纳米Pd的制备及对甲醛的电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文分别采用超声波辐射、可见光光照、简易加热和溶致液晶模板方法,制备系列纳米Pd材料,通过改变实验条件调控其微观形貌;针对空气污染物—甲醛,将不同体系制备的纳米Pd修饰到玻碳电极表面,利用三电极化学系统,通过循环伏安法系统的研究了不同催化剂修饰电极对甲醛的电催化氧化,为拓展甲醛的电化学行为研究奠定了理论基础。
     1.采用超声波辐射、可见光光照和简易加热合成方法,以PdCl2为金属前驱物,在水-乙醇混合溶液中,分别在没有模板.CTAB表面活性剂模板和CTAB-SDS混合表面活性剂模板等反应体系内制备纳米Pd催化剂,采用XRD、TEM、UV、 HRTEM和低温氮吸附-脱附等技术进行了表征。考察了不同实验条件(无模板、CTAB模板和CTAB-SDS模板)对纳米催化剂微观形貌的影响,探讨了Pd2+的还原机理,系统研究了所制备的纳米催化剂修饰玻碳电极对甲醛的电催化氧化活性。通过三种方法相同实验条件下对甲醛的电催化活性和相对标准偏差比较,结果表明,以CTAB-SDS混合表面活性剂为软模板,采用简易加热合成方法制备的纳米Pd修饰电极对甲醛的电催化活性是最好的。最佳实验条件是加热3h,CTAB与SDS的摩尔比为100:1,该合成条件的纳米催化剂平均粒径为(30±2)nm,呈规则形貌,特别是四边形纳米催化剂的产率较高,利用其修饰电极对甲醛的电催化氧化峰Ⅰ的电流值为1345μA,峰电流的相对标准偏差仅为0.72%。
     2.在25℃,构建盐水/SDS/环己烷/正戊醇三元溶致液晶体系,利用小角XRD、DSC和偏光显微分析等技术手段,绘制三元相图,确定液晶区域;以溶致液晶为模板,分别在避光、白炽灯光照及紫外光辐射等不同实验条件下合成纳米Pd催化剂,考察了不同实验条件对其微观形貌的影响,并利用其修饰电极对甲醛的电催化氧化进行了系统研究。通过三种实验条件对甲醛的电催化氧化峰Ⅰ的电流值和相对标准偏差比较,结果表明,在白炽灯光照条件下,制备的纳米Pd催化剂修饰电极对甲醛的电催化活性是最好的。最佳实验条件是反应时间6h,白炽灯光照强度100W;该合成条件的纳米粒子呈菱形、五边形和四方形,粒径为(31±2)nm,且分布较集中,和避光条件制备的纳米Pd催化剂的微观形貌比较,光照6h与避光24h的纳米催化剂的形貌和尺寸相类似,表明光和热的作用可以加速纳米粒子的生长,利用此材料修饰玻碳电极,氧化峰Ⅰ的电流值为988μA,峰电流的相对标准偏差为3.89%。
     3.比较简易加热方法和溶致液晶的优化实验方案,表明采用简易加热合成方法制备纳米催化剂修饰电极对甲醛的催化行为足最好的。
The series nano-Pd materials were prepared via ultrasonic irradiation, visible lighting, simple heating and lyotropic liquid crystal (LLC) methods, respectively. The micro-morphology was controlled by change of experimental conditions. The electrocatalytic properties of the series nano-Pd materials modified glassy carbon electrode(Pd/GCE) for formaldehyde oxidation were investigated by cyclic voltammetry(CV) using three electrode system. The thesis was not only to obtain some kinds of simple synthetic methods for preparing nano-Pd materials with controllable morphology and size, but to supply theoretical basis for development of formaldehyde on the electrochemistry.
     1. The nano-Pd materials were prepared via ultrasonic irradiation, visible lighting, and simple heating methods separately in the palladium (Ⅱ) chloride H2O/EtOH solution without template and with the soft template of hexadecyl trimethyl ammonium bromide(CTAB) and the mixture of CTAB and sodium dodecyl sulfonate(SDS), respectively. The samples were characterized by XRD、TEM、UV、HRTEM and low temperature nitrogen adsorption-desorption. The effects of the experimental conditions on the micro-morphology of palladium nanoparticles were investigated and the reaction mechanisms were also discussed. The electrocatalytic properties of the nano-Pd modified glassy carbon electrode (Pd/GCE) for formaldehyde oxidation had been also studied systematically by cyclic voltammetry. Comparison of the electrocatalytic activity for formaldehyde and the relative standard deviation using three methods under the same experiment conditions, the results indicate that the nano-Pd materials wich were prepared via simple heating methods with the soft template of the mixture with a distributed size of (30±2) nm, has the best excellent electrocatalytic activity for the oxidation of formaldehyde with the peak I value of1345μA and the RSD (relative standard deviation) of0.72%. The optimized experimental condition was that the molar ratio of CTAB:SDS was100:1and the reaction time was3h. Under the optimized condition, the nano particles were easy to form regular morphology, such as quadrilateral nanoparticles.
     2. The phase diagrams of the ternary system of brine/SDS/cyclohexane/n-pentanol were determined at25℃. The small angle X-ray diffraction, DSC and the polarizing microscope were used for determining the structures of various samples in brinc/SDS/cyclohexane/n-pentanol liguid crystalline regions. The nano-Pd materials were prepared via without light, visible lighting and ultraviolet light methods respectively with lyotropic liquid crystal as soft template. The effects of the experimental conditions on the micro-morphology of palladium nanoparticles were investigated as well. The electrocatalytic properties of the nano-Pd modified glassy carbon electrode (Pd/GCE) for formaldehyde oxidation had been also studied systematically by cyclic voltammctry. Comparison of the electrocatalytic activity for formaldehyde and the RSD under the three experiment conditions, the results indicate that the nano-Pd materials wich were prepared via visible lighting methods with a distributed size of (31±2) nm. has the best excellent elcctrocatalytic activity for the oxidation of formaldehyde with the peak I value of988μA and the RSD of3.89%. The optimized experimental condition is that the strength of incandescent lamp was100W and the reaction time was6h. Under the optimized condition, the nano-particles were rhombus, pentagonal and regular quadrilateral. The size and morphology of the nano-Pd were similar to synthesis in24h without lighting and6h lighted. The results showed that the growth of the nano-Pd accelerated because of the function of light and heat.
     3. Comparison of the electrocatalytic activity for formaldehyde under the optimized experiment conditions, the results indicate that the glassy carbon electrode(Pd/GCF) was modified by nano-Pd materials which were prepared via simple heating methods, had the better electrocatalytic activity for the oxidation of formaldchyde.
引文
[1]石碧清,刘湘,闾振华.室内甲醛污染现状及其防治对策[J].环境科学与技术,2007,30(6):49-54
    [2]赵清.化学修饰电极的制备及其在环境检测中的应用研究[D].西安理工大学,2005
    [3]Cole P, Axten C. Formaldehyde and leukemia:an improbable causal relationship[J]. Regulatory Toxicology and Pharmacology,2004,40(2):107-112
    [4]宋雪梅,室内环境的污染来源及其危害的预防[J].才智,2011(8):254-255
    [5]金礼桥.室内装修空气污染预防控制研究[D].浙江工业大学,2009
    [6]刘绍仁.室内环境杀手你知道多少[J].环境经济,2005,(2):81-84
    [7]于立群.甲醛的健康效应[J].国外医学卫生学分册,2004,31(2):84-87
    [8]Dennison M J, Hall J M,Turner A P F. Direct monitoring of formaldehyde vapour and detection of ethanol using dehydrogenase-based biosensors [J]. Analyst,1996,121:1769-1773
    [9]Alter E, Donnever T G, Herler N. Determination of formaldehyde in air by polarography [J]. Metrohm Information,1998, (2):22-23
    [10]马天,曾令平,罗张怡.室内主要污染气体-甲醛、TVOC的快速检测方法评述[J].中国测试技术,2004,30(5):77-78
    [11]于慧芳,李心意,张小鸣等.便携式甲醛测定仪比对实验研究[J].中华预防医学杂志,2003,37(3):195-196
    [12]Watkins B F, Behling J R, Kariv E, et al. Chiral electrode [J]. J. Am. Chem. Soc.,1975, (97):3549-3550
    [13]Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode [J]. Anal.Chem., 1975, (47):1882-1886
    [14]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,1995:1-1
    [15]金利通,仝威,徐金瑞等.化学修饰电极[M].上海:华东师范大学出版社,1992:1-1
    [16]Chan W W, Nie S. Quantum Dot Bioconjugates for UltrasensitiveNonisotopic Detection [J]. Science,1998,281:2016-2018
    [17]Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteaminemodified gold electrode [J]. J. Electroanal. Chem., 2001(516):119-126
    [18]罗红霞,施祖进,李南强,等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用[J].高等学校化学学报,2000,21(9):1372-1374
    [19]Luo H X, Shi Z J, Li N Q, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J]. Anal. Chem.,2001, 73:915-920
    120] Liu C Y, Bard A J, Wudl F, et al. Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapicitors[J]. Solid State Letters,1999, 2:577-578
    [21]Ding S N, Xu J J. Zhang W J, et al. Tris(2,2-bipyridyl) ruthenium(Ⅱ)-Zirconnia-nafion composite modified electrode applied as solid-state electrochcmiluminescence detector on electrophoretic microchip for detection of pharmaaceuticals of tramadol,lidocaine and ofloxacin[J]. Talanta,2006,70:572-577
    [22]Mao I. Q, Yamamoto K. Amperometric on-line sensor for continuous measurement of hypoxanthine based on osimum-polyvinylpyrideine gel polymer and xanthine oxidasc bienzyme modified glassy carbon electrode[J]. Anal. Chim. A cta,2000,415:143-150
    [23]Zhu Y H, Zhang Z L, Pang I) W. Electrochemical oxidation of theophylline at multi-wall carbon nanotube modified glassy carbon electrodes [J]. J. Electroanal. Chem,2005,581:303-309
    [24]Shen L, Huang R, Hu N F. Myoglobin in pollyacrylamide hydroogel films:direct eletrohemistry and electrochemical catalysis[J]. Talanta,2002,56:1131-1139
    [25]Lojou E, Luciano P, Nitsche S, et al. Poly(ester-sulfoic acid):modified carbon electrodes for the electrochemical study of c-type cytochromes[J]. Electrochim.Acta,1994,44:3341-3352
    [26]万本强,吴婉群.铂微粒修饰聚2,5-二甲氧基苯胺电极对甲醇的电催化化用[J].高等学校化学学报,1995,16(4):622-625
    [27]Sclvaraju T, Ramaraj R. Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications[J]. J. Electroanal. Chem.,2005,585:290-300
    [28]Li W, Virtancn J A,Penner R M.Self-Assembly of n-Alkanethiolate Monolayers on Silver Nanostructures:Determination of the Apparent Thickness of the Monolayer by Scanning Tunneling Microscopy [J]. J. Phys. Chem.,1994, (98):11751-11755
    [29]Li W, Virtanen J A, Penner R M. Self-Assembly of n-Alkanethiolate Monolayers on Silver Nanostructures:Protective Encapsulation [J], Langmuir,1995, (11):4361-4365
    [30]Finot M O, McDermott M T. Characterization of n-Alkanethiolate Monolayers Adsorbed to Electrochemically Deposited Gold Nanocrystals on Glassy Carbon Electrodes [J]. J. Electroanal. Chem.,2000,488:125-132
    [31]Xu J R, Liu B. Preconcentration and determination of lead ions at a chitosan-modified glassy carbon electrode [J]. Analyst,1994,119:1599-1601
    [32]Quan D, Shin W. Modification of electrode surface for covalent immobilization of laccase [J]. Mat. Sci. Eng. C,2004,24:113-115
    [33]Lin X Q, Li Y X. Monolayer covalent modification of 5-hydroxytryptophan on glassy carbon electrodes for simultaneous determinnation of uric acid and ascorbicic acid [J]. Elecochim. Acta, 2006,51:5794-5801
    [34]Quan D, Kim Y S, Shin W. Characterization of an amperometric laccase electrode covalently immobilized on platinnum surface [J]. J. Electroanal. Chem,2004,561:181-189
    [35]Zhang L, Jia J B, Zou X Q, et al. Simultaneous determination of dopamine and ascorbic acid at an in-site functionalized self-assembled monolayeer on gold electrode [J]. Electroanalysis,2004, 16:1413-1418
    [36]Raj C R, Kitamura F, Ohsaka T. Square wave voltammetric sensing of uric acid using the sele-assemby of mercaptobenzimidazole [J]. Analyst,2002,127:1155-1158.
    [37]Ligaj M, Jasnowska J, Musial W G, et al. Covalent attachment of single-stranded DNA to carbon paste eletrode modified by activaated carboxyl groups [J]. Eletrochim. Acta,2006, 51:5193-5198
    [38]Zhou Y L, Zhi J F. Developpment of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode [J]. Electrochem. Commun.,2006, 8:1811-1816.
    [39]Geneste F, Moinet C. Electrocatalytic oxidation of hols by a [Ru(tpy)(phen)(OH2)]2+-modified electrode [J]. J. Electroanal. Chem.,2006,594:105-110
    [40]Raj C R, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine [J]. J. Electroanal. Chem.,2003,543:127-133
    [41]Zhang S X, Wang N, Yu H J, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles fr use as glucose biosensor [J]. Bioelectrochemmistry,2005, 67:15-22
    [42]Zhang S X, Wang N, Niu Y M, et al. Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor [J]. Sensor.Actuat.B,2005,109:367-374
    [43]Liu S Q, Ju H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J]. Biosensors and Bioelectronics,2003(19):177-183
    [44]Li Z, Hu N F. Direct Electrochemistry of Heme Proteins in Their Layer-by-Layer Films with Clay Nanoparticles [J]. J. Electroanal. Chem.,2003(558):155-165
    [45]Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts [J]. Chem. Rev.,1998,98:219-237
    [46]毕丽华,刘景华,王恩波,等.有机-无机盐(C4H(2)03N)3PW(12)0(40)·11H2O的合成、表征和对亚硝酸根的电催化还原[J].东北师大学报(自然科学版),1999(3):102-105
    [47]郭树荣,王恩波,由万胜,等.组氨酸的Kcggin结构杂多金属氧酸盐的合成及性质研究[J].东北师大学报(自然科学版),1999(3):116-119
    [48]王秀丽,康振辉,兰阳等.多金属氧酸盐纳米粒子修饰电极的制备及电催化研究[J].东北师大学报(自然科学版),2002,34(1):117-120.
    [49]Teranish T, Hosoe M, Tanaka T, et al. Size control of monodispersed Pt nanoparticles and their organization by electrophoretic deposition[J]. J. Phys. Chem. B.,1999,103:3818-3827
    [50]Teranish T, Hosoe M, Miyake M. Formation of monodispersed ultrafine platinum particles and their electrophoretic deposition on electrodes [J]. Adv. Mater.,1997,9:65-67
    [51]工宗花,刘军,罗国安,等.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化[J].分析化学,2002,20(9):1053-1057
    [52]于文强,易清风.钛基纳米多孔金电极对甲醛氧化的电催化活性[J].无机化学学报,2010,26(3):459-463
    [53]李正,赵燕荣,晏青峰,等.金核-铂壳纳米修饰电极在酸性溶液中对甲醛的电催化[J].光谱实验室,2008,25(2):236-239
    [54]郝玉翠,康天放,刘桐.甲醛的铂微粒修饰玻碳电极伏安法测定[J].分析测试学报,2008,27(1):60-62
    [55]Lima R B, Massafera M P, Batista E A, et al. Catalysis of formaldehyde oxidation by electrodeposits of PtRu [J]. Journal of Electroanalytical Chemistry,2007,603(1):142-148.
    [56]Selvaraj V, Nirmala Graceb A, Alagarc M. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes [J]. Journal of Colloid and Interface Science,2009,333:254-262
    [57]Wang Z, Zhu Z Z, Li H L. Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film [J]. Applied Surface Science.2007,253(22):8811-8817
    [58]Zhang J T, Huang M H, Ma H Y, et al. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol [J]. Electrochemistry Communications,2007,9(6):1298-1304
    [59]上官灵芝,乔洁,郭玉晶等.电沉积纳米钯修饰玻碳电极对甲醛的电催化氧化[J].武汉大学 学报(理学版),2008,54(6):661-664
    [60]Gao G Y, Guo D J, Li H L. Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Supportedon Multi-Walled Carbon Nanotubes [J]. Journal of Power Sources,2006, 162(2):1094-1098
    [61]Zhu Z Z, Wang Z, Li H L. Self-assembly of palladium nanoparticles on functional multi-walled carbon nanotubes for formaldehyde oxidation [J]. Journal of Power Sources,2009,186:339-343
    [62]Safavi A, Maleki N, Farjami F, et al. Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticle Electrodeposited on Carbon Ionic Liquid Electrodes [J]. Electroanal. Chem.,2009,626 (1-2):75-79
    [63]Berhault G, Bisson L, Thomazeau C, et al. Preparation of nanostructured Pd particles using a seeding synthesis approach-Application to the selective hydrogenation of buta-1,3-diene [J]. Appl Catal A:General,2007,327:32-43
    [64]Fukuoka A, Avaki H, Sakamoto Y, et al. Palladium nanowires and nanoparticles in mesoporous silica templates[J]. Inorg Chim Acta,2003,350:371-378
    [65]Fukuoka A, Higashimoto N, Sakamoto Y, et al. Preparation and catalysis of Pt and Rh nanowires and particles in FSM-16 [J]. Microporous Mesoporous Mater.,2001,48:171-179
    [66]Sasaki M, Osada M, Higshimoto N, et al. Templating fabrication of platinum nanoparticles and nanowires using the confined mesoporous channels of FSM-16-their structural characterization and catalytic performances in water gas shift reaction [J]. J Mol Catal A:Chem,1999,141:223-240
    [67]Narayanan R, El-Sayed M A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution [J]. Nano. Lett.,2004,4(7):1343-1348
    [68]Wang C, Daimon H, Lee Y, et al. Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction [J]. J. Am. Chem. Soc.,2007,129:6974-6975
    [69]Zhang H M, Zhou W Q, Du Y K, et al. One-step electroceposition of platinum nanoflowers and their high efficient catalytic activity for methanol eletrooxidation [J]. Electrochemistry Communications,2010,12(7):882-885
    [70]Dua Y K, Xua J Z, Shen M. Alkanethiol-stabilized decahedron of gold nanoparticles Colloids and Surfaces A-Physicochemical and Engineering Aspects [J].2005,257-258:535-537
    [71]Zhou W Q, Wang C Y, Xua J K., et al. Enhanced electrocatalytic performance for isopropanol oxidation on Pd-Au nanoparticles dispersed on poly(p-phenylene) prepared from biphenyl [J]. Materials Chemistry and Physics,2010,123(2-3):390-395
    [72]Niu Z Q, Qing P, Li Y D, et al. Qleylamine-Mediated Shape Evolution of Palladium Nanocrystal [J]. Angew.Chem. Int. Ed.,2011,50:1-6
    [73]Tong X, Zhao Y, Liu H F, et al. Controlled synthesis of pompon-like self-assemblies of Pd nanoparticles under microwave irradiation[J]. Appl. Surf. Sci.,2009,255(23):9463-9468
    [74]Shen Q M, Qian H M, Zhu J J, et al. Morphology-Controlled synthesis of Palladium Nanostructures by Sonoelectrochemical method and Their Application IN Direct Alchol Oxidation [J]. J. Phys. Chem. C,2009,113:1267-1273
    [75]Xiong Y, Wiley B, Xia Y N, et al. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties [J]. Angew. Chem. Int. Ed.,2005,44:7913-7917
    [76]Berhault G, Bausach M, Bisson L, et al. Seed Mediated Synthesis of Pd Nanocrystals:Factors Influencing A Kineticor Thermodynamic-Controlled Growth Regime [J]. J. Phys. Chem. C., 2007, 111:5915-5925.
    [77]Cristoforetti G, E. Potzalis, Spiniello R. Production of palladium nanoparticles by pulsed laser ablation in water and their characterization [J]. J. Phys. Chem. C.,2011,115:5073-5083
    [78]Fukuoka A, Araki 11, Sakamoto Y. Palladium nanowires and nanoparticles in mesoporous silica templates [J]. Inorganica Chimica Acta,2003,350:371-378
    [79]Surendran G, Kscr F, Ramos L, et al. Palladium nanoballs synthesized in hexagonal mesophases [J]. J. Phys. Chem. C,2008,112:10740-10744
    [80]Suslick K S. Sonochemistry[J].Science.1990,247(4949):1439-1445
    [81]Flint E B, Suslick K S. The Temperature of Cavitation[J]. Science,1991,253(5026): 1397-1399
    [82]邓崇海,胡寒梅,黄显怀.超声化学合成半导体氧化锌纳米杯[J].无机化学学报,2009,25(1()):1742-1746
    [83]黄琨.核壳式无机-高分子纳米复介材料粒子的形成机理与表征技术[J].材料导报,2003,17(3):63-65
    [84]熊金钰.纳米银的超声合成及分形研究[J].安徽理工大学学报(自然科学版),2004,24(3):69-72
    [85]Okistsu K, Mizukoshiy, Bandow H, et al. Formation of noblemetal particles by ultrsonic irradiation [J]. Ultrasonics Sonochemistry,1996,3(3):249-251
    [86]Dhas N A, Gedanken A. Sonochemical preparation and properties of nanostructured palladium metallic clusters[J]. J. Mater. Chem.,1998,8:445-450
    [87]Nemamcha A, Rehspringer J, Khatmi D. Synthesis of palladium nanoparticles by sonochemical reduction of palladium(Ⅱ) nitrate in aqueous solution [J]. J. Phys. Chem. B,2006,110:383-387
    [88]Xiao J, Xie Y, Tang R, et al, Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures [J]. Adv.Mater,2001,13:1887-1891
    [89]Stoffer J O, Sitton O C, Kao H L, et al. The Ultrasonic Initiation of Polymerization of Acrylic Monomers[J]. Polym. Mater. Sci. Eng.,1991,65:42-48
    [90]Biggs S, Grieser F. Preparation of polystyrene latex with ultrasonic initiation [J]. Macromolecule,1995,28:4877-4882
    [91]王琪.超声辐照引发MMA微乳液聚合[J].高等学校化学学报,2001,22(7):1237-1240
    [92]张凯.超声波场下原位分散聚合反应制备Ag/PS复合粒子的影响因素[J].化学推进剂与高分子材料,2009,7(5):29-32
    [93]Armstrong A R, Armstrong G, Canales J, et al. TiO2-B nanowires [J]. Angew. Chem. Int. Ed., 2004,43:2286-2288
    [94]Fonseca C P, Fantini M C, Neves S. Improving the electrochemical properties of porous LiCoO2 films obtained by template synthesis [J]. Thin Solid Films,2005,488:68-73
    [95]Yue W, Zhou W. Synthesis of porous single crystals of metal oxides via a solid-liquid route [J]. Chem. Mater.,2007,19:2359-2363
    [96]Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries [J]. Angew. Chem. Int. Ed.,2008,47:2930-2946
    [97]Cheng F Y, Tao Z L, Liang J, et al. Template-directed materials for rechargeable lithium-ion batteries [J]. Chem. Mater.,2008,20(3):667-681
    [98]Jiao F, Bao J, Hill A H, et al. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries [J]. Angew. Chem. Int. Ed.,2008,47:9711-9716
    [99]Feng J, Shaju K. M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction [J]. Angew. Chem. Int. Ed.,2005,44:6550-6553
    [100]Lim S, Yoon C S, Cho J. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries [J]. Chem. Mater.,2008,20(14):4560-4564
    [101]Li X X, Cheng F Y, Guo B, et al. Template-Synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries [J]. J. Phys. Chem. B.,2005, 109(29):14017-14024
    [102]Zhou Y K, Huang J E, Shen C M, et al. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties [J]. Mater. Sci. Eng. A.,2002,335:260-267
    [103]Faycal K, Surendran G, Laurence R. et al. Palladium nanowires synthesized in hexagonal mesophases:application in ethanol electrooxidation [J]. Chem. Mater.,2009,21:1612-1617
    [104]何武强,何宝林,陈益贤.溶剂稳定的钯金属纳米颗粒的制备[J].中南民族大学学报(自然科学版),2004,23(4):12-14
    [105]王飞,黄涛,刘汉范.微波辐照下铂纳米颗粒的形貌控制合成[J].化学与生物工程,2009,26(3):19-21
    [106]Niu W X, Zhang L, Xu G B. Shape-controlled synthesis of single-crystalline palladium nanocrystals[J]. ACS nano,2010,4(4):1987 1996
    [107]Berhault G, Bausach M, Bisson L, et al. Seed-mediated synthesis of Pd nanocrystals:factors influencing a kinetic-Or thermodynamic-controlled growth regime[J]. J. Phys. Chem. C,2007, 111:5915-5925
    [108]Avramov-lvic M L, Anastasijevic N A, Adzic R R. A study of the oxidation of formaldehyde on Au(332) by rotating disc-ring method[J]. Electrochim. Acta,1990,35(4):725-729
    [109]Bcltowska Brzczinska M. Electrochemical oxidation of formaldehyde on gold and silver [J]. Electrochim. Acta,1985,30(9):1193-1198
    [110]杨宏洲,邓友全Au/PAni/G电极的制备及对甲醛的电催化氧化研究[J].化学学报,2002,60(4):569-573
    [111]Goralczyk D J. Thermodynamic characteristics and composition of anionic-cationic adsorpotion films [J]. J. Collo. Inter. Sci.,1980,77(l):268-275
    [112]Rodakiewicz-Nawak J. Influence of the nature of inorganicsalts and their concentration on the simultaneous adsorption of cationic and anionic surfactants:Mixtures of dode cyltrimethy lammonium saltswith sodium hexyl sulfate in the solutions containing the inorganic salt of ions common with the surfactants [J]. J. Collo. Inter. Sci.,1983,91(2):368-375.
    [113]Lucassen Reynders E H, Lucassen J, Giles D. Surfaceand bulk properties of mixed anionic/cationic surfactantsystems [J]. J. Collo. Inter. Sci.,1981,81 (1):150-157
    [114]Yatcilla M T, Herrington K L, Brasher L L, et al. Phase Behavior of Aqueous Mixtures of Cetyltrimethy lammonium Bromide (CTAB) and Sodium Octyl Sulfate (SOS) [J]. J. Phys. Chem., 1996,100(14):5874-5879
    [115]Soderman O, Herrington K L, Kaler E W, et al. Transition from Micelles to Vesicles in Aqueous Mixtures of Anionic and Cationic Surfactants [J]. Langmuir,1997,13(21):5531-5538
    [116]Villeneuve M, Kaneshina S, Imae Toyoko, et al. Vesicle Micelle Equilibrium of Anionic and Cationic Surfactant Mixture Studied by Surface Tension [J]. Langmuir,1999,15(6).2029-2036
    [117]滕弘霓,王飞,孙美娟,等.盐对正负离子表面活性剂双水相性质的影响[J].化学学报,2005,63(17),1570-1574
    [118]滕弘霓,孙艳芝,周帆,等.pH及有机小分子物质对SDS/CTAB/H20系统双水相性质的影响[J].化学研究与应用,2002,14(6):689-692
    [119]Liu C L, Nikas Y J, Blankschtein D. Novel biose paration susing two phase aqueous micellar systems [J]. Biotech. Bioeng.,1996,52(2):185-192
    [120]滕弘霓,阑玉胜,王飞,等SDS/CTAB/H2O的双水相性质及其萃取作用[J].应用化学,2003,20(8):783-787
    [121]Zhao N, Qi L. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic-anionic surfactants [J]. Adv. Mater.,2006,18:359-362
    [122]Sook Y M, Takafumi K, Tohru S. CTAB-assisted synthesis of size-and shape-controlled gold nanoparticles in SDS aqueous solution [J]. Mater. Lett.,2009,63:2038-2040
    [123]Prem F S, Laurence R, Patricia B, et al. Synthesis of ultrathin hexagonal palladium nanosheets [J]. Chem. Mater,2009,21:5170-5175
    [124]Gregorio F D, Bisson L, Armaroli T, et al. Characterization of well faceted palladium nanoparticles supported on alumina by transmission electron microscopy and FT-IR spectroscopy of CO adsorption [J]. Applied Catalysis A:General,2009,352(1-2):50-60
    [125]Kumarp S S, Manivel A, Anandan S, et al. Sonochemical synthesis and characterization of gold-ruthenium bimetallic nanoparticles [J]. Colloids and Surfaces A:Physicochem Eng Aspects, 2010,356:140-144
    [126]Wang W L, Wang Y Y, Wan C C, et al. Self-assembly of Pd nanoparticles in dodecanol in situ generated from sodium dodecyl sulfate and its potential applications [J]. Colloids and Surfaces A: Physicochem Eng Aspects,2006,275:11-16
    [127]Yu Y C, Zhao Y X, Huang T, et al. Microwave-assisted synthesis of palladium nanocubes and nanobars [J]. Materials Research Bulletin,2010,45:159-164
    [128]Xiao C W, Ding H, Shen C M, et al. Shape-controlled synthesis of palladium nanorods and their magnetic properties [J]. J. Phys. Chem. C.,2009,113:13466-13469
    [129]阮小云SDS-PVP水溶液中超细镍粉的制备[N].物理化学学报,2008,24(8):1513-1518
    [130]Jiang G H, Wang L, Chen T, et al. Studies of preparation of palladium nanoparticles protected by dendrons [J]. Nanotechnology,2004,15:1716-1719
    [131]Luo C C, Zhang Y H, Wang Y G. Palladium nanoparticles in poly(ethyleneglycol):the efficient and recyclable catalyst for Heck reaction[J]. J. Mol. Catal. A:Chem.,2005,229:7-12
    [132]Okitsu K, Bandow H, Maeda Y. Sonochemical preparation of ultrafine palladium particles [J]. Chem. Mater.,1996,8:315-317
    [133]Chen W, Cai W P, Lei Y, et al. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica [J]. Mater. Lett.,2001,50:53-56
    [134]Yonezawa T, Imamura K, Kimizuka N. Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands [J]. Langmuir,2001,17:4701-4703
    [135]Cardenas T G, Segura R A, Reyes G J. Palladium nanoparticles from solvated atoms-stability and HRTHM characterization[J]. Colloid Polym. Sci.,2004,282:1206-1212
    [136]Chakraborty H, Sarkar M. Optical Spectroscopic and TEM studies of catanionic micelles of CTAB/SDS and their interaction with a NSAID[J]. Langmuir,2004,20:3551-3558
    [137]Watt J, Young N, T illey R D, et al. Synthesis and structural characterization of branched palladium nanostructures [J]. Adv. Mater.,2009,21 (22):2288-2293
    [138]Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,316(5825):732-735
    [139]Han J L, HuW Y, Deng H Q. Adsorption of hydrogen on palladium single crystal surfaces[J]. Surf. Interface Anal.,2009,41(7):590-594
    [140]Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods[J]. J. Am. Chem. Soc., 2002,124:14316-14317
    [141]Niidome Y, Nishionka K, Kawasaki 11, et al. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processe [J]. Chcm.Commun.,2003,77:2376-2377
    [142]Cheng D, Zhou X, Xia H, et al. Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with Different Sizes [J]. Chcm. Mater,2005,17:3578-3581.
    [143]Xie Y, Qiao Z, Chen M, et al. Gamma-irradiation route to semiconductor/polymer nanocable fabrication [J]. Adv. Mater.,1999,11:1512-1514
    [144]Doudna C M, Bertino M F, Blum F D. Radiolytic Synthesis of Bimetallic Ag-Pt Nanoparticles with a I ligh Aspect Ratio [J]. J. Phys. Chem. B,2003,107:2966-2970
    [145]Li C, Cai W, Cao B, et al. Mass synthesis of large size single-crystal Au nanosheets based on a Polyol Process[J], Adv. Funct. Mater.,2006,16:83-90
    [146]郭斌,单雯雯,罗江山,等.紫外光辐照法制备金纳米盘及其反应机理[J].化学学报,2008,66(12):1435-1440
    [147]Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding [J], Adv. Mater.,2002,14,833-837
    [148]Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process [J], Nano. Lett.,2003,3:675-679
    [149]陈营.金纳米粒子的尺寸和形状可控合成及其表征[D].厦门大学,2006
    [150]Belapurkar A D, Kapoor S, Kulshrestha S K, et al. Radiolytic preparation and catalytic properties ofplatinum nanoparticles [J]. Mater. Res. Bull.,2001,36:145-151.
    [151]Ershov B G, Janatan E, Michaelis M, et al. Reduction of aqueous copper (2+) by carbondioxide(1-):first steps and the formation of colloidal copper [J]. J. Phys. Chem.,1991, 95:8996-8999
    [152]Michaelis M, Henglein A. Reduction of palladium (Ⅱ) in aqueous solution:stabilization and reactions ofan intermediate cluster and palladium colloid formation [J]. J. Phys. Chem.,1992, 96:4719-4724
    [153]Kim E, Song J H, Yang P D. Photochemical synthesis of gold nanorods [J]. J. Am. Chem. Soc., 2002, (124):14316-14317
    [154]Mandal M, Ghosh S K, Kundu S, et al. Palt UV photoavtivation for size and shape controlled synthesis and c, malesccne of gold nanoparticles in micelles [J]. Langmuir,2002(18):7792-7797
    [155]Zhou Z, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorod and Agdendrites [J]. Adv. Mater.,1999,11(10):850-852
    [156]訾学红,王锐,刘立成,等.十六烷基三甲基溴化铵辅助作用下球形、蠕虫状和网状Pd纳米粒子的制备与表征[J].催化学报,2011,32(5):827-835
    [157]Ho P F, Chi K M. Size-controlled synthesis of Pd nanoparticles from pdiketonato complexes of palladium [J]. Nanotechnology,2004,15(8):1059-1064
    [158]Li Y, Boone E, E1-Sayed M A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution [J]. Langmuir,2002,18(12):4921-4925
    [159]Tano T, Esumi K, Meguro K. Preparation of organopalladium sols by thermal decomposition of palladium acetate [J]. J Colloid Interface Sci,1989,133(2):530-533
    [160]Esumi K, Tano T, Meguro K, et al. Preparation of organo palla-dium particles from thermal decomposition of its organic complex in organic solvents[J]. Langmuir,1989,5(1):268-270
    [161]Tong X, Zhao Y, Huang T, et al. Controlled synthesis of pom-pon-like self-assemblies of Pd nanoparticles under microwave irradiation [J]. Appl. Surf. Sci.,2009,255(23):9468-9468
    [162]Kim S, Park J, Jang Y, et al. Synthesis of monodisperse palladium nanoparticles [J]. Nano. Lett.,2003,3:1289-1291
    [163]Xiong Y J, Chen J Y, Xia Y N, et al. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size [J], J. Am. Chem. Soc.,2005, (127):7332-7333
    [164]Peng X. Green chemical approaches toward high-quality semiconductor nanocrystals[J]. Chem. Eur. J.,2002,8:335-339
    [165]Xiong J M, Hu Y, Xia Y. Surface-enhanced raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages mcLellan [J]. Chem. Phys. Lett.,2006,417: 230-234
    [166]沈小双.贵金属纳米颗粒的形貌控制合成、自组装与表面增强拉曼散射性质[D].中国科学技术大学,2010
    [167]Wang W, Efrima S, Regcr O. Directing silver nanoparticles into colloid-surfactant lyotropic lamellar systems [J]. J. Phys. Chem. B.,1999,103(27):5613-5621
    1168] Chen X, Efrima S, Rcgev (), et al. Doping silver nanoparticles inaot lyotropic lamellar phascs[J]. Science in China:Series B,2001,44(5):492-499
    [169]O'sullivan E C. Ward A J I, Budd T. Obvious and nonobvious influences of surfactants on the formation of nanosized particles[J]. Langmuir,1994,10(9):2985-2992
    [170]Holmvist P. Alexandridis P, Lindman B. Modification of themicrostructure in block copolymer-water-"oij"systems by varying thecopolymer composition and the"oil"type:small-angle X-ray scatteringand deuterium-NMR investigation [J]. J. Phys. Chem. B.,1998,102(7):1149-1158
    [171]Ramos L, Fabre P, Dubois E. Compatibility between sokid particlesand a lamellar phase:a crucial role of the membrane interactions [J]. J. Phys. Chem.,1996,100(11):4533-4537
    [172]Kijima T, Yoshimura T, Uota M, et al. Noble-metal nantubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates [J]. Angew. Chem. Int. Ed.,2004,43(2):228-232
    [173]王良御,廖松生.液晶化学[M].北京:科学出版社,1988:138-149.
    [174]Qi L, Gao Y, Ma J. Sythesis of ribbons of siler nanoparticles in lamellar liquid crystal [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,157(1):285-294
    [175]Braun P V, Stupp S I. CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals[J]. Mater. Res. Bull.,1999,34(3):463-469
    [176]Huang L M, Wang H T, Wang Z B, et al. Namowire arrays electrodeposited from liquid crystalline phases [J]. Adv. Mater.,2002,14(1):61-64
    [177]Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporousplatinum films from lyotropic liquid crystalline phases [J]. Science,1997,278:838-840
    [178]Elliott J M, Attard G S, Bartlett P N, et al. Nanostructured platinum (H1-ePt) films:Effects of electrodeposition conditions on film properties [J].Chem. Mater.,1999,11(12):3602-3609
    [179]Elliott J M, Birk P R, Bartlett P N, et al. Platinum microelectrodes with unique high surface areas [J]. Langmuir,1999,15(22):7411-7415
    [180]Surendran G, Ramos L, Pansu B, et al. Synthesis of porous platinum nanoballs in soft templates [J]. Chem. Mater.,2007,19(21):5045-5048
    [181]赵继宽,陈晓,隋震鸣,等.用溶致液晶模板合成与组装的纳米材料[J].化学进展,2003,15(6):451-455
    [182]张冬柏,齐利民,程虎民,等.液晶模板法制备Au纳米线[J].高等学校化学学报,2003,24(12):2143-2146.
    [183]杨汉民,吴现棉,吴勇,等.微波辅助加热层状液晶模板法制备钯纳米粒子[J].中南民族大学学报(自然科学版),2009,28(3):25-29.
    [184]马成松,李干佐,高健,等. DCDAC/正丁醇/水体系溶致液晶的研究[J].山东大学学报(自然科学版),1998,33(4):477-480
    [185]安娅,徐军,张晋,等.Brij35/油酸钠/油酸/水体系的溶致液晶性质-应用偏光显微镜,SAXS, 2H-NMR和流变等方法[J].中国科学B辑,2006,36(3):234-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700