多金属氧酸盐-TiO_2复合膜在光伏器件和电致变色器件上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发新能源和节能是环境可持续发展的两个重要方面。近年来,染料敏化太阳能电池在利用太阳能方面显示出了一定的潜力;而电致变色智能窗可以通过改变外电压来改变它的透过率,以此来调节室内的光线和热量。在建筑节能领域中这种先进的调光玻璃显示了极大的经济效益。多金属氧酸盐(多酸)是一类具有纳米结构的金属氧簇,有着独特的结构和电化学性能,它在染料敏化太阳能电池和电致变色智能窗方面有极大地应用潜力。在这篇论文中,通过三种不同的方法制备了多酸-TiO_2复合膜,即:层接层法、溶胶-凝胶-丝网印刷法和电沉积法。根据复合膜不同的性能,将其成功的应用于高性能染料敏化太阳能电池和电致变色智能窗中。并对带有多酸-TiO_2复合膜的器件的性能做了全面的测试。
     1、利用LBL法制备的H3PW_(12)O_(40)(PW_(12))-TiO_2薄膜作为染料敏化太阳能电池的新型界面层。以多酸基薄膜为界面层的电池的性能做了J–V曲线测试、暗电流测试、开路电压衰减测试和单色光转化效率测试。多酸基的界面层有加速电子流动,抑制暗电流的作用。相比于没有界面层的电池,光电转化效率有54%的提升;相比与进行TiCl4水溶液前处理的电池,效率有20%的提升。
     2、利用溶胶-凝胶法制备的PW_(12)/TiO_2复合物,并与P25混合,利用丝网印刷法制备的薄膜作为染料敏化太阳能电池的光阳极。在染料敏化太阳能电池中,多酸可以起到减小电子复合、延长电子寿命的作用。利用PW_(12)/TiO_2复合物作为阳极的电池性能比纯P25作为阳极的电池有明显提高。转化效率有22.8%的提升。利用电化学阻抗和开路电压衰减法测试了多酸在光阳极中起的作用。
     3、开发在多孔TiO_2基底上电沉积多酸阴离子的方法。并以其作为电致变色智能窗的电致变色电极。这种方法具有简单、快速、易操作、低成本等优点。利用此方法制备的[NaX_5W_(30)O_(110)]n–(X=P, n=14; S, n=9)基电致变色智能窗表现出以下优势:褪色态透光性好、光学反差高、良好的长期稳定性和高的着色效率。
     4、利用电沉积方法将不同结构的多酸沉积到多孔TiO_2基底上,探索多酸结构与电致变色性能的关系。Wells–Dawson结构的多酸K6[P2W18O62]14H2O (P2W18)和它的单缺位衍生物K_(10)[P_2W_(17)O_(61)]20H_2O (P_2W)_(17))被成功的应用于电致变色智能窗。P2W17基电致变色智能窗在620nm处最大有93.1%的光学反差、着色时间0.90s、着色效率205.3cm2C–1。由于二者结构上的差异,P2W18基电致变色智能窗的性能稍差,其在646nm处的最大光学反差为48.7%、着色时间为0.97s、着色效率为176.8cm2C–1。并且二者均有良好的长期稳定性。更重要的是,我们首次研究了P2W17在不同电压下的近红外电致变色性质。在多酸基电致变色智能窗中,P2W17基智能窗有着最佳的性能。
Exploring new energy and energy saving both play important roles in attaining thepurpose of sustainable development. Dye sensitized solar cells (DSSCs) are promisingphotovoltaic device in the utilizing of solar energy. Electrochromic (EC) smart windows maybe electronically darkened or lightened with small applied voltages, allowing for controllingof daylight, solar heat gain, and internal heat loss through windows of the buildings andvehicles. Polyoxometalates (POMs) represent a well–known class of metal oxide nanoclusterswith intriguing structures and electrochemical properties, which have extreme potential to beapplied in photovoltaic and electrochromic devices. In this paper, POMs–TiO_2compositefilms have been fabricated by layer–by–layer (LBL), screen printing method andelectrodeposition method. The POMs–TiO_2composite films are successfully applied inDSSCs and EC smart windows. The performances of the devices have been fully tested.
     1. A new H3PW_(12)O40(PW_(12))–based interfacial layer for DSSCs has been fabricated by LBLmethod. The cells have been systemically tested by photocurrent–voltage curve,dark–current measurement, open–circuit voltage decay and the monochromatic incidentphoton–to–photocurrent conversion efficiency techniques. The PW_(12)–based interfaciallayer accelerates electron transfer and retards recombination, eventually leading to theenergy conversion efficiency increase efficiently. The investigations indicate that theenergy conversion efficiency of (PW_(12)/TiO_2)3–DSSC is significantly enhanced by54%at100mW cm–2compared with the DSSC with no–treatment and20%compared withTiCl4–treatment DSSC. POM is firstly introduced to the interfacial layer in modifying thephotoanode to accelerate electron transfer and retard recombination for improving theefficiency of DSSC in this work.
     2. PW_(12)–TiO_2composite have been successfully introduced into the photoanode of thedye–sensitized solar cells to reduce the recombination of the electrons which results inlonger electron lifetime. The cells with PW_(12)modified photoanodes show betterperformance than the cell with pure P25photoanode. The overall improvement of theefficiency is22.8%by using the PW_(12)modified photoanode. The effect of the POM wasstudied by electrochemical impedance spectroscopy and open–circuit voltage decaymeasurement. The results show that the electron lifetime becomes longer following by theincreasing of the amount of the PW_(12).
     3. A new electrodeposited method has been explored to prepare POMs-porous TiO_2composie films. The composite films have been applied in EC smart windows. It is a simple and low cost process to prepare the EC film by the solution–basedelectrodeposition method. The [NaX5W30O110]n–(X=P, n=14; S, n=9)–based EC smartwindows perform high transparency in bleach state, high optical contrast, long durability,and high coloration efficiency.4. Using the electrodeposite method the performance of the The Wells–Dawson type POMK6[P2W18O62]14H2O (P2W18) and its derivate K10[P2W17O61]20H2O (P2W17) has beenelectrodeposited on porous TiO_2substrate and applied in EC smart windows. Themaximum optical contrast for the P2W17–based EC smart window is93.1%at thewavelength of620nm and for the K6[P2W18O62]14H2O P2W18–based EC smart window is48.7%at646nm. The coloration time extracted for a90%transmittance for theP2W17–based EC smart window is0.9s and for the P2W18–based smart window is0.97s;the coloration efficiency for the P2W17–based EC smart window is205.3cm2C–1and theP2W18–based smart window is176.8cm2C–1. Both of the P2W17–and P2W18–based ECsmart windows have the features of remarkable durability over1000cycles. TheP2W17–based smart window has larger optical contrast and higher coloration efficiencythan the P2W18–based smart window. More significantly is the near–infrared behavior ofthe P2W17under different applied potentials was recorded for the first time by using thesmart window. We believe the performance of the P2W17–based smart window is thestate–of–the–art among the POMs–based EC smart windows.
引文
[1] Pope M T. Heterpopoly and Isopoly Oxometalates [M]. Springer Verlag: Berlin,1983,110.
    [2]王恩波,李阳光,鹿颖等,多酸化学概论,东北师范大学出版社.
    [3] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in SeveralDisciplines[J]. Angew. Chem. Int. Ed. Engl,1991,30:3438.
    [4] Baker L C W, in: S. Kirschner (Ed.), Advances in the Chemistry of the Coordination Compounds[M],Macmillan, New York,1961,608
    [5] Yamase T, Pope M T, Polyoxometalate Chemistry for Nano Composite Design[M], Kluwer AcademicPublisher, Dordrecht,2004.
    [6] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusterss Nanoscale Magnets[M].Chem. Rev.1998,98:239271.
    [7] Román P, Gutiérrez Zorrilla J M, Esteban Calderón C, et al. Synthesis, characterization and crystalstructure of the anilinium β octamolybdate dehydrate[J]. Polyhedron,1985,4(6):10431046.
    [8]Casan Pastor N, Gomez Romero P. Polyoxometalates: from inorganic chemistry to materials science[J].Front Biosci,2004,9:17591770.
    [9] Keggin J F, Proc R Soc,1934,144A,75.
    [10] Dawson B,The structure of the9(18) heteropoly anion in potassium9(18) tungstophosphateK6(P2W18O62)·14H2O[J]. Acta Crysallogr,1953,6:113126.
    [11] Anderson J S, Constitution of the Polyacid [J]. Nature,1937,140:850.
    [12] Wood J W. Acidic organophosphorus extractants V the dissociation, self association and partition ofdi n octyl phosphoric acid[J]. J Inorg Nucl Chem1968,30(1):253262
    [13] Tsay Y H, Silverton J V. Z.1973,137:256.
    [14] Lindqvist I, Ark. Kemi.1950,2:325.
    [15] Long D L, Cronin L. Towards Polyoxometalate Integrated Nanosystems[J]. Chem Eur J200612(14):36983706.
    [16] Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: From selfassembly to designer materials and devices[J]. Chem Soc Rev2007,36:105121.
    [17] Natalya V, Izarova, Pope M T, et al. Noble Metals in Polyoxometalates[J]. Angew. Chem. Int.Ed.2012,51:94929510.
    [18] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J].Chem Rev,1998,98(1):219238.
    [19] Clemente León M, Coronado E, Galán Mascarós J R, et al. Hybrid molecular materials based onorganic molecules and the inorganic magnetic cluster [M4(H2O)2(PW9O+34)2]10(M2=Co, Mn)[J]. J MaterChem1998,8:309312.
    [20] Chimamkpam E F C, Hussain F, Engel A, et al. Synthesis and Characterization of Hybrid MaterialsDerived from Polyaniline and Lacunary Keggin type Polyoxotungstates[J]. Z Anorg Allg Chem2009,635(45):624630.
    [21] Xi X, Dong S. Electrocatalytic reduction of nitrite using Dawson type tungstodiphosphate anions inaqueous solutions, adsorbed on a glassy carbon electrode and doped in polypyrrole film[J]. J Mol Catal A:Chem,1996,114(13):257265.
    [22] Coronado E, Gómez García C J. Polyoxometalate Based Molecular Materials[J]. Chem Rev1998,98(1):273296.
    [23] Judeinstein P. Synthesis and properties of polyoxometalates based inorganic organic polymers[J].Chem Mater,1992,4(1):47.
    [24] Adamczyk L, Kulesza P J, Miecznikowski K, et al. Effective Charge Transport inPoly(3,4ethylenedioxythiophene) Based Hybrid Films Containing Polyoxometallate Redox Centers[J]. JElecrochem Soc,2005,152(3): E98E103.
    [25] Cuentas Gallegos A K, Lira Cantú M, Casa Pastor N, et al. Nanocomposite Hybrid MolecularMaterials for Application in Solid State Electrochemical Supercapacitors[J]. Adv Funct Mater,2005,15(7):11251133
    [26] Zhang T R, Liu S Q, Faul C F J, et al. Organized Nanostructured Complexes of Polyoxometalates andSurfactants that Exhibit Photoluminescence and Electrochromism[J]. Adv Funct Mater2009,19(4):642652.
    [27] Zhang T R, Spitz C, Antionietti M,et al. Highly Photoluminescent Polyoxometaloeuropate SurfactantComplexes by Ionic Self Assembly[J]. Chem Eur J2005,11(3):10011009.
    [28] Jiang M, Zhai X, Liu M H. Fabrication and Photoluminescence of Hybrid Organized Molecular Filmsof a Series of Gemini Amphiphiles and Europium(III) Containing Polyoxometalate[J]. Langmuir2005,21(24):1112811135.
    [29] Bu W, Li H, Sun H, et al. Polyoxometalate Based Vesicle and Its Honeycomb Architectures on SolidSurfaces[J]. J Am Chem Soc,2005127(22):80168017
    [30] Li H, Sun H, Qi W, et al. Onionlike Hybrid Assemblies Based on Surfactant EncapsulatedPolyoxometalates[J]. Angew Chem Int Ed,2007,46(8):13001303.
    [31] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Science1997,277(29):12321237.
    [32] G. Decher, J.B. Schlenoff, Multilayer Thin Films[M]. Wiley—VCH, Weinheim,2002.
    [33] Xu B B, Xu L, Gao G G, et al. Effects of film structure on electrochromic properties of the multilayerfilms containing polyoxometalates[J]. J. Colloid Interface Sci2009,330(2):408414.
    [34] Wang B, Vyas R N, Shaik S. Preparation Parameter Development for Layer by Layer Assembly ofKeggin type Polyoxometalates[J]. Langmuir2007,23(22):1112011126.
    [35] Liu S Q, Kurth D G, Bredenk tter B, et al. The Structure of Self Assembled Multilayers withPolyoxometalate Nanoclusters[J]. J Am Chem Soc2002,124(41):1227912287.
    [36] Xu L, Wang E B, Li Z, et al. Preparation and nonlinear optical properties of ultrathin composite filmscontaining both a polyoxometalate anion and a binuclear phthalocyanine[J]. New J Chem.2002,26:782786
    [37] Guo Y, Hu C. Heterogeneous photocatalysis by solid polyoxometalates[J]. J Mol Cata A Chem,2007,262:136148.
    [38] Tsubomura H, Matsumura M, Nomura Y, et al. Dye sensitized zinc oxide: aqueous electrolyte:platinum photocell[J]. Nature1976,261:402403.
    [39] O’Regan B, Gr tzel M. A low cost high efficiency solar cell based on dye sensitized colloidal TiO2films[J]. Nature,1991,353:737740
    [40] Yella A, Lee H W, Tsao H N, et al. Porphyrin sensitized solar cells with cobalt (II/III) based redoxelectrolyte exceed12percent efficiency, Science2011,334:629634.
    [41] a) S dergren S, Hagfeldt A, Olsson J, et al. Theoretical Models for the Action Spectrum and theCurrent Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells[J]. JPhys Chem,1994,98(21):55525556. b) Cao F, Oskam G, Meyer G. J, et al. J Phys Chem,1996,100(42):1702117027; c) Schwarzburg K, Willig F. Origin of Photovoltage and Photocurrent in the NanoporousDye Sensitized Electrochemical Solar Cell[J]. J Phys Chem B,1999,103(28):57435746.
    [42] Gr tzel, M.; Moser, J. E. Solar Energy Conversion. In Electron Transfer in Chemistry; Balzani, V., Ed.;Wiley VCH: Weinheim,2001; Vol.5; pp589
    [43] a) Hagfeldt A, Lindquist S E, Gr tzel M. Charge carrier separation and charge transport innanocrystalline junctions[J]. Sol Energy Mater Sol Cells1994,32(3),245257; b) Hagfeldt A, Gr tzel M.Light Induced Redox Reactions in Nanocrystalline Systems[J]. Chem Rev,1995,95(1):4968
    [44] Huang S Y, Schlichth rl G, Nozik A J, et al. Charge Recombination in Dye Sensitized NanocrystallineTiO2Solar Cells [J]. J Phys Chem B1997,101:25762582.
    [45] Hamann T W, Jensen R A, Martinson A B F, et al. Advancing beyond current generationdye sensitized solar cells[J]. Energy Environ Sci,2008,1:6678
    [46] Pagliaro M, Palmisano G, Ciriminna R, et al. Nanochemistry aspects of titania in dye sensitized solarcells[J]. Energy Environ. Sci.2009,2:838844
    [47] Bisquert J, Zaban A, Salvador P. Analysis of the Mechanisms of Electron Recombination inNanoporous TiO2Dye Sensitized Solar Cells. Nonequilibrium Steady State Statistics and InterfacialElectron Transfer via Surface States[J]. J Phys Chem B,2002,106(43):87748782.
    [48] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity bycis X2bis(2,2' bipyridyl4,4' dicarboxylate)ruthenium(II) charge transfer sensitizers (X=Cl, Br, I,CN, and SCN) on nanocrystalline titanium dioxide electrodes[J]. J Am Chem Soc,1993,115(14):63826390.
    [49] Nazeeruddin M K, Zakeeruddin S M, Humphry Baker R, et al. Acid base equilibria of(2,2’-Bipyridyl-4,4’-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation oncharge-transfer sensitization of nanocrystalline titania[J]. Inorg Chem,1999,38(26):62986305.
    [50] Wang P, Zakeeruddin S M, Humphry baker R, et al. Molecular Scale Interface Engineering of TiO2Nanocrystals: Improve the Efficiency and Stability of Dye Sensitized Solar Cells[J]. Adv Mater,2003,15(24):21012104.
    [51] Gao F, Wang Y, Shi D, et al. Enhance the Optical Absorptivity of Nanocrystalline TiO2Film with HighMolar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye Sensitized Solar Cells[J]. JAm Chem Soc,2008,130(32):1072010728.
    [52] Stanley A, Matthews D. The Dark Current at the TiO2Electrode of a Dye Sensitized TiO2Photovoltaic Cell[J]. Aust J Chem,1995,48:12931300.
    [53] Boschloo G, Lindstrom J, Magnusson E, et al. Optimization of dye sensitized solar cells prepared bycompression method[J]. J Photochem Photobiol, A2002,148(13):1115
    [54] Wu J. H, Lan Z, Lin J M, et al. Effect of solvents in liquid electrolyte on the photovoltaic performanceof dye sensitized solar cells[J]. J Power Sources2007,173(1):585591.
    [55] Wang P, Klein C, Humphry Baker R, et al. Stable≥8%efficient nanocrystalline dye sensitized solarcell based on an electrolyte of low volatility[J]. Appl, Phys, Lett,2005,86:123508.
    [56] Fischer A, Pettersson H, Hagfeldt A, et al. Crystal formation involving1methylbenzimidazole iniodide/triiodide electrolytes for dye sensitized solar cells[J]. Sol Energy Mater Sol Cells,2007,91(12):10621065.
    [57] Kopidakis N, Neale N. R, Frank A J. Effect of an Adsorbent on Recombination and Band EdgeMovement in Dye Sensitized TiO2Solar Cells: Evidence for Surface Passivation[J]. J Phys Chem B2006,110(25):1248512489.
    [58] Boschloo G, H ggman L, Hagfeldt A. Quantification of the Effect of4tert Butylpyridine Addition toI/I3Redox Electrolytes in Dye Sensitized Nanostructured TiO2Solar Cells[J]. J Phys Chem B,2006,110(26):1314413150.
    [59] Huang S Y, Schlichthorl G, Nozik A J, et al. A. J. Charge Recombination in Dye SensitizedNanocrystalline TiO2Solar Cells[J]. J Phys Chem B,1997,101(14):25762582.
    [60] Feldt S M, Capple U B, Johansson E M J, et al. Characterization of surface passivation bypoly(methylsiloxane) for dye-sensitized solar cells employing the Ferrocene redox couple[J]. J Phys ChemC,2010,114(23):10551–10558.
    [61] Hattori S, Wada Y, Yanagida S, et al. Blue Copper Model Complexes with Distorted TetragonalGeometry Acting as Effective Electron Transfer Mediators in Dye Sensitized Solar Cells[J]. J Am ChemSoc,2005,127(26):96489654.
    [62] Li T C, Spokoyny A M, She C, et al. Ni(III)/(IV) Bis(dicarbollide) as a Fast, Noncorrosive RedoxShuttle for Dye Sensitized Solar Cells[J]. J Am Chem Soc,2010,132(13):45804582.
    [63] Sapp S A, Elliott C M, Contado C, et al. Substituted Polypyridine Complexes of Cobalt(II/III) asEfficient Electron Transfer Mediators in Dye Sensitized Solar Cells[J]. J Am Chem Soc,2002,124(37):1121511222.
    [64] Teng C, Yang X, Yuan C, et al. Two Novel Carbazole Dyes for Dye Sensitized Solar Cells withOpen Circuit Voltages up to1V Based on Br/Br3Electrolytes[J]. Org Lett,2009,11(23):55425545
    [65] Bergeron B V, Marton A, Oskam G, et al. Dye Sensitized SnO2Electrodes with Iodide andPseudohalide Redox Mediators[J]. J Phys Chem B,2005,109(2):937943.
    [66] Oskam G, Bergeron B V, Meyer G J, et al. Pseudohalogens for Dye Sensitized TiO2Photoelectrochemical Cells[J]. J Phys Chem B,2001,105(29):68676873.
    [67] Li L, Yang X, Zhao J, et al. Efficient organic dye sensitized solar cells based on modifiedsulfide/polysulfide electrolyte[J]. J Mater Chem,2011,21:55735575.
    [68] Zhang J, Zhao Z, Wang X, et al. Increasing the Oxygen Vacancy Density on the TiO2Surface byLa Doping for Dye Sensitized Solar Cells [J]. J Phys Chem C,2010,114:1839618400.
    [69] Zhang J, Peng W, Chen Z, et al. Effect of Cerium Doping in the TiO2Photoanode on the ElectronTransport of Dye Sensitized Solar Cells [J]. J Phys Chem C,2012,116:1918219190
    [70] Zhang X, Liu F, Huang Q L, et al. Dye Sensitized W Doped TiO2Solar Cells with a TunableConduction Band and Suppressed Charge Recombination[J]. J Phys Chem C,2011,115:1266512671
    [71] Ko K H, Lee Y C, Jung Y J. Enhanced efficiency of dye sensitized TiO2solar cells (DSSC) by dopingof metal ions[J]. J Colloid Interface Sci,2005,283:482487.
    [72] Nikolay T, Larina L, Shevaleevskiy O,et al. Electronic structure study of lightly Nb doped TiO2electrode for dye sensitized solar cells[J].Energy Environ Sci,2011,4:14801486
    [73] Lü X, Mou X, Wu J, et al. Improved Performance Dye Sensitized Solar Cells Using Nb Doped TiO2Electrodes: Efficient Electron Injection and Transfer[J]. Adv Funct Mater,2010,20:509515
    [74] Ghosh R, Hara Y, Alibabaei L, et al. Increasing Photocurrents in Dye Sensitized Solar Cells withTantalum Doped Titanium Oxide Photoanodes Obtained by Laser Ablation[J]. Appl Mater Interfaces,2012,4:45664570.
    [75] Wang K P, Teng H. Zinc doping in TiO2films to enhance electron transport in dye sensitized solarcells under low intensity illumination [J]. Phys Chem Chem Phys.,2009,11:94899496
    [76] Xie Y, Huang N, You S, et al. Improved performa nce of dye sensitiz ed solar cells by trace amountCr doped TiO2photoelectrodes [J]. J Power Sources,2013,224:168173
    [77] Q Liu, Zhou Y, Duan Y, et al. Enhanced conversion efficiency of dye sensitized titanium dioxide solarcells by Ca doping [J].J Alloys Compounds,2013,548:161165
    [78] Sun L, Gao L, Liu Y. Enhanced dye sensitized solar cell using graphene TiO2photoanode preparedby heterogeneous coagulation [J]. Appl Phys Lett,2010,96:083113.
    [79] Sang X J, Li J S, Chen W L, et al. Polyoxometalate assisted synthesis of the ZnO polyhedra in analkali solution and their photoelectrical properties[J]. Mater Lett,2012,87:3942.
    [80] Li J, Sang X, Chen W, et al. The Application of ZnO Nanoparticles Containing Polyoxometalates inDye Sensitized Solar Cells[J]. Eur J Inorg Chem, DOI:10.1002/ejic.201201120.
    [81] Kim Y J, Lee Y H, Lee M H, et al. Formation of Efficient Dye-Sensitized Solar Cells by Introducingan Interfacial Layer of Long-Range Ordered Mesoporous TiO2Thin Film[J]. Langmuir,2008,24(22):1322513230.
    [82] Xia J, Masaki N, Jiang K, et al. Sputtered Nb2O5as a novel blocking layer at conducting glass/TiO2interfaces in dye-sensitized ionic liquid solar cells[J]. J Phys Chem C,2007,111:8092-8097.
    [83] Handa S, Haque S A, Durrant J R. Saccharide Blocking Layers in Solid State Dye Sensitized SolarCells[J]. Adv Funct Mater2007,17:28782883.
    [84] Xu F, Dai M, Lu Y, et al. Hierarchical ZnO Nanowire Nanosheet Architectures for High PowerConversion Efficiency in Dye-Sensitized Solar Cells[J]. J Phys Chem C,2010,114(6):27762782.
    [85] Shao F, Sun J, Gao L, et al. Forest-like TiO2hierarchical structures for efficient dye-sensitized solarcells[J]. J Mater Chem,2012,22:68246830.
    [86] Jung H S, Lee J K, Nastasi M, et al. Preparation of Nanoporous MgO-Coated TiO2Nanoparticles andTheir Application to the Electrode of Dye-Sensitized Solar Cells[J]. Langmuir2005,21:10332-10335
    [87] Wang Z S, Huang C H, Huang Y Y, et al. A Highly Efficient Solar Cell Made from a Dye-ModifiedZnO-Covered TiO2Nanoporous Electrode[J]. Chem Mater,2001,13(2):678682.
    [88] Yang S M, Huang Y, Huang C, et al. Enhanced Energy Conversion Efficiency of the Sr2+-ModifiedNanoporous TiO2Electrode Sensitized with a Ruthenium Complex[J]. Chem Mater,2002,14(4):15001504.
    [89] Chen S G, Chappel S, Diamant Y, et al. Preparation of Nb2O5Coated TiO2Nanoporous Electrodes andTheir Application in Dye-Sensitized Solar Cells[J]. Chem Mater,2001,13(12):46294634
    [90] Diamant Y, Chen S G, Melamed O, et al. Core Shell Nanoporous Electrode for Dye Sensitized SolarCells: the Effect of the SrTiO3Shell on the Electronic Properties of the TiO2Core[J]. J Phys Chem B,2003,107(9):19771981.
    [91] Lampert C M. Large area smart glass and integrated photovoltaics[J]. Sol Energy Mater Sol Cells,2003,76:489499.
    [92] Baetens R, Jelle P B, Gustavsen A. Properties, requirements and possibilities of smart windows fordynamic daylight and solar energy control in buildings: A state of the art review[J]. Sol Energy Mat SolCells,2010,94:87105.
    [93] Gillaspie D T, Tenent R C, Dillon A C. Metal oxide films for electrochromic applications: presenttechnology and future directions[J]. J Mater Chem,2010,20:95859592.
    [94]Platt J R. Electrochromism, a possible change of color producible in dyes by an electric Field[J]. JChem Phys,1961,34(3):862863
    [95] Deb S K. A novel electrophotographic system[J]. Applied Optics,1969,(suppl.1).
    [96] Burke L D, Murphy O J. Electrochromic behaviour of oxide films grown on cobalt and manganese inbase[J]. J Electroanal Chem,1980,109(13):373377.
    [97] Burke L D, Murphy O J. Electrochromic behaviour of electrodeposited cobalt oxide films[J]. JElectroanal Chem,1980,112(2):379382.
    [98] Gottesfeld S, McIntyre J E D, Beni G, et al. Electrochromism in anodic iridium oxide films[J]. ApplPhys Lett,1978,33(2):208.
    [99] Gottesfeld S, Mclntyre J D E. Electrochromism in Anodic Iridium Oxide Films: II. pH Effects onCorrosion Stability and the Mechanism of Coloration and Bleaching[J]. J Electrochem Soc,1979,126(5):742750.
    [100] Tell B, Wudl F. Electrochromic effects in solid phosphotungstic acid and phosphomolybdic acid[J]. JAppl Phys,1979,50(9):5944.
    [101] Svensson J S E M, Granqvist C G. Electrochromism of nickel based sputtered coatings[J]. SolEnergy Mater Sol Cells,1987,16(13):1926.
    [102]Granqvist C G. Electrochromic tungsten oxide films: Review of progress19931998[J]. Sol. EnergyMater. Sol. Cells,2000,60(3):201262.
    [103]Abo El Soud A M, Mansour B, Soliman L I. Optical and electrical properties of V2O5thin films[J].Thin Solid Films,1994,247(1):140143
    [104] tangar U L, Orel B, Grabec I, et al. Optical and electrochemical properties of CeO2and CeO2TiO2coatings[J]. Sol Energy Mater Solar Cells,1993,31(2):171185.
    [105] Burke L D, Murphy O J. Electrochromic behaviour of oxide films grown on cobalt and manganese inbase[J]. J Electroanal Chem,1980,109(13):373377.
    [106] Cogan S F, Plante T D, Parker M, et al. Electrochromic solar attenuation in crystalline and amorphousLixWO3[J]. Solar Energy Mater Solar Cells,1986,14(35):185193.
    [107] Gottesfeld S. The Anodic Rhodium Oxide Film: A Two Color Electrochromic System[J]. JElectrochem Soc,1980,127(2):272277.
    [108] Burke L D, Whelan D P. The behaviour of ruthenium anodes in base[J]. J Electroanal Chem,1979,103(2):179187.
    [109] Dinh N N, Oanh N T T, Long P D, et al. Electrochromic properties of TiO2anatase thin filmsprepared by dipping sol gel method[J]. Thin Solid Films,2003,423:7076.
    [110] Niklasson G A, Granqvist C G. Electrochromics for smart windows: thin films of tungsten oxide andnickel oxide, and devices based on these[J]. J Mater Chem,2007,17:127156.
    [111] Monk P M S, Mortimer R J, Rosseinsky D R, Electrochromism and Electrochromic Devices,Cambridge UniversityPress, Cambridge, UK,2007
    [112] Abe Y, Lee S H, Zayim E O, et al. Effect of O2Flow Concentration during Reactive Sputtering of NiOxide Thin Films on Their Electrochemical and Electrochromic Properties in Aqueous Acidic and BasicElectrolyte Solutions[J]. Jpn J Appl Phys,2006,45(10A):77807783.
    [113] Avendano E, Rensmo H, Azens A, et al. Coloration Mechanism in Proton IntercalatedElectrochromic Hydrated NiOyand Ni1-xVxOyThin Films[J]. J Electrochem Soc,2009,156(8): P132.
    [114] Chawla A K, Singhal S, Gupta H O, et al. Effect of sputtering gas on structural and optical propertiesof nanocrystalline tungsten oxide films[J]. Thin Solid Films,2008,517(3):10421246.
    [115] Xia X H, Tu J P, Zhang J, et al. Morphology effect on the electrochromic and electrochemicalperformances of NiO thin films[J]. Electrochim Acta,2008,53(18):57215724.
    [116] Kubo T, Nishikitani Y, Sawai Y, et al. Electrochromic Properties of LixNiyO Films Deposited by RFMagnetron Sputtering[J]. J Electrochem Soc,2009,156(8): H629H633.
    [117] Garg D, Henderson P B, Hollingsworth R E, et al. An economic analysis of the deposition ofelectrochromic WO3via sputtering or plasma enhanced chemical vapor deposition[J]. Mater Sci Eng B,2005,119(3):224231.
    [118] Baeck S H, Choi K S, Jaramillo T F, et al. Enhancement of Photocatalytic and ElectrochromicProperties of Electrochemically Fabricated Mesoporous WO3Thin Films[J]. Adv. Mater.,2003,15(15):12691273.
    [119] Meulenkamp E A. Mechanism of WO3Electrodeposition from Peroxy Tungstate Solution[J]. JElectrochem Soc,1997,144(5):16641671.
    [120] Orel Z C, Hutchins M G, McMeeking G. The electrochromic properties of hydrated nickel oxidefilms formed by colloidal and anodic deposition[J]. Sol Energy Mater Sol Cells,1993,30(4):327337.
    [121] Vidales Hurtado M A, Mendoza Galvan A. Optical and structural characterization of nickeloxide based thin films obtained by chemical bath deposition[J]. Mater Chem Phys,2008,107(1):3328.
    [122] Najdoski M Z, Todorovski T. A simple method for chemical bath deposition of electrochromictungsten oxide films[J]. Mater Chem Phys,2007,104(23):483487.
    [123] Livage J, Ganguli D. Sol gel electrochromic coatings and devices: A review[J]. Sol. Energy MaterSol Cells,2001,68:365381.
    [124] Kamal H, Elmaghraby E K, Ali S A, et al. The electrochromic behavior of nickel oxide films sprayedat different preparative conditions[J]. Thin Solid Films,2005,483:330339.
    [125] Regragui M, Addou M, Outzourhit A, et al. Electrochromic effect in WO3thin films prepared byspray pyrolysis[J]. Sol. Energy Mater Sol Cells,2003,77:341350
    [126] Tenent D C, Gillaspie D T, Miedaner A, et al. Fast switch electrochromic Li+doped NiO film byultrasonic spray deposition[J]. J Electrochem Soc,2010,157(3): H318H322.
    [127] Monk P M S, Mortimer R J, Rosseinsky D R. Electrochromism and Electrochromic Devices[M].Cambridge University Press, Cambridge, UK,2007
    [128] V. Whipple, Sonotek Corporation,2010, Personal communication
    [129] Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of Ultrathin FilmsSelf Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate[J]. ChemMater1998,10(8):22052211.
    [130] Liu S, Kurth D G, M hwald H. A Thin Film Electrochromic Device Based on a PolyoxometalateCluster[J]. Adv Mater2002,14(3):225228.
    [131] Bi L H, Zhou W H, Jiang J G, et al. Synthesis, characterization of magnesium substitutedtungstoarsenate [As2W15Mg3O62]18, and its electrochromism[J]. J Electroanal Chem,2008,624:269274.
    [132] Li C, Halloran K P O, Ma H. Multifunctional Multilayer Films Containing Polyoxometalates andBismuth Oxide Nanoparticles[J]. J Phys Chem B,2009,113(23):80438048.
    [133] Gao G, Xu L, Wang W, et al. Electrochromic ultra thin films based on cerium polyoxometalate[J]. JMater Chem2004,14:20242029.
    [134] Gao G, Xu L, Wang W, et al. Electrochromic multilayer films based on trilacunary Dawson typePolyoxometalate[J]. Electrochim Acta2005,50:11011106.
    [135] Xu B, Xu L, Gao G, et al. Nanosized multilayer films with concurrent photochromism andelectrochromism based on Dawson type polyoxometalate[J]. App Surface Sci2007,253:31903195.
    [136] Liu S, Xu L,Gao G, et al. Multicolor electrochromic ultrathinfi lms based on neutral red andpolyoxometalate[J]. Thin Solid Films,2009,517:46684672.
    [137] Xu B, Xu L, Gao G, et al. Multicolor electrochromic and pH sensitive nanocomposite thin film basedon polyoxometalates and polyviologen[J]. Electrochim Acta,200954:22462252.
    [138] Liu S, Xu L, Gao G, et al. Electrochromic multilayer films with enhanced stability based onpolyoxometalate and TiO2[J]. Mater Chem Phy,2009,116:8893.
    [139] Liu S, Xu L, Li F, et al. Carbon nanotubes assisted polyoxometalate nanocomposite film withenhanced electrochromic performance[J]. Electrochim Acta,2011,56:81568162.
    [140] Liu S, Xu L, Li F, et al. Enhanced electrochromic performance of composite films by combination ofpolyoxometalate with poly(3,4ethylenedioxythiophene)[J]. J Mater Chem,2011,21:19461952.
    [141] Creaser I, Heckel M C, Neitz R J, et al. Rigid nonlabile polyoxometalate cryptates [ZP(5-n)-5W30O110]1that exhibit unprecedented selectivity for certain lanthanide and other multivalent cations[J]. Inorg. Chem.1993,32(9):15731578.
    [142] Zhang Z M, Yao S, Li Y G, et al. Inorganic Crown Ethers: Sulfate-Based PreysslerPolyoxometalates[J]. Chem Eur J,2012,18(30):91849188.
    [143] Contant R, Klemperer W G, Yaghi O.2007Potassium Octadecatungstodiphosphates(V) and RelatedLacunary Compounds[M]. Inorganic Syntheses,27(ed A. P. Ginsberg), John Wiley&Sons, Inc., Hoboken,NJ, USA. doi:10.1002/9780470132586.ch18.
    [1] a) O’Regan B, Gr tzel M. A low cost high efficiency solar cell based on dye sensitized colloidal TiO2films[J]. Nature,1991,353:737740; b) Boschloo G, Hagfelt A. Characteristics of the Iodide/TriiodideRedox Mediator in Dye Sensitized Solar Cells[J]. Acc Chem Res2009,42(11):18191826; c) Gr tzel M.Solar Energy Conversion by Dye Sensitized Photovoltaic Cells[J]. Inorg Chem2005,44:68416851; d)Yella A, Lee H W, Tsao H N, et al. Porphyrin sensitized solar cells with cobalt (II/III) based redoxelectrolyte exceed12percent efficiency[J]. Science2011,334:629634; e) Gr tzel M. Recent Advances inSensitized Mesoscopic Solar Cells[J]. Acc Chem Res2009,42(11):17881798; f) Qiu Y, Chen W, Yang S.Double Layered Photoanodes from Variable Size Anatase TiO2Nanospindles: A Candidate forHigh Efficiency Dye Sensitized Solar Cells[J]. Angew Chem Int Ed2010,49(21):36753679.
    [2]Guoa W, Shena Y, Boschloob G, et al. Influence of nitrogen dopants on N doped TiO2electrodes andtheir applications in dye sensitized solar cells[J]. Electrochim Acta2011,56:46114617.
    [3]Hagfeldt A, Boschloo G, Sun L, et al. Dye Sensitized Solar Cells[J]. Chem Rev2010,110(11):65956663.
    [4]Ondersma J W, Hamann T W. Theoretical study of charge recombination at the TiO2electrolyteinterface in dye sensitised solar cells[J]. J. Am. Chem. Soc.2011,133:82648271.
    [5] a) Li R Z, Liu J Y, Cai N, et al. Synchronously reduced surface states, charge recombination, and lightabsorption length for high performance organic dye sensitized solar cells[J]. J. Phys. Chem. B2010,114:44614464; b) Yu Q J, Wang Y H, Yi Z H, et al. High Efficiency Dye Sensitized Solar Cells: TheInfluence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States[J]. Nano2010,4(10):60326038; c) Wang M, Moon S J, Zhou D F, et al. Enhanced Light HarvestingAmphiphilic Ruthenium Dye for Efficient Solid State Dye Sensitized Solar Cells[J]. Adv Funct Mater2010,20(11):18211826.
    [6]Gregg B A, Pichot F, Ferrere S, et al. Interfacial Recombination Processes in Dye Sensitized Solar Cellsand Methods To Passivate the Interfaces[J]. J. Phys. Chem. B2001,105(7):14221429.
    [7] a) Hwang D, Jo S M, Kim D Y, et al. High Efficiency, Solid State, Dye Sensitized Solar Cells UsingHierarchically Structured TiO2Nanofibers[J]. Appl Mater Interfaces2011,3(5):15211527; b) Hwang D,Lee H, Jang S Y, Jo S M, et al. Electrospray Preparation of Hierarchically structured Mesoporous TiO2Spheres for Use in Highly Efficient Dye Sensitized Solar Cells[J]. Appl. Mater. Interfaces2011,3(7):27192725.
    [8] a) Zhu R, Jiang C Y, Liu B, et al. Highly Efficient Nanoporous TiO2Polythiophene Hybrid Solar CellsBased on Interfacial Modification Using a Metal Free Organic Dye[J]. Adv Mater2009,21(9):9941000;b) Xia J B, Masaki N, Jiang K, et al. Sputtered Nb2O5as a Novel Blocking Layer at Conducting Glass/TiO2Interfaces in Dye Sensitized Ionic Liquid Solar Cell]J]. J Phys Chem C2007,111(22):80928097; c) XiaJ B, Masaki N, Jiang K J, et al. Sputtered Nb2O5as an effective blocking layer at conducting glass and TiO2interfaces in ionic liquid based dye sensitized solar cells[J]. Chem Commun2007,138140; d) Peng B,Jungmann G, J ger C, et al. Systematic investigation of the role of compact TiO2layer in solid statedye sensitized TiO2solar cells[J]. Coord Chem Rev2004,248(1314):14791489; e) Patrocinio A O T,Paterno L G, MurakamiIha N Y, Role of Polyelectrolyte for Layer by Layer Compact TiO2Films inEfficiency Enhanced Dye Sensitized Solar Cells[J] J. Phys. Chem. C2010,114(41):1795417959; f) ItoS, Liska P, Comte P, et al. Control of dark current in photoelectrochemical (TiO32/I I) and dye sensitizedsolar cells[J]. Chem Commun2005,43514353.
    [9] a) Jung H S, Lee J K, Nastasi M. Preparation of Nanoporous MgO Coated TiO2Nanoparticles andTheir Application to the Electrode of Dye Sensitized Solar Cells [J]. Langmuir2005,21(23):1033210335; b) Palomares E, Clifford J N, Haque S A, et al. Slow charge recombination indye sensitised solar cells (DSSC) using Al2O3coated nanoporous TiO2films[J]. Chem Commun2002,14641465; c) Palomares E, Clifford J N, Haque S A, et al. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers[J]. J AmChem Soc2003,125(2):475482; d) Kay A, Gr tzel M. Dye Sensitized Core Shell Nanocrystals:Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an InsulatingOxide[J]. Chem Mater2002,14(7):29302935; e) Diamant Y, Chen S G, Melamed O, et al. Core ShellNanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3Shell on the ElectronicProperties of the TiO2Core[J]. J Phys Chem B2003,107(9):19771981; f) Handa S, Haque S A, DurrantJ R. Saccharide Blocking Layers in Solid State Dye Sensitized Solar Cells[J]. Adv Funct Mater2007,17(15):28782883.
    [10] Park H, Choi W. Photoelectrochemical Investigation on Electron Transfer Mediating Behaviors ofPolyoxometalate in UV Illuminated Suspensions of TiO2and Pt/TiO2[J]. J Phys Chem B.2003,107(16):38853890.
    [11] Sun Z X, Xu L, Guo W H, et al. Enhanced Photoelectrochemical Performance of Nanocomposite FilmFabricated by Self Assembly of Titanium Dioxide and Polyoxometalates[J]. J Phys Chem C2010,114(11):52115216.
    [12] Izumi Y, Ogawa M, Urabe K. Alkali metal salts and ammonium salts of Keggin type heteropolyacidsas solid acid catalysts for liquid phase Friedel Crafts reactions[J]. Applied Catalysis A: General,1995,132(1):127140.
    [13] Hiskia A, Mylonas A, Papaconstantinou E. Comparison of the photoredox properties ofpolyoxometallates and semiconducting particles[J]. Chem. Soc. Rev.2001,30:6269.
    [14] O’Regan B, Moser J, Anderson M, et al. Vectorial electron injection into transparent semiconductormembranes and electric field effects on the dynamics of light induced charge separation[J]. J Phys Chem1990,94(24):87208726.
    [15] Liu S P, Xu L, Gao G G, et al. Electrochromic multilayer films with enhanced stability based onpolyoxometalate and TiO2[J]. Mater Chem Phys2009,116(1):8893.
    [16] Ito S, Chen P, Comte P, et al. Fabrication of screen printing pastes from TiO2powders fordye sensitised solar cells[J]. Prog Photovolt: Res Appl2007,15(7):603612.
    [17] M. T. Pope (Eds), Y. Jeannin, M. Fournier, Heteropoly and Isopoly Oxometalates, Springer Verlag,Berlin, New York,1983, pp.8591.
    [18]Priya D N, Modak J M, Raichur A M. LbL Fabricated Poly(Styrene Sulfonate)/TiO2Multilayer ThinFilms for Environmental Applications[J]. Appl. Mater. Interfaces2009,1(11):26842693.
    [19] Yu H, Zhang S Q, Zhao H Y, et al. High Performance TiO2Photoanode with an Efficient ElectronTransport Network for Dye Sensitized Solar Cells[J] J. Phys. Chem. C2009,113(36):1627716282.
    [20] a) Bisquert J, Zaban A, Greenshtein M, et al. Determination of Rate Constants for Charge Transfer andthe Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye Sensitized Solar Cellsby Open Circuit Photovoltage Decay Method[J]. J Am Chem Soc2004,126(41):1355013559; b) ZabanA, Greenshtein M, Bisquert J. Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cellsby Open Circuit Voltage Decay Measurements[J]. Chemphyschem2003,4(8):861864.
    [1] a) O’Regan B, Gr tzel M. A low cost high efficiency solar cell based on dye sensitized colloidal TiO2films[J]. Nature,1991,353:737740; b) Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodideredox mediator in dye sensitized solar cells[J]. Acc Chem Res,2009,42(11):18191826; c) Gr tzel M,Solar energy conversion by dye sensitized photovoltaic cells[J]. Inorg Chem,2005,44(20):68416851; d)Yella A, Lee H W, Tsao H N, et al. Porphyrin sensitized solar cells with cobalt (II/III) based redoxelectrolyte exceed12percent efficiency[J]. Science,2011,334:629634; e) Gr tzel M, Recent advances insensitized mesoscopic solar cells[J]. Acc Chem Res,2009,42(11):17881798; f) Qiu Y, Chen W, Yang S.Double layered photoanodes from variable size anatase TiO2nanospindles: a candidate forhigh efficiency dye sensitized solar cells[J]. Angew Chem Int Ed,2010,49(21):36753679.
    [2] Guoa W, Shena Y, Boschloob G, et al. Influence of nitrogen dopants on N doped TiO2electrodes andtheir applications in dye sensitized solar cells[J]. Electrochim Acta,2011,56:46114617.
    [3] Zheng Y Z, Tao X, Wang L X, et al. Novel ZnO based film with double light scattering layers asphotoelectrodes for enhanced efficiency in dye sensitized solar cells[J]. Chem Mater,2010,22(3):928934.
    [4] Hara K, Zhao Z G, Cui Y, et al. Nanocrystalline electrodes based on nanoporous walled WO3nanotubesfor organic dye sensitized solar cells[J]. Langmuir,2011,27:1273012736.
    [5] a) Hsiao P T, Tung Y L, and Teng H. Electron transport patterns in TiO2nanocrystalline films ofdye sensitized solar cells[J]. J Phys Chem C,2010,114:67626769; b) Barnes P R F, Anderson A Y,Durrant J R, et al. Simulation and measurement of complete dye sensitised solar cells: including theinfluence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient devicebehaviour[J]. Phys Chem Chem Phys,2011,13:57985816; c) O’Regan B C, Bakker K, Kroeze J, et al.Measuring charge transport from transient photovoltage rise times. A new tool to investigate electrontransport in nanoparticle films[J]. J Phys Chem B,2006,110(34)1715517160; d) Nissfolk J, Fredin K,Hagfeldt A, et al. Recombination and transport processes in dye sensitized solar cells investigated underworking conditions[J]. J Phys Chem B,2006,110(36):1771517718.
    [6] Huang S Y, Schlichthorl G, Nozik A J, et al. Recombination in dye sensitized nanocrystalline TiO2solarcells[J]. J Phys Chem B,1997,101(14):25762582.
    [7] a) Shao F, Sun J, Gao L, et al. Forest like TiO2hierarchical structures for efficient dye sensitized solarcells[J]. J Mater Chem,2012,22:68246830; b) Kim J, and Lee M, Laser welding of nanoparticulate TiO2and transparent conducting oxide electrodes for highly efficient dye sensitized solar cell[J].Nanotechnology,2010,21(34):345203; c) Qu J, Li G R, and Gao X P, One dimensional hierarchicaltitania for fast reaction kinetics of photoanode materials of dye sensitized solar cells[J]. Energy EnvironSci,2010,3:20032009.
    [8] a) Kim Y J, Lee Y H, Lee M H, et al. Ormation of efficient dye sensitized solar cells by introducing aninterfacial layer of long range ordered mesoporous TiO2thin film[J]. Langmuir,2008,24:1322513230; b)Ahmed S, Pasquier A D, Asefa T, et al. Improving microstructured TiO2photoanodes for dye sensitizedsolar cells by simple surface treatment[J]. Adv Energy Mater,2011,1:879887; c) Kim S R, Parvez M Kand Chhowalla M. UV reduction of graphene oxide and its application as an interfacial layer to reduce theback transport reactions in dye sensitized solar cells[J]. Chem Phys Lett,2009,483:124127.
    [9] Ning Z, Fu Y and Tian H. Improvement of dye sensitized solar cells: what we know and what we needto know[J]. Energy Environ Sci,2010,3:11701181.
    [10] Clifford J N, Palomares E, Nazeeruddin M K, et al. Multistep electron transfer processes on dyeco sensitized nanocrystalline TiO2films[J]. J Am Chem Soc,2004,1269(18):56705671.
    [11] a) Jung H S, Lee J K, Nastasi M, Preparation of nanoporous MgO coated TiO2nanoparticles and theirapplication to the electrode of dye sensitized solar cells[J]. Langmuir,2005,21(23):1033210335; b)Palomares E, Clifford J N, Haque S A, et al. Slow charge recombination in dye sensitised solar cells(DSSC) using Al2O3coated nanoporous TiO2films[J]. Chem Commun,2002,14:14641465; c) PalomaresE, Clifford J N, Haque S A, et al. Sensitized solar cells by the use of conformally deposited metal oxideblocking layers[J]. J Am Chem Soc,2003,125(2):475482; d) Kay A, Gr tzel M, Dye sensitizedcore shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer ofan insulating oxide[J]. Chem Mater2002,14(7):29302935; e) Handa S, Haque S A and Durrant J R,Saccharide blocking layers in solid state dye sensitized solar cells[J]. Adv Funct Mater,2007,17:28782883.
    [12] a) Zhang J, Zhao Z, Wang X, et al. Increasing the oxygen vacancy density on the TiO2surface byLa doping for dye sensitized solar cells[J]. J Phys Chem C.2010,114(43):1839618400; b) Santra P Kand Kamat P V, Mn doped quantum dot sensitized solar cells: a strategy to boost efficiency over5%[J]. JAm Chem Soc,2012,134(5):25082511; c) Nikolay T, Larina L, Shevaleevskiy O, et al. Electronicstructure study of lightly Nb doped TiO2electrode for dye sensitized solar cells[J]. Energy Environ Sci,2011,4:14801486; d) Lü X, Mou X, Wu J, et al. Improved performance dye sensitized solar cells usingNb doped TiO2electrodes: efficient electron injection and transfer[J]. Adv Funct Mater,2010,20(3):509515; e) Zhang X, Liu F, Huang Q L, et al. Dye sensitized W doped TiO2solar cells with a tunableconduction band and suppressed charge recombination[J]. J Phys Chem C,2011,115:1266512671; f)Wang K P and Teng H, Zinc doping in TiO2films to enhance electron transport in dye sensitized solarcells under low intensity illumination[J]. Phys Chem Chem Phys,2009,11:94899496; g) Navas J,Lorenzo C F, Aguilar T, et al. Improving open circult voltage in DSSCs using Cu doped TiO2as asemiconductor[J]. Phys Status Solidi, A DOI:10.1002/pssa.201127336.
    [13] a) Ko K H, Lee Y C, Jung Y J, Enhanced efficiency of dye sensitized TiO2solar cells (DSSC) bydoping of metal ions[J]. J Colloid Interface Sci,2005,283(2):482487; b) Wu J, Wang J, Lin J, et al.Enhancement of the Photovoltaic performance of dye sensitized solar cells by dopingY0.78Yb0.20Er0.02F3in the photoanode[J]. Adv Energy Mater,2012,2:7881.
    [14] a) Sun S, Gao L, and Liu Y, Enhanced dye sensitized solar cell using graphene TiO2photoanodeprepared by heterogeneous coagulation[J]. Appl Phys Lett,2010,96:83113;(b) Jang Y H, Xin X, Byun M,et al. An unconventional route to high efficiency dye sensitized solar cells via embedding graphitic thinfilms into TiO2nanoparticle photoanode[J]. Nano Lett2012,12:479485.
    [15] a) Müller A, Pope M T, Peters F, et al. Polyoxometalates: very large clusters nanoscale magnets[J].Chem Rev,1998,98(1):239272; b) Artero V, Proust A, Herson P, et al. Synthesis and characterization ofthe first carbene derivative of a polyoxometalate[J]. J Am Chem Soc,2003,125(37):1115611157; c)Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in deveral disciplines[J].Angew Chem Int Ed,1991,30(1):3438; d) Müller A, Induced molecule self organization[J]. Nature,1991,352:115116;(e) Müller A, Shah S Q N, B gge H, et al. Molecular growth from a Mo176to aMo248cluster[J]. Nature,1999,397:4850; f) Long D L, Tsunashima R, Cronin L, Polyoxometalates:Building Blocks for Functional Nanoscale Systems[J]. Angew Chem Int Ed,2010,49:17361758.
    [16] Park H, Choi W. Photoelectrochemical Investigation on Electron Transfer Mediating Behaviors ofPolyoxometalate in UV Illuminated Suspensions of TiO2and Pt/TiO2, J Phys Chem B,2003,107(16):38853890.
    [17] Ito S, Chen P, Comte P, et al. Fabrication of screen printing pastes from TiO2powders fordye sensitised solar cells[J]. Prog Photovolt Res Appl,2007,15:603612.
    [18] a) Fierro J L G, Arrua L A, Nieto J M L, et al. Surface properties of Co precipitated V Ti O catalystsand their relation to the selectiveoxidation of isobutene[J]. Appl Catalysis,1988,37,323373; b) GaluskaA A, Uht J C, Marquez N, Reactive and nonreactive ion mixing of Ti films on carbon substrates[J]. J VacSci Technol A1988,6,110.
    [19] a) Xu L, Zhang H Y, Wang E B, et al. Photoluminescent multilayer films based on polyoxometalates[J].J Mater Chem,2002,12:654657; b) Han Z G, Chai T, Zhai X L,et al. One dimensional polyoxometalatepolymer constructed from V W cluster by using asymmetrical bipyridine ligand[J]. Solid State Sciences,2009,11(2):19982000; c) Qi W, Li H L, Wu L X. Stable photochromism and controllable reductionproperties of surfactant encapsulated polyoxometalate/silica hybrid films[J]. J Phys Chem B2008,112:82578263.
    [20] a) Adachi M, Sakamoto M, Jiu J, et al. Determination of parameters of electron transport indye sensitized solar cells using electrochemical impedance spectroscopy[J]. J Phys Chem B,2006,110(28):1387213880; b) Wang Q, Moser J E, Gr tzel M. Electrochemical impedance spectroscopic analysisof dye sensitized solar cells[J]. J Phys Chem B,2005,109(31):1494514953.
    [21] a) Bisquert J, Zaban A, Greenshtein M, et al. Determination of rate constants for charge transfer andthe distribution of semiconductor and electrolyte electronic energy levels in dye ssensitized solar cells byopen circuit photovoltage decay method[J]. J Am Chem Soc,2004,126(41):1355013559.
    [1](a) Lampert C M. Large area smart glass and integrated photovoltaics[J]. Sol Energy Mater Sol Cells,2003,76:489499;(b) Lampert C M, Glass Sci. Technol.2002,75:244;(c) Green M, Pita K.Nonstoichiometry in thin film dilute tungsten bronzes M(X)WO(3Y)"[J]. Sol Energy Mater Sol Cells,1996,43:393411;(d) Wang K., Wu H, Meng Y, et al. Integrated energy storage and electrochromicfunction in one flexible device: an energy storage smart window[J]. Energy Environ Sci,2012,5:83848389;(e) Yang X, Zhu G, Wang S, et al. A self powered electrochromic device driven by ananogenerator[J]. Energy Environ Sci,2012,5:94629466.
    [2](a) Hill C L. Introduction: Polyoxometalates Multicomponent Molecular Vehicles To ProbeFundamental Issues and Practical Problems[J]. Chem Rev,1998,98(1):12;(b) Rhule J T, Hill C L, JuddD A. Polyoxometalates in Medicine[J]. Chem Rev,1998,98(1):327358;(c) Long D L, Burkholder E,Cronin L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materialsand devices[J]. Chem Soc Rev,2007,36(1):105121;(d) Sadakan, Steckhan M E. ElectrochemicalProperties of Polyoxometalates as Electrocatalysts[J]. Chem Rev1998,98(1):219237;(e) Cheng L, CoxJ A. Nanocomposite Multilayer Film of a Ruthenium Metallodendrimer and a Dawson TypePolyoxometalate as a Bifunctional Electrocatalyst[J]. Chem Mater,2002,14(1):68;(f) Zhang T R, Liu SQ, Kurth D G, et al. Organized Nanostructured Complexes of Polyoxometalates and Surfactants thatExhibit Photoluminescence and Electrochromism[J]. Adv Funct Mater,2009,19(4):642652.
    [3](a) Proust A, Thouvenot R, Gouzerh P. Functionalization of polyoxometalates: towards advancedapplications in catalysis and materials science [J]. Chem Commun,2008,18371852;(b) Liu S, Kurth D G,Bredenk tter B, et al. The Structure of Self Assembled Multilayers with Polyoxometalate Nanoclusters[J].J Am Chem Soc,2002,124(41):1227912287;(c) Katsoulis D E. A Survey of Applications ofPolyoxometalates[J]. Chem Rev,1998,98(1):359388;(d) Dolbecq A, Dumas E, Mayer C R, et al.Hybrid Organic Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications[J].Chem Rev,2010,110:60096048.
    [4] Gillaspie D T, Tenent R C, Dillon A C. Metal oxide films for electrochromic applications: presenttechnology and future directions[J]. J Mater Chem,2010,20:95859592.
    [5](a) Liu S, Xu L, Li F, et al. Carbon nanotubes assisted polyoxometalate nanocomposite film withenhanced electrochromic performance[J]. Electrochim Acta,2011,56(24):81568162;(b) Xu B, Xu L,Gao G, et al. Nanosized multilayer films with concurrent photochromism and electrochromism based onDawson type polyoxometalate[J]. Appl Surf Sci,2007,253:31903195;(c) Jin L, Fang Y, Hu P, et al.Polyoxometalate based inorganic organic hybrid film structure with reversible electroswitchablefluorescence property[J]. Chem Commun,2012,48,21012103;(d) Bi L H, Zhou W H, Jiang J G, et al.Synthesis, characterization of magnesium substituted tungstoarsenate [As2W15Mg3O62]18,and itselectrochromism[J]. J Electrochem Soc,2008,624:269274;(e) Li C, O’Halloran K P, Ma H, et al.Multifunctional Multilayer Films Containing Polyoxometalates and Bismuth Oxide Nanoparticles[J]. JPhys Chem B,2009,113(23):80438048;(f) Liu S, Tang Z. Polyoxometalate based functionalnanostructured films: Current progress and future prospects[J]. Nano Today2010,5:267281;(g) Kuhn A,Anson F C. Chemically Modified Electrodes: A Supramolecular Assembly Approach[J]. Langmuir1996,12:54815488;(h) Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of UltrathinFilms Self Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate[J].Chem Mater,1998,10:22052211.
    [6] Liu S, Kurth D G, M hwald H, et al. A Thin Film Electrochromic Device Based on a PolyoxometalateCluster[J]. Adv Mater,2002,14(3):225228.
    [7] Liu J Y, Cheng L, Dong S J. Assembly of the Transition Metal Substituted PolyoxometalatesZnW11M(H2O)O (M=Mn, Cu, Fe, Co, Cr, Ni, Zn) on4Aminobenzoic Acid Modified Glassy CarbonElectrode and Their Electrochemical Study[J].Electroanalysis,2002,14(9):569574.
    [8]Gillaspie D T, Tenent R C, Dillon A C. Metal oxide films for electrochromic applications: presenttechnology and future directions[J]. J Mater Chem,2010,20:95859592.
    [9] Chen X, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, andApplications[J]. Chem Rev,2007,107(7):28912959.
    [10](a) O’Regan B, Gr tzel M. A low cost, high efficiency solar cell based on dye sensitized colloidalTiO2films[J]. Nature,1991,353:737740;(b) Boschloo G, Hagfeldt A. Characteristics of theIodide/Triiodide Redox Mediator in Dye Sensitized Solar Cells[J]. Acc Chem Res,2009,42:18191826;(c) Gr tzel M. Solar Energy Conversion by Dye Sensitized Photovoltaic Cells[J]. Inorg Chem,2005,44(20):68416851;(d) Yella A, Lee W H, Diau H N,et al. Porphyrin Sensitized Solar Cells with Cobalt(II/III) Based Redox Electrolyte Exceed12Percent Efficiency[J]. Science,2011,334:629634.
    [11](a) Li D, Guo Y, Hu C, et al. Preparation, characterization and photocatalytic property of thePW711O39/TiO2composite film towards azo dye degradation[J]. J Mol Catal A: Chem,2004,207:181191;(b) Marcì G, García López E, Palmisano L, et al. Preparation, characterization and photocatalyticactivity of TiO2impregnated with the heteropolyacid H3PW12O40: Photo assisted degradation of2propanol in gas solid regime[J]. Appl Cata B: Environ,2009,90:497506.
    [12](a) Kalagi, Mali S S, Dalavi S S, et al. Limitations of dual and complementary inorganic organicelectrochromic device for smart window application and its colorimetric analysis[J]. Synthetic Met,2011,161:11051112;(b) Kalagi S S, Mali S S, Dalavi D S, et al. Transmission attenuation and chromic contrastcharacterization of R.F. sputtered WO3thin films for electrochromic device applications. ElectrochimActa[J].2012,85:501508.
    [13] Li L, Wu Q Y, Guo Y H, et al. Nanosize and bimodal porous polyoxotungstate anatase TiO2composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible lightexcitation[J]. Microporous Mesoporous Mater,2005,87:176.
    [14] Liu S, M hwald H, Volkmer D, et al. Polyoxometalate Based Electro and Photochromic Dual ModeDevices[J]. Langmuir,2006,22:19491951.
    [15](a) Tebby Z, Babot O, Toupance T, et al. Low Temperature UV Processing of NanocrystallineNanoporous Thin TiO2Films: An Original Route toward Plastic Electrochromic Systems[J]. Chem Mater,2008,20:72607267;(b) Xia X H, Tu J P, Zhang J, et al. Cobalt Oxide Ordered Bowl Like Array FilmsPrepared by Electrodeposition through Monolayer Polystyrene Sphere Template and ElectrochromicProperties[J]. Appl Mater Interfaces,2010,2(1):186192;(c) Wang J M, Khoo E, Lee P S, et al.Controlled Synthesis of WO3Nanorods and Their Electrochromic Properties in H2SO4Electrolyte[J]. JPhys Chem C,2009,113(22):96559658;(d) DeLongchamp D M, Kastantin M, Hammond P T.High ContrastElectrochromism from Layer By Layer Polymer Films[J]. Chem Mater,2003,15:15751586;(e) Kalagi S S, Dalavi D S, Pawar R C, et al. Polymer assisted deposition of electrochromictungsten oxide thin films[J]. J Alloy Compd,2010,493:335339.
    [1] a) Guo M, Xie K, Lin J, et al. Design and coupling of multifunctional TiO2nanotube photonic crystal tonanocrystalline titania layer as semi transparent photoanode for dye sensitized solar cell[J]. EnergyEnviron Sci,2012,5:98819888; b) Swierk J R, Mallouk T E. Design and development of photoanodes forwater splitting dye sensitized photoelectrochemical cells[J]. Chem Soc Rev, DOI:10.1039/C2CS35246J;c) Leary R, Midgley P A, Thomas J M. Recent advances in the application of electron tomography tomaterials chemistry[J]. Acc Chem Res,2012,45:17821791.
    [2] a) Lampert C M. Large area smart glass and integrated photovoltaics[J]. Sol Energy Mater Sol Cells,2003,76:489499; b) Green M, Pita K. Non stoichiometry in thin film dilute tungsten bronzes:MxWO3y[J]. Sol Energy Mater Sol Cells,1996,43:393411; c) Wang K, Wu H, Meng Y, et al. Integratedenergy storage and electrochromic function in one flexible device: an energy storage smart window[J].Energy Environ Sci,2012,5:83848389; d) Yang X, Zhu G, Wang S, et al. A self powered electrochromicdevice driven by a nanogenerator[J]. Energy Environ Sci,2012,5:94629466; e) Mortimer R J, Varley T S.Novel Color Reinforcing Electrochromic Device Based on Surface Confined Ruthenium Purple andSolution Phase Methyl Viologen[J]. Chem Mater,2011,23:40774082.
    [3] a) Yen H J, Lin H Y, Liou G S. Novel Starburst Triarylamine Containing Electroactive Aramids withHighly Stable Electrochromism in Near Infrared and Visible Light Regions[J]. Chem Mater,2011,23:18741882; b) Dyer A L, Grenier C R G, Reynolds J R. A Poly(3,4alkylenedioxythiophene)Electrochromic Variable Optical Attenuator with Near Infrared Reflectivity Tuned Independently of theVisible Region[J]. Adv Funct Mater,2007,17:14801486; c) Ma C, Taya M, Xu C. Smart sunglassesbased on electrochromic polymers[J]. Polym Eng Sci2008,48:22242228; d) Beaupre S., Breton A C,Dumas J, et al. Multicolored Electrochromic Cells Based On Poly(2,7Carbazole) Derivatives ForAdaptive Camouflage[J]. Chem Mater2009,21:15041513.
    [4] a) Lee G R, Crayston J A, Electrochromic Nb2O5and Nb2O5/silicone composite thin films prepared bysol gel processing[J]. J Mater Chem1991,1:381386; b) Yao Z, Di J, Yong Z, et al. Aligned coaxialtungsten oxide carbon nanotube sheet: a flexible and gradient electrochromic film[J]. Chem Commun2012,48:82528254; c) Balaji S, Djaoued Y, Albert A S, et al. Porous orthorhombic tungsten oxide thinfilms: synthesis, characterization, and application in electrochromic and photochromic devices[J]. J MaterChem,2011,21:39403948; d) Lee S H, Deshpande R, Parilla P A, et al. Crystalline WO3Nanoparticlesfor Highly Improved Electrochromic Applications[J]. Adv Mater2006,18:763766.
    [5] a) Vickers S J, Ward M D. Facile preparation of a visible and near infrared active electrochromic filmby direct deposition of a ruthenium dioxolene complex on an ITO/glass surface[J]. Electrochem Commun2005,7:389393; b) Schwab P F H, Diegoli S, Biancardo M,et al. Novel Ru Dioxolene Complexes asPotential Electrochromic Materials and NIR Dyes[J]. Inorg Chem2003,42:66136615; c) Yao C J, ZhongY W, Nie H J, et al. Near IR Electrochromism in Electropolymerized Films of a BiscyclometalatedRuthenium Complex Bridged by1,2,4,5Tetra(2pyridyl)benzene[J]. J Am Chem Soc2011,133:2072020723.
    [6] Gillaspie D T, Tenent R C, Dillon A C. Metal oxide films for electrochromic applications: presenttechnology and future directions[J]. J Mater Chem,2010,20:95859592;
    [7] a) Inamdar A I, Mujawar S H, Ganesan V, et al. Surfactant mediated growth of nanostructured zincoxide thin films via electrodeposition and their photoelectrochemical performance[J]. Nanotechnol,2008,19:325706325712; b) Liao C C, Chen F R, Kai J J. Electrochromic properties of nanocomposite WO3films[J]. Sol Energy Mater Sol Cells,2007,91:12821288.
    [8] a) Deepa M, Srivastava A K, Sharma S N, et al. Microstructural and electrochromic properties oftungsten oxide thin films produced by surfactant mediated electrodeposition[J]. Appl Surf Sci2008,254:23422352; b) Yu Z, Jia X, Du J, et al. Electrochromic WO3films prepared by a new electrodepositionmethod[J]. Sol Energy Mater Sol Cells2000,64:5563.
    [9]a) Srivastava A K, Deepa M, Singha S, et al. Microstructural and electrochromic characteristics ofelectrodeposited and annealed WO3films[J]. Solid State Ionics2005,176:11611168; b) Pang Y, Chen Q,Shen X, et al. Size controlled Ag nanoparticle modified WO3composite films for adjustment ofelectrochromic properties[J]. Thin Solid Films2010,518:19201924.
    [10] a) Liu S, Kurth D G, M hwald H, et al. A Thin Film Electrochromic Device Based on aPolyoxometalate Cluster[J]. Adv Mater2002,14:225228; b) Katsoulis D E. A Survey of Applications ofPolyoxometalates[J]. Chem Rev1998,98:359388; c) Dolbecq A, Dumas E, Mayer C R, et al. HybridOrganic Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications[J]. Chem Rev2010,110:60096048.
    [11] a) Liu S, Xu L, Li F, et al. Carbon nanotubes assisted polyoxometalate nanocomposite film withenhanced electrochromic performance[J]. Electrochim Acta2011,56:81568162; b) Xu B, Xu L, Gao G,et al. Nanosized multilayer films with concurrent photochromism and electrochromism based onDawson type polyoxometalate[J]. Appl Surf Sci,2007,253:31903195; c) Li C, O’Halloran K P, Ma H,Shi S. Multifunctional Multilayer Films Containing Polyoxometalates and Bismuth Oxide Nanoparticles[J].J Phys Chem B2009,113:80438048; d) Moriguchi I, Fendler J H. Characterization and ElectrochromicProperties of Ultrathin Films Self Assembled from Poly(diallyldimethylammonium) Chloride and SodiumDecatungstate[J]. Chem Mater,1998,10:22052211.
    [12] a) Liu S, Tang Z. Polyoxometalate based functional nanostructured films: Current progress and futureprospects[J]. Nano Today2010,5:267281; b) Kuhn A, Anson F C. Adsorption of Monolayers ofP2Mo18O662and Deposition of Multiple Layers of Os(bpy)2+3P2Mo18O662on Electrode Surfaces[J].Langmuir1996,12:54815488.
    [13] Wang S M, Liu L, Chen W L, et al. A new electrodeposition approach for preparingpolyoxometalates based electrochromic smart windows[J]. J Mater Chem A2013,1:216221.
    [14] a) Proust A, Thouvenot R, Gouzerh P. Functionalization of polyoxometalates: towards advancedapplications in catalysis and materials science[J]. Chem Commun,2008,18371852; b) Lopez X, Carbo J J,Bo C, et al. Structure, properties and reactivity of polyoxometalates: a theoretical perspective[J]. Chem SocRev2012,41:75377571.
    [15] a) Klemperer, W. G.2007Tetrabutylammonium Isopolyoxometalates, in Inorganic Syntheses[M].27(ed A. P. Ginsberg), John Wiley&Sons, Inc., Hoboken, NJ, USA. doi:10.1002/9780470132586.ch15b)Oms O, Dolbecq A, Mialane P. Diversity in structures and properties of3d incorporatingpolyoxotungstates[J]. Chem Soc Rev2012,41:74977536; c) Kortz U, Müller A, Slageren J, et al.Polyoxometalates: Fascinating structures, unique magnetic properties[J]. Coordin Chem Rev2009,253:23152327.
    [16]a) An H Y, Wang E B, Xiao D R, et al. Chiral3D Architectures with Helical Channels Constructedfrom Polyoxometalate Clusters and Copper Amino Acid Complexes[J]. Angew Chem Int Ed2006,45:904908; b) Fu H, Qin C, Lu Y, et al. An Ionothermal Synthetic Approach to PorousPolyoxometalate Based Metal Organic Frameworks[J]. Angew Chem Int Ed2012,51:79857989; c)Zhang Z M, Li Y G, Yao S, et al. Enantiomerically Pure Chiral {Fe28} Wheels[J]. Angew Chem Int Ed2009,48:15811584.
    [17] a) Moshofsky B, Mokari T. Length and Diameter Control of Ultrathin Nanowires of SubstoichiometricTungsten Oxide with Insights into the Growth Mechanism[J]. Chem Mater, DOI:10.1021/cm302015z; b)Kalantar zadeh K, Vijayaraghavan A, Ham M H, et al. Synthesis of Atomically Thin WO3Sheets fromHydrated Tungsten Trioxide[J]. Chem Mater,2010,22:56605666; c) Ma D, Wang H, Zhang Q, et al.Self weaving WO3nanoflake films with greatly enhanced electrochromic performance[J]. J Mater Chem,2012,22:1663316639; d) Wang W, Pang Y, Hodgson S N B. Design and fabrication of bimodalmeso mesoporous WO3thin films and their electrochromic properties[J]. J Mater Chem,2010,20:85918599.
    [18] a) O’Regan B, Gr tzel M. A low cost, high efficiency solar cell based on dye sensitized colloidalTiO2films[J] Nature1991,353:737740; b) Boschloo G, Hagfeldt A. Characteristics of theIodide/Triiodide Redox Mediator in Dye Sensitized Solar Cells[J]. Acc Chem Res2009,42:18191826; c)Gr tzel M. Solar Energy Conversion by Dye Sensitized Photovoltaic Cells[J]. Inorg Chem,2005,44:68416851; d) Yella A, Lee H W, Tsao H N, et al. Porphyrin Sensitized Solar Cells with Cobalt(II/III) Based Redox Electrolyte Exceed12Percent Efficiency[J]. Science2011,334:629634; e) Wang SM, Liu L, Chen W L, et al. Polyoxometalate anatase TiO2composites are introduced into the photoanodeof dye sensitized solar cells to retard the recombination and increase the electron lifetime[J]. Dalton Trans,2013,42:26912695.
    [19] a) Hsu C S, Lin C K, Chan C C,et al. Preparation and characterization of nanocrystalline porousTiO2/WO3composite thin films[J]. Thin Solid Films2006,494:228233; b) Huang H, Tian J, Zhang W K,et al. Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3complementary electrochromic window[J]. Electrochim Acta2011,56:42814286; c) Baloukas B,Lamarre J M, Martinu L. Electrochromic interference filters fabricated from dense and porous tungstenoxide films[J]. Sol Energy Mater Sol Cells,2011,95:807815.
    [20] a) Kalagi S S, Mali S S, Dalavi D S,et al. Limitations of dual and complementary inorganic organicelectrochromic device for smart window application and its colorimetric analysis[J]. Synthetic Met,2011,161:11051112; b) Kalagi S S, Mali S S, Dalavi D S, et al. Transmission attenuation and chromic contrastcharacterization of R.F. sputtered WO3thin films for electrochromic device applications[J]. Electrochim.Acta,2012,85:501508.
    [21] Jin L, Fang Y, Hu P, et al. Polyoxometalate based inorganic organic hybrid film structure withreversible electroswitchable fluorescence property[J]. Chem Commun2012,48:21012013.
    [22] Li L, Wu Q Y, Guo Y H, et al. Nanosize and bimodal porous polyoxotungstate anatase TiO2composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible lightexcitation[J]. Microporous Mesoporous Mater,2005,87:19.
    [23] Fu N, Lu G. Graft of lacunary Wells Dawson heteropoly blue on the surface of TiO2and itsphotocatalytic activity under visible light[J]. Chem Commun,2009,35913593.
    [24] Xie Z, Gao L, Liang B, et al. Fast fabrication of a WO3·2H2O thin film with improved electrochromicproperties[J]. J Mater Chem2012,22:1990419910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700