多酸基单分子磁体的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单分子磁体的特殊性质及其在信息存储、量子计算等方面展现出的重大而潜在应用价值,使得多酸化学家们对开展基于多酸的单分子磁体研究产生了浓厚兴趣,设计合成新型多酸基单分子磁体成为崭新的研究热点。本论文旨在设计新型多酸基单分子磁体。通过总结近5年关于多酸基单分子磁体的合成策略,借鉴并设计新合成路线,构筑了系列具有单分子磁体行为或潜在单分子磁体行为的新型多酸化合物,研究了这些化合物的合成、结构、磁性质,并探讨了多酸基单分子磁体的设计合成策略与规律。
     1.利用各种多阴离子为结构导向剂,与{Cu~(II)Ln~(III)}和{Ni~(II)Ln~(III)}席夫碱配合物单元结合,合成了八例新型多酸基席夫碱杂化化合物1-8。磁性研究表明化合物3和6为首例多酸担载的3d-4f杂金属簇单分子磁体。Na_4[CuL~1]_2[Mo_8O_(26)]·6DMF (1)L~1=1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)Na_3[Ni_2L_2K(H_2O)]_2[IMo_6O_(24)]·3H_2O (2)[{CuTbL(H_2O)_3}_2{IMo_6O_(24)}]Cl.2MeOH.8H_2O (3)[{CuDyL(H_2O)_3}_2{IMo_6O_(24)}]Cl·2MeOH·8H_2O (4)Na[{CuGdL(H_2O)_3}_2{IMo_6O_(24)}]Cl_2·2MeOH8H_2O (5)[{CuTbL(H_2O)_2}_2{AlMo_6O_(12)(OH)_6}_2]·MeOH·10H_2O (6)[{CuDyL(H_2O)_2}_2{AlMo_6O_(18)(OH)_6}_2]·MeOH·8H_2O (7)[{CuGdL(H_2O)_2}_2{AlMo_6O_(18)(OH)_6}_2] MeOH`10H_2O (8)L=N, N’-bis(3-methoxysalicylidene)ethylene-1,2-diamine
     2.利用α-Keggin型多阴离子[PMo_(12)O_(40)]~(3-)作为磁性单元的稀释剂,均匀分散具有D2d对称性的单核稀土-吡啶氮氧化物配位片段,构筑了一系列多酸-稀土配合物离子型晶体。对化合物10-13的磁性研究表明,化合物10具有显著的与频率相关的缓慢磁弛豫行为,是一类具有潜在单分子磁体性质的复合晶态材料。[Dy(2,2'-bipyridyl–N-N'-dioxide)_3(H_2O)][PMo_(12)O_(40)]·H_2O·CH_3CN (9)[Dy(bpyno)_4][PMo_(12)O_(40)]·2H_2O (10)[Tb(bpyno)_4][PMo_(12)O_(40)]·2H_2O (11)[Er(bpyno)_4][PMo_(12)O_(40)]·2H_2O (12)[Ho(bpyno)_4][PMo_(12)O_(40)]·2H_2O (13)bpyno=4,4'-dimethyl-2,2'-bipyridyl–N, N'-dioxide
     3.利用[As_2W_(19)O_(67)(H_2O)]~(14-)多阴离子作为无机多齿配体,与稀土离子反应,合成得到三例一维链状的新型稀土多酸聚合物,并对其磁性质和荧光性质进行了初步探究。但是该系列化合物并没有获得预期的单分子磁体行为,对其中的可能原因进行了初步分析。Na_(10)[Tb_6(H_2O)_(22){As_4W_(44)(OH)_2(proline)_2O_(151)}]·20H_2O (14)Na_(10)[Dy_6(H_2O)_(22){As_4W_(44)(OH)_2(proline)_2O_(151)}]·25H_2O (15)Na_(10)[Nd_6(H_2O)_(26){As_4W_(44)(OH)_2(proline)_2O_(151)}]·31H_2O (16)
Single-molecule magnets (SMMs) have attracted great attention due to the potentialapplication in the area of high-density magnetic memories and quantum computing devices.Nowadays, the design and synthesis of polyoxometalate (POM)-based SMMs is becoming ahot topic in POM chemistry. The aim of this thesis is to design and synthesis of newPOM-based SMMs. Based on various synthetic strategies summarized from the publicationsin recent five years, a series of new POM-based hybrid compounds with SMM or potentialSMM behaviors have been synthesized. The syntheses, structures and magnetic properties ofthese compounds were investigated. In addition, the synthetic strategies and rules were alsostudied.
     1. Eight new POM-based Shciff-base hybrids have been isolated by the reaction of{TM~(II)Ln~(III)}(TM=Ni or Cu) Schiff-base complexes and different POM units. In thesestructures, POM can be viewed as structure-directing agents. Magnetic studies reveal thatcompound3and6are the first POM-supported3d-4f heterometallic SMMs.Na_4[CuL~1]_2[Mo_8O_(26)]·6DMF (1)L1=1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)Na_3[Ni2L2K(H_2O)]2[IMo_6O_(24)]·3H_2O (2)[{CuTbL(H_2O)_3}_2{IMo_6O_(24)}]Cl.2MeOH.8H_2O (3)[{CuDyL(H_2O)_3}_2{IMo_6O_(24)}]Cl·2MeOH·8H_2O (4)Na[{CuGdL(H_2O)_3}_2{IMo_6O_(24)}]Cl_22MeOH8H_2O (5)[{CuTbL(H_2O)_2}_2{AlMo_6O_(12)(OH)_6}_2]·MeOH·10H_2O (6)[{CuDyL(H_2O)_2}_2{AlMo_6O_(18)(OH)_6}_2]·MeOH·8H_2O (7)[{CuGdL(H_2O)_2}_2{AlMo_6O_(18)(OH)_6}_2] MeOH10H_2O (8)L=N, N’-bis(3-methoxysalicylidene)ethylene-1,2-diamine
     2. When α-Keggin-type polyanions [PMo_(12)O_(40)]~(3-)were used as magnetic diluting agentsto disperse the mononuclear lanthanide-pridine-N-O coordination complex units, five newionic crystal compounds based on [Ln(bpyno)_4]3+and [PMo_(12)O_(40)]3-units were prepared.Magnetic measurements indicate that compound10exhibits frequency dependent ac magneticsusceptibilities indicative of slow relaxation of the magnetization and possible SMMbehaviors.[Dy(2,2'-bipyridyl–N-N'-dioxide)_3(H_2O)][PMo_(12)O_(40)]·H_2O·CH_3CN (9)[Dy(bpyno)_4][PMo_(12)O_(40)]·2H_2O (10)[Tb(bpyno)_4][PMo_(12)O_(40)]·2H_2O (11)[Er(bpyno)_4][PMo_(12)O_(40)]·2H_2O (12) [Ho(bpyno)_4][PMo_(12)O_(40)]·2H_2O (13)bpyno=4,4'-dimethyl-2,2'-bipyridyl–N, N'-dioxide
     3. When [As_2W_(19)O_(67)(H_2O)]~(14-)were used as multi-dentate inorganic ligands to react withvarious lanthanides cations, three new one-dimensional POM-based lanthanide complexeswere isolated. The magnetic and luminescent properties of compound14and15have beeninvestigated, but no SMM behaviors were found. The possible reason was predicted.Na_(10)[Tb_6(H_2O)_(22){As_4W_(44)(OH)_2(proline)_2O_(151)}]·20H_2O (14)Na_(10)[Dy_6(H_2O)_(22){As_4W_(44)(OH)_2(proline)_2O_(151)}]·25H_2O (15)Na_(10)[Nd_6(H_2O)_(26){As_4W_(44)(OH)_2(proline)_2O_(151)}]·31H_2O (16)
引文
[1] Lis T. Preparation, structure and magnetic properties of a dodecanuclear mixed-valence manganesecarboxylate [J]. Acta Crystallogr. B,1980,36:2042-2046.
    [2] Caneschi A, Gatteschi D, Sessoli R, et al. Alternating current susceptibility, high field magnetization,and millimeter band EPR evidence for a ground S=10state in[Mn12O12(Ch3COO)16(H2O)4]·2CH3COOH·4H2O [J]. J. Am. Chem. Soc.1991,113:5873-5874.
    [3] Sessoli R, Tsai H L, Schake A R, et al. High-spin molecules:[Mn12O12(O2CR)16(H2O)4][J]. J. Am.Chem. Soc.1993,115:1804-1816.
    [4] Aubin S M J, Wemple M W, Adams D M, et al. Distorted MnIVMnIII3cubane complexes assingle-molecule magnets [J]. J. Am. Chem. Soc.1996,118:7746-7754.
    [5] Christou G, Gatteschi D, Hendrickson D N, et al. Materials screening and applications of plasmoniccrystals [J]. MRS Bull.2000,35:66-77.
    [6] Leuenberger M N, Loss D. Quantum computing in molecular magnets [J]. Nature.2001,410:789-793.
    [7] Hill S, Edwards R S, Aliaga-Alcalde N, et al. Quantum coherence in an exchange-coupled dimer ofsingle-molecule magnets [J]. Science.2003,302:1015-1018.
    [8] Gatteschi D, Sessoli R, Quantum tunneling of magnetization and related phenomena in molecularmaterials [J]. Angew. Chem. Int. Ed.2003,42:268-297.
    [9] Milios C J, Piligkos S, Brechin E K, Ground state spin-switching via targeted structural distortion:twisted single-molecule magnets from derivatised salicylaldoximes [J]. Dalton Trans,2008,1809-1817.
    [10] Madhu N T, Tang J K, Hewitt I J, et al. What makes a single molecule magnet?[J]. Polyedron.2005,24:2864-2869.
    [11] Lecren L, Wernsdorfer W, Li Y G, et al. Quantum tunneling and quantum phase interference in a
    [MnII2MnIII2] single-molecule magnet [J]. J. Am. Chem. Soc.2005,127:11311-11317.
    [12] Ishikawa N, Sugita M, Ishikawa T, et al. Lanthanide double-decker complexes functioning asmagnets at the single-molecular level [J]. J. Am. Chem. Soc.2003,125:8694-8695.
    [13] Ishikawa N, Sugita M, Ishikawa T, et al. Mononuclear lanthanide complexes with a longmagnetization relaxation time at high temperatures: a new category of magnets at thesingle-molecular level [J]. J. Phys. Chem. B.2004,108:11265-11271.
    [14] Ishikawa N, Sugita M, Wernsdorfer W. Nuclear spin driven quantum tunneling of magnetization ina new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion [J]. J. Am. Chem.Soc.2005,127:3650-3651.
    [15] Pope M T, Heteropoly and isopoly oxometalates [M]. Springer, Berlin:1983.
    [16] Hill C L. Introduction: polyoxometalates multicomponent molecular vehicles to probe fundamentalissues and practical problems [J]. Chem. Rev.1998,98:1-2.
    [17] Long D L, Burkholder E, Cronin L, Polyoxometalate clusters, nanostructures and materials: Fromself assembly to designer materials and devices [J]. Chem. Soc. Rev.2007,36:105-121.
    [18] Yin P C, Li D, Liu T B, Solution behaviors and self-assembly of polyoxometalates as models ofmacroions and amphiphilic polyoxometalate–organic hybrids as novel surfactants [J]. Chem. Soc.Rev.2012,41:7368-7383.
    [19] Banerjee A, Bassil B S, R schenthaler G V, et al. Diphosphates and diphosphonates inpolyoxometalate chemistry [J]. Chem. Soc. Rev.2012,41:7590-7604.
    [20] Proust A, Matt B, Villanneau R, et al. Functionalization and post-functionalization: a step towardspolyoxometalate-based materials [J]. Chem. Soc. Rev.2012,41:7605-7622.
    [21] Song Y F, Tsunashima R, Recent advances on polyoxometalate-based molecular and compositematerials [J]. Chem. Soc. Rev.2012,41:7384-7402.
    [22] Casanpastor N, Basserra J, Coronado E, et al. First ferromagnetic interaction in a heteropolycomplex:[CoII14O14(H2O)2(PW9O27)2]0-. Experiment and theory for intramolecular anisotropicexchange involving the four Co(II) atoms [J]. J. Am. Chem. Soc.1992,114:10380-10383.
    [23] Coronado E, Gomez-Garcia C J, Polycxometalates: From Magnetic Clusters to MolecularMaterials [J]. Comment Inorg. Chem.1995,17:255-281.
    [24] Coronado E, Gomez-Garcia C J, Polyoxometalate-Based Molecular Materials [J]. Chem. Rev.1998,98:273-296.
    [25] Coronado E, Gimenez-Saiz C, Gomez-Garcia C J. Recent advances in polyoxometalate-containingmolecular conductors [J]. Coord. Chem. Rev.2005,249:1776-1796.
    [26] Clemente-Juan J M, Coronado E. Magnetic clusters from polyoxometalate complexes [J]. Coord.Chem. Rev.1999,193:361-394.
    [27] Bassil B S, Kortz U Z. Recent advances in lanthanide-containing polyoxotungstates [J]. Anorg.Allg. Chem.2010,636,2222-2231.
    [28] Bassil B S, Kortz U. Divacant polyoxotungstates: reactivity of the gamma-decatungstates[γ-XW810O36]-(X=Si, Ge)[J]. Dalton Trans.2011,40,9649-9661.
    [29] Reinoso S. Heterometallic3d–4f polyoxometalates: still an incipient field [J]. Dalton Trans.2011,40,6610-6615.
    [30] Oms O, Dolbecq A, Mialane P. Diversity in structures and properties of3d-incorporatingpolyoxotungstates [J]. Chem. Soc. Rev.2012,41,7497-7536.
    [31] Zheng S T, Yang G Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM=Mn, Fe, Co, Ni, Cu)[J]. Chem. Soc. Rev.2012,41,7623-7646.
    [32] Ritchie C, Ferguson A, Nojiri H, et al. Polyoxometalate-mediated self-assembly of single-moleculemagnets:{[XW9O34]2[MnIII4MnII2O4(H2O)2-4]}1[J]. Angew. Chem. Int. Ed.2008,47:5609-5612.
    [33] AlDamen M A, Clemente-Juan J M, Coronado E, et al. Mononuclear lanthanide single-moleculemagnets based on polyoxometalates [J]. J. Am. Chem. Soc.2008,130:8874-8875.
    [34] Miras H N, Yan J, Long D L, et al. Engineering polyoxometalates with emergent properties [J].Chem. Soc. Rev.2012,41:7403-7430.
    [35] Clemente-Juan J M, Coronado E, Gaita-Ari o A. Magnetic polyoxometalates: from molecularmagnetism to molecular spintronics and quantum computing [J]. Chem. Soc. Rev.2012,41:7464-7478.
    [36] Luis F, Martínez-Pérez M J, Montero O, et al. Spin-lattice relaxation via quantum tunneling in anEr3+-polyoxometalate molecular magnet [J]. Phys. Rev. B.2010,82:060403-1-060403-4.
    [37] Martínez-Pérez M J, Cardona-Serra S, Schlegel C, et al. Gd-based single-ion magnets with tunablemagnetic anisotropy: molecular design of spin qubits [J]. Phys. Rev. Lett.2012,108:247213-1-247213-5.
    [38] Fang X K, Speldrich M, Schilder H, et al. Switching slow relaxation in a MnIII3MnIVcluster: anexample of grafting single-molecule magnets onto polyoxometalates [J]. Chem. Commun.2010,46:2760-2762.
    [39] Fang X K, McCallum K, Pratt III H D, et al. A co-crystal of polyoxometalates exhibitingsingle-molecule magnet behavior: the structural origin of a large magnetic anisotropy [J]. DaltonTrans.2012,41:9867-9870.
    [40] Fang X K, K gerler P, Speldrich M,et al. A polyoxometalate-based single-molecule magnet with anS=21/2ground state [J]. Chem. Commun.2012,48:1218-1220.
    [41] Zhang Z M, Yao S, Li Y G, et al. Polyoxometalate-based single-molecule magnet with amixed-valent {MnIV2MnIII6MnII4} core [J]. Chem. Commun.2013,49:2515-2517.
    [42] Compain J D, Mialane P, Dolbecq A, et al. Iron polyoxometalate single-molecule magnets [J].Angew. Chem. Int. Ed.2009,48:3077-3081.
    [43] Giusti A, Charron G, Mazerat S, et al. Magnetic bistability of individual single-molecule magnetsgrafted on single-wall carbon nanotubes [J]. Angew. Chem. Int. Ed.2009,48:4949-4952.
    [44] Ibrahim M, Lan Y, Bassil B S, et al. Hexadecacobalt(II)-containing polyoxometalate-basedsingle-molecule magnet [J]. Angew. Chem. Int. Ed.2011,50:4708-4711.
    [45] El Moll H, Dolbecq A, Marrot J, et al. A stable hybrid bisphosphonate polyoxometalatesingle-molecule magnet [J]. Chem. Eur. J.2012,18:3845-3849.
    [46] Lydon C, Sabi M M, Symes M D, et al. Directed assembly of nanoscale Co(II)-substituted{Co9[P2W15]3} and {Co14[P2W15]4} polyoxometalates [J]. Chem. Commun.2012,48:9819-9821.
    [47] AlDamen M A, Cardona-Serra S, Clemente-Juan J M, et al. Mononuclear lanthanide singlemolecule magnets based on the polyoxometalates [Ln(W5O18)2]9-and [Ln(β2-SiW11O39)2]13-(LnIII)Tb, Dy, Ho, Er, Tm, and Yb)[J]. Inorg. Chem.2009,48:3467-3479.
    [48] Ritchie C, Speldrich M, Gable R W, et al. Utilizing the adaptive polyoxometalate[As2W19O67(H2O)]14-to support a polynuclear lanthanoid-based single-molecule magnet [J]. Inorg.Chem.2011,50:7004-7014.
    [49] Cardona-Serra S, Clemente-Juan J M, Coronado E, et al. Lanthanoid single-ion magnets based onpolyoxometalates with a5fold Symmetry: The Series [LnP125W30O110](Ln3+=Tb, Dy, Ho, Er,Tm, and Yb)[J]. J. Am. Chem. Soc.2012,134:14982-14990.
    [50] Li F Y, Guo W H, Xu L, et al. Two dysprosium-incorporated tungstoarsenates: synthesis, structuresand magnetic properties [J]. Dalton Trans.2012,41:9220-9226.
    [51] Wu H H, Yao S, Zhang Z M, et al. Heterometallic appended {MMnIII4} cubanes encapsulated bylacunary polytungstate ligands [J]. Dalton Trans.2013,42:342-346.
    [52] Zhen Y Z, Liu B, Li L L, et al. Single-molecule magnet based on a C-type polyoxomolybdate withan S=11ground state:[Fe5CoMo22As2O85(H2O)]15-[J]. Dalton Trans.2013,42:58-62.
    [53] Wu Q, Li Y G, Wang Y H, et al. Polyoxometalate-based {MnIII2}–Schiff base composite materialsexhibiting single-molecule magnet behaviour [J]. Chem. Commun.2009,5743-5745.
    [54] Sawada Y, Kosaka W, Hayashi Y, et al. Coulombic aggregations of MnIIIsalen-type complexes andKeggin-type polyoxometalates: isolation of Mn2single-molecule magnets [J]. Inorg. Chem.2012,51:4824-4832.
    [55] Müller A, Peters F, Pope M T, et al. Polyoxometalates: very large clusters nanoscale magnets [J].Chem. Rev.1998,98:239-272.
    [56] Li F Y, Xu L. Coordination assemblies of polyoxomolybdate cluster framework: From labilebuilding blocks to stable functional materials [J]. Dalton Trans.2011,40:4024-4034.
    [57] Sessoli R, Powell A K. Strategies towards single molecule magnets based on lanthanide ions [J].Coord. Chem. Rev.2009,253:2328-2341.
    [58] Tang J K, Hewitt I, Madhu N T, et al. Dysprosium triangles showing single-molecule magnetbehavior of thermally excited spin states [J]. Angew. Chem. Int. Ed.2006,45:1729-1733.
    [59] Jiang S D, Wang B W, Su G, et al. A mononuclear dysprosium complex featuringsingle-molecule-magnet behavior [J]. Angew. Chem. Int. Ed.2010,49:7448-7451.
    [60] Car E P, Perfetti M, Mannini M, et al. Giant field dependence of the low temperature relaxation ofthe magnetization in a dysprosium(III)–DOTA complex [J]. Chem. Commun.2011,47:3751-3753.
    [61] Baldoví J, Cardona-Serra S, Clemente-Juan J M, et al. Rational Design of Single-Ion Magnets andSpin Qubits Based on Mononuclear Lanthanoid Complexes [J]. Inorg. Chem.2012,51:12565-12574.
    [62] Wernsdorfer W, Aliaga-Alcalde N, Hendrickson D N, et al. Exchange-biased quantum tunnelling ina supramolecular dimer of single-molecule magnets [J]. Nature.2002,416:406-409.
    [63] Lecren L, Wernsdorfer W, Li Y G, et al. One-dimensional supramolecular organization ofsingle-molecule magnets [J]. J. Am. Chem. Soc.2007,129:5045-5051.
    [64] Boskovic C, Bircher R, Tregenna-Piggott P L W, et al. Ferromagnetic and antiferromagneticintermolecular interactions in a new family of Mn4complexes with an energy barrier tomagnetization reversal [J]. J. Am. Chem. Soc.2003,125:14046-14053.
    [65] Miyasaka H, Clérac R, Ishii T, et al. Out-of-plane dimers of Mn(iii) quadridentate Schiff-basecomplexes [J]. J. Chem. Soc. Dalton Trans.2002,1528-1534.
    [66] Mizuno N, Misono M. Heterogeneous catalysis [J]. Chem. Rev.1998,98:199-218.
    [67] Forment-Aliaga A, Coronado E, Feliz M,et al. Cationic Mn12single-molecule magnets and theirpolyoxometalate hybrid salts [J]. Inorg. Chem.2003,42:8019-8027.
    [68] Müller A, Todea A M, B gge H, et al. Formation of a “less stable” polyanion directed and protectedby electrophilic internal surface functionalities of a capsule in growth:[{Mo6O19}2{MoVIII72FeI30O252(ac)20(H2O)92}]4[J]. Chem. Commun.2006,3066-3068.
    [69] Miras H N, Cooper G J T, Long D L, et al. Unveiling the transient template in the self-assembly ofa molecular oxide nanowheel [J]. Science.2010,327:72-74.
    [70] Xie Y P, Mak T C W. Silver(I) ethynide clusters constructed with phosphonate-functionizedpolyoxovanadates [J]. J. Am. Chem. Soc.2011,133:3760-3763.
    [71] Wu Q, Hao X L, Feng X J, et al. A hexa-{MnIII-Schiff-base}-decorated cyclic polyoxovanadate asphotocatalyst for dye degradation [J]. Inorg. Chem.2012,51:4824-4832.
    [1] Müller A, Peters F, Pope M T, et al. Polyoxometalates: very large clusters-nanoscale magnets [J].Chem. Rev.1998,98:239-272.
    [2] Clemente-Juan J M, Coronado E. Magnetic clusters from polyoxometalates complexes [J]. Coord.Chem. Rev.1999,193:361-394.
    [3] Long D L, Tsunashima R, Cronin L. Polyoxometalates: building blocks for functional nanoscalesystems [J]. Angew. Chem. Int. Ed.2010,49:1736-1758.
    [4] AlDamen M A, Clemente-Juan J M, Coronado E, et al. Mononuclear lanthanide single-moleculemagnets based on polyoxometalates [J]. J. Am. Chem. Soc.2008,130:8874-8875.
    [5] AlDamen M A, Cardona-Serra S J, Clemente-Juan M, et al. Mononuclear lanthanide single moleculemagnets based on the polyoxometalates [Ln(W915O18)2] and [Ln(β2-SiW11O39)2]3(LnIII=Tb, Dy,Ho, Er, Tm, and Yb)[J]. Inorg. Chem.2009,48:3467-3479.
    [6] Ritchie C, Ferguson A, Nojiri H, et al. Polyoxometalate-mediated self-assembly of single-moleculemagnets:{[XWIII9O34]2[Mn4MnII2O4(H2O)4]}12-[J]. Angew. Chem. Int. Ed.2008,47:5609-5612.
    [7] Compain J D, Mialane P, Dolbecq A, et al. Iron polyoxometalate single-molecule magnets [J].Angew. Chem. Int. Ed.2009,48:3077-3081.
    [8] Fang X K, Speldrich M, Schilder H, et al. Switching slow relaxation in a MnIII3MnIVcluster: anexample of grafting single-molecule magnets onto polyoxometalates [J]. Chem. Commun.2010,46:2760-2762.
    [9] Ibrahim M, Lan Y, Bassil B S, et al. Hexadecacobalt(II)-containing polyoxometalate-based single-molecule magnet [J]. Angew. Chem. Int. Ed.2011,50:4708-4711.
    [10] Ritchie C, Speldrich M, Gable R W, et al. Utilizing the adaptive polyoxometalate[As2W19O62(H2O)]14-to support a polynuclear lanthanoid-based single-molecule magnet [J]. Inorg.Chem.2011,50:7004-7014.
    [11] Wu Q, Li Y G, Wang Y H, et al. Polyoxometalate-based {MnIII2}–Schiff base composite materialsexhibiting single-molecule magnet behaviour [J]. Chem. Commun.2009,5743-5745.
    [12] Rinck J, Novitchi G, Van den Heuvel W, et al. The bicorannulenyl dianion: a charged overcrowdedethylene [J]. Angew. Chem. Int. Ed.2010,49:7538-7542.
    [13] Stamatatos T C, Teat S J, Wernsdorfer W, et al. Enhancing the quantum properties ofmanganese–lanthanide single-molecule magnets: observation of quantum tunneling steps in thehysteresis loops of a {Mn12Gd} Cluster [J]. Angew. Chem. Int. Ed.2009,48:521-524.
    [14] Merca A, Müller A, van Slageren J, et al. Systematic study of the interaction between VIVcentresand lanthanide ions (MIII) in well defined {VIV2MIII}{AsIIIW9O33}2-sandwich type clusters: Part1[J]. J. Cluster Sci.2007,18:711-719.
    [15] Chen W L, Li Y G, Wang Y H, et al. A new polyoxometalate-based3d–4f heterometallic aggregate:a model for the design and synthesis of new heterometallic clusters [J]. Dalton Trans.2008,865-867.
    [16] Fang X K, K gerler P. PO34-mediated polyoxometalate supercluster assembly [J]. Angew. Chem.Int. Ed.2008,47:8123-8126.
    [17] Fang X K, K gerler P. A polyoxometalate-based manganese carboxylate cluster [J]. Chem.Commun.2008,3396-3398.
    [18] Nohra B, Mialane P, Dolbecq A, et al. Heterometallic3d–4f cubane clusters inserted inpolyoxometalate matrices [J]. Chem. Commun.2009,2703-2705.
    [19] Reinoso S, Galán-Mascarós J R. Heterometallic3d4f polyoxometalate derived from theWeakley-type dimeric structure [J]. Inorg. Chem.2010,49:377-379.
    [20] Reinoso, S. Heterometallic3d–4f polyoxometalates: still an incipient field [J]. Dalton Trans.2011,40,6610-6615.
    [21] Chen W L, Li Y G, Wang Y H, et al. An inorganic aggregate based a sandwich-typepolyoxometalate with lanthanide and potassium cations: from1D chiral ladder-like chains to a3Dopen Framework [J]. Eur. J. Inorg. Chem.2007,2216-2220.
    [22] Chen W L, Li Y G, Wang Y H, et al. Building block approach to nanostructures: step-by-stepassembly of large lanthanide-containing polytungstoarsenate aggregates [J]. Dalton Trans.2007,4293-4301.
    [23] Gheorghe R, Andruh M, Moller A, et al. Heterobinuclear complexes as building blocks indesigning extended structures [J]. Inorg. Chem.2002,41:5314-5316.
    [24] Madalan A M, Roesky H W, Andruh M, et al. The first coordination compound containing threedifferent types of spin carriers:2p–3d–4f (TCNQ-, Cu2+and Gd3+)[J]. Chem. Commun.2002,1638-1639.
    [25] Costes J P, Novitchi G, Shova S, et al. Synthesis, structure, and magnetic rroperties ofheterometallic dicyanamide-bridged Cu Na and Cu Gd one-dimensional polymers [J]. Inorg.Chem.2004,43:7792-7799.
    [26] Gheorghe R, Cucos P, Andruh M, et al. Oligonuclear3d–4f complexes as tectons in designingsupramolecular solid-state architectures: impact of the nature of linkers on the structural diversity[J]. Chem. Eur. J.2006,12:187-203.
    [27] Novitchi G, Wernsdorfer W, Chibotaru L, et al. Supramolecular “double-propeller” dimers ofhexanuclear CuII/LnIIIcomplexes: a {Cu3Dy3}2single-molecule magnet [J]. Angew. Chem. Int. Ed.2009,48:1614-1619.
    [28] Filowitz M, Ho R K C, Klemperer W G, et al. Oxygen-17nuclear magnetic resonance spectroscopyof polyoxometalates.1. Sensitivity and resolution [J]. Inorg. Chem.1979,18:93-103.
    [29] Shivaiah V, Nagaraju M, Das S K. Formation of a spiral-shaped inorganic organic hybrid chain,[CuII(2,2’-bipy)(Hn-2O)2Al(OH)6Mo6O18]n: influence of intra-and interchain supramolecularinteractions [J]. Inorg. Chem.2003,42:6604-6606.
    [30] Costes J P, Dahan F, Dupuis A. Influence of anionic ligands (X) on the nature and magneticproperties of dinuclear LCuGdX3nH2O complexes (LH2standing for tetradentate schiff baseligands deriving from2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO)[J].Inorg. Chem.2000,39:165-168.
    [31] He F, Tong M L, Chen X M. Synthesis, Structures, and Magnetic Properties of HeteronuclearCu(II) Ln(III)(Ln=La, Gd, or Tb) Complexes [J]. Inorg. Chem.2005,44:8285-8292.
    [32] Costes J P, Dahan F, Wernsdorfer W. Heterodinuclear Cu Tb Single-Molecule Magnet [J]. Inorg.Chem.2006,45:5-7.
    [33] Costes J P, Auchel M, Dahan F, et al. Synthesis, Structures, and Magnetic Properties ofTetranuclear CuII LnIIIComplexes [J]. Inorg. Chem.2006,45:1924-1934.
    [34] Osa S, Kido T, Matsumoto N, et al. A Tetranuclear3d4f Single Molecule Magnet:
    [CuIILTbIII(hfac)2]2[J]. J. Am. Chem. Soc.2004,126:420-421.
    [35] Kajiwara T, Nakano M, Takaishi S, et al. Coordination-tuned single-molecule-magnet Behavior ofTbIII CuIIDinuclear Systems [J]. Inorg. Chem.2008,47:8604-8606.
    [1] Sessoli R, Powell A K. Strategies towards single molecule magnets based on lanthanide ions [J].Coord. Chem. Rev.2009,253:2328-2341.
    [2] Ishikawa N, Sugita M, Okubo T, et al. Determination of ligand-field parameters and f-electronicstructures of double-decker bis(phthalocyaninato)lanthanide complexes [J]. Inorg. Chem.2003,42:2440-2446.
    [3] N. Ishikawa. Simultaneous determination of ligand-field parameters of isostructural lanthanidecomplexes by multidimensional optimization [J]. J. Phys. Chem. A,2003,107:5831-5835.
    [4] Ishikawa N, Sugita M, Ishikawa T, et al. Lanthanide double-decker complexes functioning asmagnets at the single-molecular level [J]. J. Am. Chem. Soc.2003,125:8694-8695.
    [5] Ishikawa N, Sugita M, Ishikawa T, et al. Mononuclear lanthanide complexes with a longmagnetization relaxation time at high temperatures: a new category of magnets at thesingle-molecular level [J]. J. Phys. Chem. B,2004,108:11265-11271.
    [6] Ishikawa N, Sugita M, Wernsdorfer W, Nuclear spin driven quantum tunneling of magnetization in anew lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion [J]. J. Am. Chem.Soc.2005,127:3650-3651.
    [7] Ishikawa N, Sugita M, Wernsdorfer W, Quantum tunneling of magnetization in lanthanidesingle-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosiumAnions.[J]. Angew. Chem. Int. Ed.2005,44:2931-2935.
    [8] Takamatsu S, Ishikawa T, Koshihara S, et al. Significant increase of the barrier energy formagnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction ofthe coordination space [J]. Inorg. Chem.2007,46:7250-7252.
    [9] AlDamen M A, Clemente-Juan J M, Coronado E, et al. Mononuclear lanthanide single-moleculemagnets based on polyoxometalates [J]. J. Am. Chem. Soc.2008,130:8874-8875.
    [10] AlDamen M A, Cardona-Serra S, Clemente-Juan J M, et al. Mononuclear lanthanide singlemolecule magnets based on the polyoxometalates [Ln(W5O18)2]9-and [Ln(β2-SiW11O39)2]13-(LnIII)Tb, Dy, Ho, Er, Tm, and Yb)[J]. Inorg. Chem.2009,48:3467-3479.
    [11] Car E P, Perfetti M, Mannini M, et al. Giant field dependence of the low temperature relaxation ofthe magnetization in a dysprosium(III)–DOTA complex [J]. Chem. Commun.2011,47:3751-3753.
    [12] Feltham H L C, Lan Y, Kl wer F, et al. A non-sandwiched macrocyclic monolanthanidesingle-molecule magnet: the key role of axiality [J]. Chem. Eur. J.2011,17:4362-4365.
    [13] Chen G J, Gao C Y, Tian J L, et al. Coordination-perturbed single-molecule magnet behaviour ofmononuclear dysprosium complexes [J]. Dalton Trans.2011,40:5579-5583.
    [14] Jiang S D, Wang B W, Su G, et al. A mononuclear dysprosium complex featuringsingle-molecule-magnet behavior [J]. Angew. Chem. Int. Ed.2010,49:7448-7451.
    [15] Gonidec M, Davies E S, McMaster J, et al. Probing the magnetic properties of threeinterconvertible redox states of a single-molecule magnet with magnetic circular dichroismspectroscopy [J]. J. Am. Chem. Soc.2010,132:1756-1757.
    [16] Li D P, Wang T W, Li C H, et al. Single-ion magnets based on mononuclear lanthanide complexeswith chiral Schiff base ligands [Ln(FTA)3L](Ln=Sm, Eu, Gd, Tb and Dy)[J]. Chem. Commun.2010,46:2929-2931.
    [17] Jiang S D, Wang B W, Sun H L, et al. An organometallic single-ion magnet [J]. J. Am. Chem. Soc.2011,133:4730-4733.
    [18] Gonidec M, Biagi R, Corradini V, et al. Surface supramolecular organization of a terbium(III)double-decker complex on graphite and its single molecule magnet behavior [J]. J. Am. Chem. Soc.2011,133:6603-6612.
    [19] Watanabe A, Yamashita A, Nakano M, et al. Multi-path magnetic relaxation ofmono-dysprosium(III) single-molecule magnet with extremely high barrier [J]. Chem. Eur. J.2011,17:7428-7432.
    [20] Rinehart J D, Meihaus K R, Long J R. Observation of a secondary slow relaxation process for thefield-induced single-molecule magnet U(H2BPz2)3[J]. J. Am. Chem. Soc.2010,132:7572-7573.
    [21] Magnani N, Apostolidis C, Morgenstern A, et al. Magnetic memory effect in a transuranicmononuclear complex [J]. Angew. Chem. Int. Ed.2011,50:1696-1698.
    [22] Jeletic M, Lin P H, Le Roy J J, et al. An organometallic sandwich lanthanide single-ion magnetwith an unusual multiple relaxation mechanism [J]. J. Am. Chem. Soc.2011,133:19286-19289.
    [23] Al-Karaghouli A R, Day R O, Wood J S. Crystal structure of tetrakis(2,2'-bipyridinedioxide)lanthanum perchlorate: an example of cubic eight-coordination.[J]. Inorg. Chem.1978,17:3702-3706.
    [24] Malta O L, Legendziewicz J, Huskowska E, et al. Experimental and theoretical study of ligandfield,4f–4f intensities and emission quantum yield in the compound Eu(bpyO2)4(ClO4)3[J]. J.Alloys and Compounds2001,323:654-660.
    [25] Huskowska E, Turowska-Tyrk I, Legendziewicz J, et al. The structure and spectroscopy oflanthanide(iii) complexes with2,2′-bipyridine-1,1′-dioxide in solution and in the solid stateeffects of ionic size and solvent on photophysics, ligand structure and coordination [J]. New J.Chem.2002,26:1461-1467.
    [26] Chandler B D, Yu J O, Cramb D T, et al. A series of microporous luminescent metal organicframeworks [J]. Chem. Mater.2007,19:4467-4473.
    [27] Hao X L, Luo M F, Yao W, et al. Polyoxometalate-templated lanthanide–organic hybrid layersbased on63-honeycomb-like2D nets[J]. Dalton Trans.2011,40:5971-5976.
    [28] Hao X L, Luo M F, Wang X, et al. A new organic–inorganic hybrid compound based onlanthanide-organic chain and Keggin-type polyoxometalate [J]. Inorg. Chem. Commun.2011,14:1698-1702.
    [29] Li C H, Huang K L, Chi Y N, et al. Lanthanide organic cation frameworks with zeolite gismondinetopology and large cavities from intersected channels templated by polyoxometalate counterions[J]. Inorg. Chem.2009,48:2010-2017.
    [30] Wu Q, Li Y G, Wang Y H, et al. Polyoxometalate-based {MnIII2}–Schiff base composite materialsexhibiting single-molecule magnet behaviour [J]. Chem. Commun.2009,5743-5745.
    [31] Savard D, Lin P H, Burchell T J, et al. Two-dimensional networks of lanthanide cubane-shapeddumbbells [J]. Inorg. Chem.2009,48:11748-11754.
    [32] Wei M L, He C, Sun Q Z, et al. Zeolite ionic crystals assembled through direct incorporation ofpolyoxometalate clusters within3D metal organic frameworks [J]. Inorg. Chem.2007,46:5957-5966.
    [33] Zhang L P, Lu W J, Mak T C W. Controlled crystallization of mixed-ligand complexes of1,3-bis(4-pyridyl)propane-N,N’-dioxide with metal(II) thiocyanates: isostructurality in coordinationnetworks bearing different mono-and di-nuclear nodes [J]. Chem. Commun.2003,2830-2831.
    [34] Sheldrick G M. SHELXS97, Program for crystal structure solution, University of G ttingen,G ttingen, Germany,1997.
    [35] Sheldrick G M. SHELXL-97(1997). Program for crystal structure refinement [M]. University ofG ttingen, G ttingen, Germany:1997.
    [36] Spek A L. PLATON, A multipurpose crystallographic tool [M] Utrecht University: Utrecht, theNetherlands:1998.
    [37] Drew M G B. Structures of high coordination complexes [J]. Coord. Chem. Rev.1977,24:179-275.
    [38] Kahn M L, Ballou R, Porcher P, et al. Analytical determination of the {Ln–aminoxyl radical}exchange interaction taking into account both the ligand-field effect and the spin–orbit coupling ofthe lanthanide ion (Ln=DyIII and HoIII)[J]. Chem. Eur. J.2002,8:525-531.
    [39] Tang J, Hewitt I, Madhu N T, et al. Dysprosium triangles showing single-molecule magnetbehavior of thermally excited spin states [J]. Angew. Chem. Int. Ed.2006,45:1729-1733.
    [40] Osa S, Kido T, Matsumoto N, et al. A Tetranuclear3d4f Single Molecule Magnet:
    [CuI I LTbI II(hfac)2]2[J]. J. Am. Chem. Soc.2004,126:420-421.
    [1] Bassil B S, Kortz U Z. Recent advances in lanthanide-containing polyoxotungstates [J]. Anorg. Allg.Chem.2010,636:2222-2231.
    [2] Bassil B S, Kortz U. Divacant polyoxotungstates: reactivity of the gamma-decatungstates[γ-XW8-10O36](X=Si, Ge)[J]. Dalton Trans.2011,40:9649-9661.
    [3] Reinoso S. Heterometallic3d–4f polyoxometalates: still an incipient field [J]. Dalton Trans.2011,40:6610-6615.
    [4] Oms O, Dolbecq A, Mialane P. Diversity in structures and properties of3d-incorporatingpolyoxotungstates [J]. Chem. Soc. Rev.2012,41:7497-7536.
    [5] Zheng S T, Yang G Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM=Mn, Fe, Co, Ni, Cu)[J]. Chem. Soc. Rev.2012,41:7623-7646.
    [6] Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ionsand organic radicals [J]. Chem. Rev.2002,102:2369-2388.
    [7] Mialane P, Dolbecq A, Sécheresse F. Functionalization of polyoxometalates by carboxylato andazido ligands: macromolecular complexes and extended compounds [J]. Chem. Commun.2006,3477-3485.
    [8] AlDamen M A, Clemente-Juan J M, Coronado E, et al. Mononuclear lanthanide single-moleculemagnets based on polyoxometalates [J]. J. Am. Chem. Soc.2008,130:8874-8875.
    [9] Lu Y, Xu Y, Li Y G, et al. New Polyoxometalate Compounds built up of lacunary Wells-Dawsonanions and trivalent lanthanide cations [J]. Inorg. Chem.2006,45:2055-2060.
    [10] Chen W, Li Y, Wang Y, et al. Building block approach to nanostructures: step-by-step assembly oflarge lanthanide-containing polytungstoarsenate aggregates [J]. Dalton Trans.2007,4293-4310.
    [11] Cui K Y, Li F T, Xu L, Xu B B, et al. Lanthanide-tungstobismuthate clusters based on [BiW9O33]9-building units: synthesis, crystal structures, luminescent and magnetic properties [J]. Dalton Trans.2012,41:4871-4877.
    [12] Huang W, Francesconi L C, Plenova T.(31)P magic angle spinning NMR spectroscopy for probinglocal environments in paramagnetic europium-substituted wells-dawson polyoxotungstates [J].Inorg. Chem.2007,46:7861-7869.
    [13] Mialane P, Dolbecq A, Riviére E, et al. Functionalization of polyoxometalates by a negativelycharged bridging ligand: the dimeric [(SiW11O39Ln)2(μ-CH3COO)22]1(Ln=GdIII, YbIII)complexes [J]. Eur. J. Inorg. Chem.2004,1:33-36.
    [14] Wu C D, Lu C Z, Zuang H H, et al. Hydrothermal assembly of a novel three-dimensionalframework formed by [GdMo12O42]9-anions and nine coordinated GdIIIcations [J]. J. Am. Chem.Soc.2002,124:3836-3837.
    [15] Ritchie C, Boskovic C. Disassembly and reassembly of polyoxometalates: the formation of chainsfrom an adaptable precursor [J]. Cryst. Growth Des.2010,10:488-491.
    [16] Kortz U, Savelieff M G, Bassil B S, et al. A large novel polyoxotungstate:[AsIII26-6W65O217(H2O)7][J]. Angew. Chem. Int. Ed.2001,40:3384-3386.
    [17] Chang S, Zhang Z M, Li Y G, et al. Giant polytungstoarsenate clusters derived from new
    [As4W19O68(H2O)]14building blocks [J]. Aust. J. Chem.2010,63:680-686.
    [18] Hussain F, Conrad F, Patzke G R P. A Gadolinium-bridged polytungstoarsenate(III) nanocluster:[Gd608As12W124O432(H2O)22][J]. Angew. Chem. Int. Ed.2009,48:9088-9091.
    [19] Ritchie C, Moore E G, Speldrich M, et al. Terbium-polyoxometalate-organic complexes:correlation of structure with luminescence properties [J]. Angew. Chem. Int. Ed.2010,49:7702-7705.
    [20] Ritchie C, Miller C E, Boskovic C. The generation of a novel polyoxometalate-based3Dframework following picolinate-chelation of tungsten and potassium centres [J]. Dalton Trans.2011,40:12037-12039.
    [21] Ritchie C, Speldrich M, Gable R W, et al. Utilizing the adaptive polyoxometalate[As4-2W19O62(H2O)]1to support a polynuclear lanthanoid-based single-molecule magnet [J]. Inorg.Chem.2011,50:7004-7014.
    [22] Hussain F, Patzke G R. Self-assembly of dilacunary building blocks into high-nuclear[Ln16As16W164O576(OH)8(H82O)42]0(Ln=EuIII, GdIII, TbIII, DyIII, and HoIII) polyoxotungstates [J].Crystengcomm.2011,13:530-536.
    [23] Choppin G R, Peterman D R. Applications of lanthanide luminescence spectroscopy to solutionstudies of coordination chemistry [J]. Coord. Chem. Rev.1998,174:283-299.
    [24] Petoud S, Muller G, Moore E G, et al. Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexeswith strong circularly polarized luminescence [J]. J. Am. Chem. Soc.2007,129:77-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700