics on the IBM SP, 2003 International Supercomputing Conference, 2003.
    [adams04] M.F.Adams, H.H.Bayraktar, T.M.Keaveny, P.Papadopoulos, Ultrascalble implicit finite element analyses in sold mechanics with over a half a billion degrees of freedom, 2004 International Supercomputing Conference, 2004.
    [alber06] D.Alber, Modifying CLJP to select grid hierarchies with lower operator complexities and better performance, Numer. Linear Algebra Appl., 13:87-104, 2006.
    [an07] 安恒斌,莫则尧,徐小文,二维三温热传导方程求解中非线性迭代初值选取,计算物理,24(2):127-133,2007.
    [bachvalov66] N.S.Bachvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comput. Math. Phys. 6: 101-135.
    [baldwin99] C.Baldwin, P.N.Brown, R.Falgout, F.Graziani, J.Jones, Iterative linear solvers in a 2D radiation-hydrodynamics code: methods and performance, JCP, 154: 1-40, 1999.
    [bank05] R.Bank, S.Lu, C.Tong, P.Vassilevski, Scalable parallel algebraic multigrid solvers, LLNL Technical Report No.UCRL-TR-210788, 2005.
    [brakhage60] H.Brakhage, Uber die numerishe behandlung yon integralgleichungen nach der quadraturformelmethode, Numer.Math., 2:183-196, 1960.
    [brandt77] A.Brandt, Multi-Level adaptive solution to boundary-value problems, Math.Comp., 31 (138): 333-390, 1977.
    [brandt82] A.Brandt, S.McCormick, J.Ruge, Algebraic Multigrid(AMG) for automatic solutioin with application to geodetic computations, Institute for Computational Studies, POB 1852, Fort Collins, Colorado, 1982.
    [brandt84a] A.Brandt, S.McCormick, J.Ruge, Algebraic Multigrid (AMG) for sparse matrix equations, in Sparsity and its Application, D.J.Evans, ed., Cambridge University press, Cambridge, UK, 257-284, 1984.
    [brandt84b] A.Brandt, Multigrid techniques:1984 guide with applications to fluid dynamics, GMD Report, No.85, 1984.
    [brandt86] A.Brandt, Algebraic Multigrid theory:the symmetric case, App.Math.Comp., 19:23-56, 1986.
    [brandt97] A.Brandt, I.Livshits, Wave-ray multigrid method for standing wave equations, ETNA, 6:162-181, 1997.
    [brandt00] A.Brandt, General highly accurate algebraic coarsening, ETNA, 10: 1-20, 2000.
    [bank96] E.Bank, J.Xu, An algorithm for coarsening unstructured meshes, Num.Math. 73:1-36, 1996.
    [bramble90] J.H.Bramble, J.E.Pasciak, J.Xu, Parallel multilevelpreconditioners, Math.Comp., 55: 1-22, 1990.
    [bramble93] J.H.Bramble, Multigrid methods, Longman Scientific & Technical, Essex, UK, 1993.
    [brannick06] J.Brannick, M.Brezina, R.Falgout, T.Manteuffel, S.McCormick, J.Ruge, B.Sheehan, J.Xu, L.Zikatanov, Extending the applicability of multigrid methods, SciDAC2006 conference, Denver, CO, United States, also appear in LLNL report No.UCRL-PROC-224817.
    [brezina00] M.Brezina, A.J.Cleary, R.D.Falgout, V.E.Henson, J.E.Jones, T.A.Manteuffel, S.F.McCormick, J.W.Ruge, Algebraic Multigrid based on element interpolation(AMGe), SIAM J. Sci.Comput., 22: 1570-1592, 2000.
    [brezina05] M.Brezina, R.D.Falgout, S.MacLachlan, T.Manteuffel, S.McCormick, J.Ruge, Adaptive smoothed aggregation ($\rho$SA), SIAM Review, 47(2): 317-346, 2005.
    [brezina06a] M.Brezina, R.D.Falgout, S.MacLachlan, T.Manteuffel, S.McCormick, J.Ruge, Adaptive algebraic multigrid methods, SIAM J.Sci.Comput., 27(4): 1261-1286, 2006.
    [brezina06b] M.Brezina, C.Tong, R.Becker, Parallel algebraic multigrids for structural mechanics, SIAM J. Sci.Comp., 27(5): 1534-1554, 2006.
    [briggs00] W.L.Briggs, V.E.Henson, S.F.McCormick, A multigrid tutorial, 2nd Edition, SIAM Publication, 2000.
    [brown86] P.N.Brown, A.C.Hindmarsh, Matrix-free methods for stiff systems of ODE's, SIAM J. Numer.Anal., 23:610-638, 1986.
    [brown90] P.N.Brown, Y.Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci.Stat.Comp., 11:450-481, 1990.
    [brown99] P.N.Brown, R.D.Falgout, J.E.Jones, Semicoarsening multigrid on distributed memory machines, 5th Copper Mountain Conference on Iterative Methods, 1999.
    [brown00] P.N.Brown, C.S.Woodward, Preconditioning strategies for fully implicit radiation diffusion with material-energy transfer, LLNL Report No. UCRL-JC-139087, 2000.
    [ca089] 曹志浩,多格子方法,上海:复旦大学出版社,1989.
    [chang96] Q.S.Chang, Y.S.Wong, H.Fu, On the algebraic multigrid method, JCP, 125:279-292, 1996.
    [chang02] Q.S.Chang, Z.H.Huang, Efficient algebraic multigrid algorithms and their convergence, SIAM J.Sci.Comput., 24(2):597-618, 2002.
    [chartier01] T.Chartier, Element-based algebraic multigrid(AMGe) and spectral AMGe, Ph.D.thesis, University of Colorado, Boulder, 2001
    [chartier03] T.Chartier, R.D.Falgout, V.E.Henson, J.E.Jones, T.Manteuffel, S.F.Mccormick, J.W.Ruge, P.S.Vassilevski, Spectral AMGe($\rho$AMGe), SIAM J.Sci. Comp. 20(1): 1-20, 2003.
    [chan94] T.F.Chan, B.F.Smith, Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes, ETNA, 2:171-182, 1994.
    [chan98] T.F.Chan, L.Zikatanov, J.Xu, An agglomeration multigrid method for unstructured grids, Proceedings of the 10th International Conference on DD Methods, Contemporary Mathematics, 218: 67-81, SIAM, 1998.
    [chan00] T.F.Chan, W.L.Wan, Robust multigrid methods for nonsmooth coefficient elliptic linear systems, J.Comp.and Appl. Math., 123: 323-352, 2000.
    [chen01] 陈景良,陈向晖,特殊矩阵,清华大学出版社,2001.
    [chow98] E.Chow, A.J.Cleary, R.D.Falgout, Design of the hypre preconditioner library, LLNL Technical Report, No.UCRL-JC- 132025, 1998.
    [chow06a] E.Chow, An aggregation multilevel method using smooth error vectors, SIAM J.Sci. Comp., 27:1727-1741, 2006.
    [chow06b] E.Chow, R.Falgout, J.Hu, R.Tuminaro, U.Yang, A survey of parallelization techniques for multigrid solver, in Parallel Processing for Scientific Computing(Edited by M.Heroux, P.Raghavan & H.Simon), SIAM Series on Software, Environments, and Tools, 2006, chapter 10.
    [cleary98] A.J.Cleary, R.D.Falgout, V.E.Henson, J.E.Jones, Coarse-grid selection for parallel algebraic multigrid, Lecture Notes in Computer Science 1457, Springer Verlag, New York, 1998.
    [cleary00] A.J.Cleary, R.D.Falgout, V.E.Henson, J.E.Jones, T.A.Manteuffel, S.F.McCormick, G.N.Miranda, J.W.Ruge, Robustness and scalability of algebraic muitigrid, SIAM J.Sci.Compt. 21(5): 1886-1908, 2000.
    [clees02] T.Clees, K.Stuben, Algebraic multigrid for industrial semiconductor device simulation, Proceedings of the 1st International Conference on Challenges in Scientific Computing, Berlin, Germany, 2002.,
    [clees04] T.Clees, AMG strategies for PDE systems with applications in industrial semiconductor simulation, Ph.D.Thesis, University of Cologne, 2004.
    [collier05] A.M.Collier, A.C.Hindmarsh, R.Serban, C.S.Woodward, User documentation for KINSOL v2.3.0[R], CACS, LLNL, 2005.
    [dendy97] J.E.Dendy, Semicoarsening multigrid for systems, ETNA, 6:97-105, 1997.
    [dongarra00] J.Dongarra, F.Sullivan, The top 10 algorithms of 20th century, CiSE, 2(1): 24-80, 2000.
    [douglas03] C.C.Douglas, G.Haase, U.Langer, A tutorial on elliptic PDE solvers and their parailelization, SIAM Series Software, Environments, and Tools 16, 2003.
    [du05] Q.Du, Z.H.Huang, D.S.Wang, Mesh and solver co-adaptation in finite element methods for anisotropic problems, Numerical Methods for Partial Differential Equations, 21(4): 859-874, 2005
    [engquist01] B.Engquist, G.Golub, From numerical analysis to computational science, in Mathematics Unlimited-2001 and beyond(Edited by Engquist & Schmid), 434-448,2001.
    [falgout00] R.D.Falgout, J.E.Jones, Multigrid on Massively Parallel Architectures, in Multigrid Methods Ⅵ (Edited by E.Dick, K.Riemslagh & J.Vierendeels), Vol.14 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, 101-107, 2000.
    [falgout04a] R.D.Falgout, A note on the relationship between adaptive AMG and PCG, LLNL Report No. UCRL-TR-205838, 2004.
    [falgout04b] R.D.Falgout, P.S.Vassilevski, On generalizing the AMG framework, SIAM J. Numer. Anal., 42: 1669-1693, 2004.
    [falgout05a] R.D.Falgout, P.S.Vassilevski, L.T.Zikatanov, On two-grid convergence estimate, Numer. Lin. Algebra Appl. 12:471-494, 2005.
    [falgout05b] R.D.Falgout, J.Brannick, M.Brezina, T.Manteuffel, S.EMcCormick, New multigrid solver advances in TOPS, 2005SciDAC Conference, J. of Physical: conference series, 2005.
    [falgout06] R.D.Falgout, An introduction to algebraic multigrid, Computing in Science and Engineering, special issue on multigrid computing, 8:24-33, 2006. Also appear in LLNL report No.UCRL-JRNL-220851, 2006.
    [femlab] www.cise.ufl.edu/research/sparse/RB/FEMLAB/Poission3Db.rua.
    [fedorenko61] R.P.Fedorenko, A relaxation method for solving elliptic difference equations, USSR Comput. Math. Phys., 1:1092-1096, 1961.
    [fedorenko64] R.P.Fedorenko, The speed of convergence of one iterative process, USSR Comput. Math. Phys., 4:227-235, 1964.
    [fu98] 符尚武,付汉清,沈隆均,黄书科,陈光南,二维三温能量方程的九点差分近似及其迭代解法,计算物理,15(4):489-497,1998.
    [fuji03] A.Fujii, A.Nishida, Y.Oyanagi, A parallel AMG algorithm based on domain decomposition, IPSJ Transactions on Advanced Computing Systems, 44(6):9-17, 2003.
    [fuhrmann95] J.Fuhrmann, A modular algebraic multilevel method, Technical Report, No.203, Weierstrass-Institute fuer Angewandte Analysis and Stochastik, Berlin, 1995.
    [fUllenbach00] T.Fullenbach, K.Stuben, S.Mijalkovic, Application of an algebraic multigrid solver to process simulation problems, Proceedings of the IEEE Intern. Conference on Simulation of Semiconductor Processes and Devices, Seattle(WA), USA, 2000. 225-228, 2000.
    [fullenbach02] T.Fullenbach, K.StUben, Algebraic multigrid for selected PDE systems, Proceedings of the Fourth European Conference on Elliptic and Parabolic Problems, Rolduc (The Netherlands) and Gaeta (Italy), 2001. World Scientific, New Jersey, London, 399-410, 2002.
    [gallivan03] K.A.Gallivan, U.M.Yang, Efficiency issues in parallel coarsening schemes, LLNL Report, No.UCRL-ID-153078, 2003.
    [givoli01] D.Givoli, The top 10 computational methods of the 20th century, IACM expressions, 11:5-9, 2001.
    [griebel96] M.Griebel, T.Neurthoeffer, H.Regler, Algebraic multigrid methods for the solution of the Navier-Stokes equations in complicated geometries, SFB-Bericht Nr.342/01/96, Institut fuer Informatik, Technische University Munchen, 1996.
    [griebel06] M.Griebel, B,Metsch, D.Oeltz, M.Schweitzer, Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods, Numer.Linear Algebra Appl. 13(2): 193-214, 2006.
    [griebel07] M.Griebel, B.Metsch, M.A.Schweitzer, Coarse grid classification-Part Ⅱ: Automatic coarse grid agglomeration for parallel AMG, Preprint 271, Sonderforschungsbereich 611, Universitat Bonn, 2007.
    [gu03] 谷同祥,并行数值分析软件综述,博士后研究工作报告,北京:中科院软件研究所,2003.
    [gu05] 谷同祥,戴自换,杭旭登,符尚武,刘兴平,二维三温方程组的高效代数解法,计算物理,22(6):471-478,2005.
    [haase99] G.Haase, Algebraic multigrid with local support, SFB-Report 99-29, University Linz, SFB F013, Dec, 1999.
    [haase00] G.Haase, A parallel AMG for overlapping and non-overlapping domain decomposition, ETNA, 10:41-55, 2000.
    [haase02] G.Haase, M.Kuhn, S.Reitzinger, Parallel algebraic multigrid methods on distributed memory computers, SIAM J.Sci. Comp., (24)2:410-427, 2002.
    [haase03] G.Haase, S.Reitzinger, Acceleration and parallelization of algebraic multigrid, 2003 Copper Mountain Conference on Multigrid Method, 2003.
    [hackbusch78] W.Hackbusch, A fast iterative method solving Poisson's equation in a general region, Lecture Notes in Mathematics, Vol.631, Springer, Berlin, 51-62, 1978.
    [hackbusch85] W.Hackbusch, Multi-Grid methods and applications, Springer-Verlag, NewYork, 1985.
    [henson01] V.E.Henson, P.S.Vassilevski, Element-free AMGe:general algorithms for computing interpolation weights in AMG, SIAM J.Sci.Comp., 23:629-659, 2001.
    [henson02] V.E.Henson, U.M.Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Applied Numerical Mathematics, 41:155-177, 2002.
    [henson03] V.E.Henson, New directions for algebraic multigrid: solutions for large scale multiphysics problems, LDRD Final Report, 2003, also appear in LLNL report No.UCRL-ID-151775, 2003.
    [heys05] J.J.Heys, T.A.Manteuffel, S.F.McCormick, L.N.Olson, Algebraic multigrid for higher-order finite elements, JCP, 204:520-532, 2005.
    [huang91] W.Z.Huang, Convergence of algebraic multigrid methods for symmetric positive-definite matrices with weak diagonal dominance, Appl.Math.Comp., 46:145-164, 1991.
    [huang01] 黄朝晖,代数多重网格理论与算法及其应用,博士学位论文,北京:中国科学院数学与系统科学研究院,2001.
    [huang03] Z.H.Huang, Q.S.Chang, Gauss-Seidel-Type Multigrid Methods, J.Comp. Math., 2003, 21(4), 421-434.
    [hypre 1] hypre 2.0.0 Users's Manual, LLNL,CASC, 2001.
    [hypre2] HYPRE: High-Performance Preconditioning Library,http://acts.nersc.gov/hypre/main.html
    [hu02] J.Hu, C.Tong, R.Tuminaro, ML2.0 smoothed aggregation user's guide, Technical Report No. SAND2001-8028, Sandia National Laboratory, 2002.
    [jones97] J.E.Jones, S.F.McCormick, Parallel multigrid methods, In Parallel Numerical Algorithms (Edited by D.Keyes, Sameh, Venkatakrishnan), Kluwer Academic, 203-224, 1997.
    [jones01] J.E.Jones, P.S.Vassilevski, AMGe based on agglomeration, SIAM J.Sci.Comp., 23:109-133, 2001.
    [jones93] M.T.Jones, P.E.Plassman, A parallel graph coloring heuristic, SIAM J.Sci.Comp., 14: 654-669, 1993.
    [joubert06] W.Joubert, J.Cullum, Scalable algebraic multigrid on 3500 processors. ETNA, 23: 105-128, 2006. Also appear at Technical Report No.LAUR03-568, LANL, 2003.
    [kershaw81] D.S.Kershaw, Differencing of the diffusion equation in Lagrangian hydrodynamic codes, JCP, 39:375-395, 1981.
    [keyes06] D.E.Keyes, D.R.Reynolds, C.S.Woodward, Implicit solvers for large-scale nonlinear problems, SciDAC2006 Conference, Journal of Physics: conference series, 46:433-442, 2006.
    [kickinger97] F.Kickinger, Algebraic multigrid for discrete elliptic second order problems, Institutsbericht 513, University Linz, Institut fuer Mathematik, 1997. Also appear in proceedings of 5th European Multigrid Methods, 1998.
    [knoll04] D.A.Knoll, D.E.Keyes, Jacobian-free Newton-Krylov methods:a survey of approaches and applications, JCP, 193:357-397, 2004.
    [kolev03] T.V.Kolev, J.E.Pasciak, P.S.Vassilevski, Algebraic construction of mortar finite element spaces with application to parallel AMGe, 11th Copper Mountain Multigrid Mehtods, 2003.
    [krechel99] A.Krechel, K.Stuben, Parallel algebraic multigrid based on subdomain blocking, GMD Report No.71, 1999. Also appear in Parallel Computing, 27:1009-1031,2001.
    [krechel05] A.Krechel, SAMGp User's Manual, SCAI, 2005.
    [lazarov02] R.Lazarov, J.Pasciak, J.Jones, Non-conforrming finite elements; mesh generation, adaptivity and related algebraic multigrid and domain decomposition methods in massively parallel computing environment, LLNL report No.UCRL-CR-147712.
    [li96] 李晓梅,莫则尧,多重网格算法综述,计算数学通讯,3:2-9,1996.
    [li00] 李晓梅,莫则尧,胡庆丰等,可扩展并行算法的设计与分析,国防工业出版社,2000.
    [li01] 李文军,块代数多重网格算法及其实现技术在油藏数值模拟软件中的应用,博士学位论文,北京:中科院软件所,2001.
    [linz] Robust AMG-methods and their parallelization, linz university, Austria, Annual Report 2001, 2002, 2003, 2004. Austria Science Fund NSSC's project.
    [livne04] O.E.Livne, Coarsening by compatible relaxation, Numer. Linear Algebra with Appl., 11: 205-227, 2004.
    [llorente00] I.M.Llorente, N.D.Melson, Behavior of plane relaxation methods as multigrid smoothers, ETNA, 10:92-114, 2000.
    [luby86] M.Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comp., 15:1036-1053, 1986.
    [mandel03] J.Mandel, Local approximation estimators for algebraic multigrid, ETNA, 15:56-65, 2003.
    [matheson96] L.R.Matheson, R.E.Terian, Analysis of multigrid algorithms on massively parallel computers: architectural implications, J.Parallel and Distributed Computing, 33:33-43, 1996.
    [mavriplis97] D.J.Mavriplis, Directional coarsening and smoothing for anisotropic Navier-Stokes problems, ETNA, 6:182-197, 1997.
    [mcbyan91] O.McByan, P.Frederiehson, J.Linden, A.Schuller, K.Solchenbach, K.Stuben, C.Thole, U.Trottenberg, Multigrid methods on parallel computers: a survey of recent developments, Impact of Computing in Science and Engineering, 3:1-75, 1991.
    [mccormick89] S.F.McCormick, Multilevel adaptive methods for partial differential equations, SIAM, Philadelphia, 1989.
    [mcwilliams00] J.C.McWilliams, Algebraic coarsening methods for linear and nonliear PDE and systems, LLNL report No.UCRL-CR-141283, Nov 6, 2000.
    [mitchell97] W.F.Mitchell, A parallel multigrid method using the full domain partition, ETNA, 6: 224-233, 1997.
    [ml] ML: A massively algebraic multigrid solver library for solving sparse linear systems, http://www.cs.sandia.gov/tuminaro/ML_Description.html
    [m097a] 莫则尧,李晓梅,工作站网络环境下的并行计算,计算机学报,20(6):510-517,1997.
    [m097b] 莫则尧,分布存储环境下并行多重网格计算,博士学位论文,长沙:国防科技大学计算机系,1997.
    [mo99a] 莫则尧,李晓梅,关于多重网格并行计算中拟边界Jacobi成分的影响,计算数学,21(1):9-18,1999.
    [m099b] 莫则尧,大型科学与工程应用程序并行化关键技术及其应用研究,博士后研究工作报告,北京:北京应用物理与计算数学研究所,1999.
    [mo00] 莫则尧,实用的并行程序性能分析方法,数值计算与计算机应用,4:266-275,2000.
    [mo03] 莫则尧,符尚武,二维三温能量方程的Krylov子空间迭代求解,数值计算与计算机应 用,2:133-143,2003.
    [mo04] Z.Y.Mo, L.J.Shen, G.Wittum, Parallel adaptive multigrid algorithm for 2-D 3-T diffusion equations, Inter.J.Comput.Math., 81(3):361-374, 2004.
    [m006] 莫则尧,张爱清,曹小林,左风丽,多介质辐射流体力学数值模拟中的并行计算研究,自然科学进展,16(3):287-292,2006.
    [too07] Z.Y.Mo, X.W.Xu, Relaxed RSO or CLJP coarsening strategy for parallel AMG, Parallel Computing, 33(3): 174-185, 2007.
    [mousseau00] V. A. Mousseau, D. A. Knoll, W. J. Rider, Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion, JCP, 160(2):743-765, 2000.
    [nagel05] A.Nagel, R.D.Falgout, G.Wittum, Filtering algebraic multigrid and adaptive strategies, 8th European Multigrid Conference, Scheveningen The Hague, Netherlands, 2005. Also appear in LLNL report No.UCRL-PROC-218762.
    [nolting06] J.Nolting, U.Yang, Improving Imterpolation in BoomerAMG, LLNL Report No. UCRL-TR-224345, 2006.
    [pebbles] PEBBLES: Parallel Element Based grey Box Linear Equation Solver, http://www.numa.uni-linz.ac.at/Research/Projects/pebbles.html
    [prometheus] http://www.cs.berkeley.edu/madams/prometheus
    [robinson93] G.Robinson, Parallel computational fluid dynamics on unstructured meshes using algebraic multigrid, Parallel Computational Fluid Dynamics 92, P.Pelz, A.Ecer, J.Haaser eds, Elserier Sccience Publishers, 1993.
    [ruge87] J.W,Ruge, K.Stuben, Algebraic Multigrid, in Multigrid Methods, Frontiers Appl.Math.3, S.F.McCormick.editor, SIAM, Philadelphia, 73-130, 1987.
    [rider99] W.J.Rider, D.A.KnolI, G.L.Olson, A multigrid Newton-Krylov method for multimaterial equilibrium radiation diffusion, JCP, 152:164-191, 1999.
    [saad94] Y.Saad, SPARSKIT: a basic tool kit for sparse matrix computations, SPARSKIT Document, 1994, http://www-users.cs.unm.edu/~saad/software/sparskit/.
    [saad03] Y.Saad, Iterative methods for sparse linear systems, 2nd Edition, SIAM, Philadelphia, 2003.
    [sahni96] S.Sahni, V.Thanvantri, Performance metrices: keeping the focus on runtime, IEEE Parallel & Distributed Technology, 43-56, 1996.
    [samg] http://www.scai.fraunhofer.de/samg.html?&L=1
    [schaffer98] S.Schaffer, A semi-coarsening muitigrid method for elliptic partial differential equations with highly discontinous and anisotropic coefficients, SIAM J.Sci.Comput., 20(1): 228-242, 1998.
    [shu04] 舒适,几类基于几何和分析信息的代数多重网格法及其应用,博士学位论文,湘潭:湘潭大学数学系,2004.
    [shu06] S.Shu, D.D.Sun, J.C.Xu, An algebraic multigrid method for higher-order finite element discretizations, Computing, 77(4): 347-377, 2006.
    [simon05] H.Simon, Progress in supercomputing: the top three breakthroughs of the last 20 years and the top three challenges for the next 20 years, talk in the ISC2005, Heidelberg, June 22, 2005.
    [stales03] L.Stales, Comparison of non-linear solvers for the solution of radiation transport equations, ETNA, 15: 78-93, 2003.
    [sterck] http://www.math.uwaterloo.ca/~hdesterc/
    [sterck06a] H.D,Sterek,U.M.Yang, J.J. Heys, Reducing complexity in parallel algebraic muitigrid preconditioners, SIAM J.Mat.Anal. & Appl.,27(4): 1019-1039,2006.
    [sterck06b] H.D,Sterck,U.M.Yang, Scalable algebraic multigrid on Blue Gene/L, talk at CALMS Annual Meeting, Toronto, 19 June, 2006.
    [stuben99] K.Stuben, Algebraic multigrid(AMG):an introduction with applications, GMD Report No. 70, 1999. Also available as an appendix in Multigrid, U.Trottenberg, C.W.Oosterlee, A.Schuller, Academic Press, 413-532, 2001.
    [stuben01] K.Stuben, A Review of algebraic multigrid, J.Comp. Appl. Math., 128: 281-309, 2001. Also available at GMD Report No.69, 1999.
    [stuben03] K.Stuben, P.Delaney, S.Chmakov, Algebraic multigrid for ground water flow and oil reservoir simulation, Proceedings of the Conference "MODFLOW and More 2003: Understanding through Modeling", Intem. Ground Water Modeling Center(IGWMC), 2003.
    [stuben05] K.StUben, SAMG User's Manual, SCAI, 2005.
    [sundials] http://www.llnl.gov/CASC/sundials/
    [tan05] 谭敏,舒适,肖映雄,一种各向异性四边形网格的代数多重网格方法,湘潭大学学报,27(1):778-84,2005.
    [tuminaro00] R.S.Tuminaro, C.Tong, Parallel smoothed aggregation multigrid:aggregation strategies on massively parallel machines, Proceedings of Supercomputing2000, 2000.
    [trilinos] http://software.sandia.gov/Trilinos/
    [trottenberg01] U.Trottenberg, C.W.Oosterlee, A.Schuller, Multigrid, Academic Press, 2001.
    [vanek96] P.Vanek, J.Mandel, M.Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56:179-196, 1996.
    [vanek01] P.Vanek, M.Brezina, J.Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numerische Mathematik, 88: 559-579, 2001. also avialable from UCD/CCM Report 126, University of Colorado, 1998.
    [wan00] W.L.Wan, Interface preserving coarsening multigrid for elliptic problems with highly discontinous coefficients, Numer. Linear Algebra with Appl., 7: 727-741, 2000.
    [wan04] W.L.Wan, X.D.Liu, A boundary condition-capturing multigrid approach to irregular boundary problems, SIAM J.Sci.Comp., 25(6): 1982-2003, 2004.
    [wagner99] C.Wagner, Introduction to AMG, Course notes of an AMG course at the university of Heidelberg in the wintersemester, 1999.
    [wagner00] Wagner.C.: on the algebraic construction of multilevel transfer operators, Computing, 65(1): 73-95, 2000.
    [weiser05] M.Weiser, A.Schiela, P.Deuflhard, Asymptotic mesh indenpent of Newton's method revisited, SIAM J.Numer.Anal., 42(5): 1830-1845, 2005.
    [wesseling92] P.Wesseling, An introduction to multigrid methods, Wiley, Chichester, 1992.
    [wu04] 吴建平,王正华,李晓梅,稀疏线性方程组的高效求解与并行计算,长沙:湖南科学出版社,2004.
    [xia003] 肖映雄,舒适,张平文,莫则尧,许进超,求解二维三温能量方程的半粗化代数多重网格法,数值计算与计算机应用,4:293-303,2003.
    [xu89] J.C.Xu, Theory of multilevel methods, PhD thesis, Comell University, 1989.
    [xu92] J.C.Xu, lterative methods by space decomposition and subspace correction:A unifying approach, SIAM Review 34:381-613, 1992.
    [xu97] J.C.Xu, An introduction to multilevel methods, Penn State University Report, 1997.
    [xu04] J.C.Xu,2004年暑假在北京大学特别数学讲座上的演讲,2004.
    [xu05] 徐小文,莫则尧,一种新的并行代数多重网格粗化算法,计算数学,27(3):325-336,2005.
    [xu07] 徐小文,莫则尧,并行代数多重网格算法可扩展性能分析,计算物理,24(3),2007.
    [yang04] U.M.Yang, On the use of relaxation parameters in hybrid smoothers, Numer.Linear Algebra with Appl., 11: 155-172, 2004.
    [yang06] U.M.Yang, Parallel algebraic multigrid methods-high performance preconditioners, in Numerical solution of partial differential equations on parallel computers(edited by A.M.Bruaset & A. Tveito), 209-236, Springer-Verlag, 2006. Also available as LLNL Technical Report, No.UCRL-BOOK-208032.
    [zaslavsky93] L.Zaslavsky, An adaptive algebraic multigrid for multigroup neutron diffusion reactor core calculations, Appl.Math.Comp.53:13-26, 1993.
    [zaslavsky95] L.Zaslavsky, An adaptive algebraic multigrid for reactor critically calculations, SIAM J. Sci.Comp., 16:840-847, 1995.
    [zhang00] J.Zhang, On preconditioning schur complement and schur complement preconditioning, ETNA, 10:115-130, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700