黑龙江省黑河市铜山铜矿床成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜山铜矿位于多宝山矿床东南4km,为大型铜多金属矿床。矿区出露的地层主要是古生界奥陶系中统铜山组( O2 t)和多宝山组( O2 d);区内岩浆活动强烈,火山岩以奥陶世中期多宝山组地层中的安山岩和英安岩为代表;侵入岩以铜山英云闪长岩、英云闪长斑岩、多宝山花岗闪长岩、石英闪长岩为代表。矿区北西向、东西向及南北向构造发育。北西向构造在矿区内形成较早,是区内的基础构造,属华力西期构造旋回,主要为轴线呈北西向的多宝山复背斜及其次一级向斜及北西向韧性剪切带;东西向构造及南北向构造为成矿后构造,属燕山期构造旋回,主要为东西向断裂、南北向断裂。
     铜山铜矿Ⅰ号矿体于1961年发现。1990-1993年对铜山铜矿床进行详查工作,铜山铜矿的深部隐伏Ⅱ号矿体的上部、Ⅲ号矿体下部在勘查中发现,显示出该矿床地表和深部(1303.8米的钻孔未穿透矿体)具有较好的找矿前景。详查成果大致为:基本查明了矿体的数量、分布范围、产状、形态、厚度及其赋存规律。矿床由4个主矿体及76个从属矿体组成,分布在1040线—1112线,长2000米,平均宽度403米。赋存标高+530米,延深-862米以下。矿体呈条带状—透镜状,总体走向120°—128°,倾向南西,倾角70°—80°。均赋存于北西向主构造中低次序节理密集的绿泥石化绢云母化安山岩、火山碎屑岩、熔岩及石英化绢云母化英云闪长岩内带。探求C+D级Cu金属量**万吨,平均品位0.48%。
     经上述工作,勘查工作取得了较大找矿突破。但铜山矿区现有的4个主矿体的核心区尚未确定,上盘Ⅱ号矿体的推覆方式及其下部矿体的分布尚未查清,到目前为止针对铜山断层下盘的Ⅲ号矿体未做过深部工程工作,目前发现的Ⅰ、Ⅱ号矿体经分析认为只是其很小一部分,对铜山断层的认识及被断层错断的矿体赋存部位及资源量大小一直是众多地质工作者思考和争论的问题。
     本文在前人勘查成果基础上,根据国内外斑岩铜矿的成矿模式和找矿理论,系统收集研究区的矿产地、地球物理、地球化学等成矿信息资料,对研究区的矿体地质和控矿因素进行野外和室内综合分析,充分利用计算机技术,采用MICROMINE软件建立钻孔资料数据库、矿体三维模型和矿体品位模型,对铜山铜矿床进行定位预测研究,提出了找矿有利地段,并在此基础上根据矿体三维模型和矿体品位模型,对预测地段铜的资源量进行了估算。
     铜山I号矿体露采场北壁,为铜山断层通过处,壁上有许多构造形痕。通过野外现场观测,壁上绝大多数断层擦痕均呈东西走向,向东倾斜,倾角10-20°。还可以见到多组破劈理面,走向东西。另外还有一些向南倾斜的擦痕。通过对这些构造形痕的研究,得出断层上盘是以由东向西平推为主,还有由南向北的逆掩现象。断层下盘的Ⅲ号矿体呈东西走向,断层上盘的Ⅱ号矿体呈北西西走向。若以断层下盘的Ⅲ号矿体为准,在西部1072线上,Ⅱ号矿体在Ⅲ号矿体的北部,二者距离约为200米,但在1112线上,上盘的Ⅱ号矿体基本覆盖在断层下盘Ⅲ号矿体上面,说明断层除了由东向西平推之外,还有以1112线为轴转动的特征。由1112线向西,距离越远,掩覆的距离越大。由此确定铜山断层是兼有南北向压扭性活动的近东西向扭性断层。
     根据研究区的地质资料、三维地质体空间模型分析,得出以下主要结论:
     a、铜山逆断层由东向西推移距离在100-400m,由南向北推覆400-600m,由下向上推覆400m左右。
     b、Ⅱ号矿体和Ⅲ号矿体具有同源性和多位一体的成矿模式。铜山矿区由中奥陶统铜山组和多宝山组构成背斜构造,沿该背斜的核部侵入了英云闪长岩。Ⅲ号矿体赋存在英云闪长岩,Ⅰ、Ⅱ号矿体赋存在岩体西南接触带的安山岩、安山质凝灰岩围岩中。根据研究区的Ⅲ号矿体与三维蚀变模型分析,Ⅲ号矿体是铜山矿床的主要矿体。
     c、I号矿体的产状及其出露多宝山组一段一亚段与下盘Ⅲ号矿体南部1080与1096-1112勘探线的铜矿体及其出露多宝山组一段一亚段地层具有相关性,二者产状、规模基本一致,都含有安山岩绿泥石化-绢云母化和铜矿体,初步推测二者是成矿期后铜山逆断层错断的产物。I号矿体西端(1060勘探线)与Ⅲ号矿体查明的最西端(1080勘探线)安山岩赋矿地层对比,二者的东西向错位距离为400m,即1060—1080勘探线东西向距离。
     d、Ⅱ号矿体下盘位置推测。
     根据斑岩铜矿成矿模式,提出研究区1080-1120勘探线深部(800m以下),断层的下盘以南200m左右是Ⅱ号矿体赋存的部位,其深部位于华力西中期岩浆岩成矿有利区的边缘,而且还具有多宝山组一段(向斜转折端)有利构造位置,也是研究区较大、较好的远景预测区。
     据已知工程控制资料,利用Ⅰ、Ⅱ和Ⅲ号铜矿体的三维矿块模型、品位模型,估算Cu金属量(查明矿产资源)为**万吨。估算结果与详查报告对比,三个主矿体合计矿石量和金属量的相对误差分别为为2.3%和6.4%,表明利用MICROMINE计算的结果,能够客观反映了矿体的实际状况。
     根据三维定位定量预测资料,Ⅲ号矿体位于铜山断层下盘西起1064线,向东延至1112线,走向东西,长1200米,水平投影平均宽度约为150米,延深>1000米,深度、宽度未完全控制,现已探明Cu金属量**万吨(平均延深600米左右),经有限外推,推测其总Cu金属量≥**万吨,新增Cu金属量≥40万吨。Ⅱ号矿体位于I号矿体上盘。西起1040线,向东延至1112线,矿体长度1800米,平均宽度(在铜山断层面上的水平投影)为220米,平均品位0.52%,矿石体重2.8t/m3,推测Ⅱ号矿体在断层下盘的延深为500米,推测新增Cu金属量为288***。预测Cu金属量(潜在矿产资源)大于300万吨。铜山铜矿总的Cu金属量将大于400万吨,规模将超过多宝山铜矿床。
The Tongshan copper deposit is located in the southeast of Duobaoshan about 4km, which is a large copper-polymetallic deposit. The main strata exposed in mining area are Tongshan group (O2t) and Duobaoshan Group (O2d) of the Paleozoic in the mid-Ordovician. The magmatic active strongly in the region.The volcanic rocks are represented by andesite and dacite in mid-Ordovician of Duobaoshan strata. The intrusive rocks are represented by Tongshan tonalite diorite, tonalite porphyry, Duobaoshan granodiorite and quartz diorite. The mining area is developed northwest, east-west and north-south trending tectonic. The NW structure is formed early in the mining district and belonged to the Variscan tectonic cycles , which is the basis of structure and mainly are Duobaoshan complex multi-level anticline , secondary syncline and NW ductile shear zone along the axes of NW structure. The EW and NS structure is postmineral structure and belonged to the Yanshan tectonic cycle, which include EW faults and NS faults.
     The No.Ⅰorebody of the Tongshan copper deposit was discovered in 1961 and maked detailed investigation in 1990-1993. The Tongshan copper deposit showing that the surface and deep (1303.8 meters of drilling hole does not penetrate the ore body) has a good exploration prospects by prospecting the orebody deep concealed the upper partⅡand the bottom ofⅢore body. The mainly identificated results of detailed survey : the number of the ore body, distribution area, occurrence, shape, thickness and its hosting rule. The deposit is composed of the four main ore bodies and and 76 subordinate ore bodies, and distribued in the 1040 -1112 lines, which is 2000 meters long, the average width of 403 meters , occurrence of elevation of +530 m and -862 m deep extension. The ore bodies showed striped-lenticular body, the overall trend 120°-128°, dip to southwest and angles70°-80°. The ore bodies both occured in the low-order joint density of chlorite sericite andesite, pyroclastic rocks, lava and quartz of sericite within tonalite rock band in the North West main structure . The metallic amount of Cu C + D class is ** million tons of metal and the average grade is 0.48%.
     Following the above work, the survey is mading great breakthroughs in prospecting ore , but the core area of the existing four main ore bodies has not been determined in the Tongshan mine. The manner of nappe about the No.Ⅱorebody and distribution of its bottom ore body have not yet ascertained. so far, the No.Ⅲorebody which is in footwall of the Tongshan fault is not done deep engineering work . The No.Ⅰ,Ⅱorebody are recognized as only the small part by analysis in current . It is always a thinking and controversial question about the knowledge of the Tongshan fault, the hosting location of the fault rupture and size of resources.
     Based on the exploration results in the previous article , the metallogenic model and prospecting theory of porphyry copper deposits at home and abroad , systematic collected geophysical and geochemical information mineralization in the study area, the ore body geology and ore-controlling factors of comprehensive analysis of field and indoor , full use of computer technology in the study area, the use of borehole data MICROMINE software to establish a database, three-dimensional model and ore grade ore body model to locate on the Tongshan copper deposit , bring up prediction proposed prospecting in the favorable areas, and on this basis, three-dimensional model under the ore body and ore grade model, lots of copper in predicting the amount of resources were estimated.
     The Tongshan No. I ore body is located in the north wall of stope ore body , which through the department for the Tongshan fault. There are many wall structure shaped marks. It is showed that most of the fault scratches on the walls from east to west, inclined to east, angle 10°- 20°by the field observations .
     It is developed multiple sets of cleavage break and NW trenching. There are also some scratches southward tilt. It is obtained that the hanging wall is mainly pushed east to west , and there are thrust from south to north by the research of these structures .The trenching of No.Ⅲore body in the footwall of fault is EW . The trenching of No.Ⅱore body in the footwall of fault is NNW . If the footwall of the ore bodyⅢsubject, in the west line 1072,ⅡⅢorebody ore body in the north, a distance of about 200 meters between the two, but in the 1112 line, the disk No.Ⅱore bodies in the footwall of the basic coverageⅢorebody above, that the fault level from east to west in addition to push, there is the 1112 line features rotation axis. 1112 lines from the west, farther away, cover the greater the distance covered. TheTongshan fault is so determined to press both north-south shear of near east-west shear fault.
     According to geological data the study area, three-dimensional geological spatial model, draw the following conclusions:
     a, The Tongshan thrust fault from east to west over a distance of 100-400m, from south to north nappe 400-600m, 400m from the bottom up about thrust.
     b, The No.ⅡandⅢorebody ore body has more than one identity and metallogenic model. The Tongshan Mining is composed of Tongshan group and Duobaoshan group in the mid-Ordovician, along the core of the anticline a tonalite intrusive rocks. The No.Ⅲorebody hosted in tonalite rock.The No.Ⅰ,Ⅱorebody hosted in andesite, andesitic tuff surrounding rock rock of contact ing zone in the southwest . According to the study area No.Ⅲorebody model and three-dimensional alteration, it is the main ore body in the Tongshan deposit.
     c,The occurrence of No. I orebody and exposed section of a sub-group of more than Dudobaoshan segment No.Ⅲorebody footwall south line of 1080 and the 1096-1112 exploration and ore body exposed a group of more than one sub-section of Baoshan formation relevant, both occurrence and scale consistent, contain andesite chlorite - sericite and copper ore body, initially speculated that the two are forming Copper Mountain thrust fault after the fault of the product . In the western end of the No.I ore body ore body (1060 prospecting line) and No.Ⅲore body on the western end of the identified ore body (1080 prospecting line) ore andesite stratigraphic correlation, the two things to the dislocation distance of 400m, that line of east-west distance of exploration 1060-1080 .
     d, No.Ⅱorebody footwall position of speculation.
     According to porphyry copper deposit model, the proposed study area 1080-1120 exploration line deep (800m below), the fault is about 200m south of the lower plate is the site of No.Ⅱore body, located in the deep mid-Variscan igneous rocks into favorable area of the edge of the mine, but also a multi Baoshan Group (synclinal transition end) favorable structural position, the study area is larger, better vision forecast area.
     According to the information known engineering controls, the use of No.Ⅰ,ⅡandⅢore bodies of three-dimensional copper ore body block model, quality models to estimate the amount of Cu metal (identified mineral resources) to ** t. Compared with the detailed investigation report estimation results, the three main ore body and ore metal content of the total relative error was 2.3% and 6.4%, indicating that the use of MICROMINE calculation, can objectively reflect the actual state of the ore body.
     According to quantitative prediction of three-dimensional positioning information, the No.Ⅲorebody is located in the footwall of the west Tongshan 1064 lines, east line until 1112, to what 1200 meters long, horizontal projection of an average width of about 150 meters, extending the depth> 1000 m, depth, width is not fully controlled, has been proven Cu metal of 60 million tons (an average delay of about 600 meters deep), the limited extrapolation, suggesting that the total metal content of Cu≥** million tons, the amount of metal added Cu≥40 million tons. No.I,Ⅱorebody ore body is located on the disk. West from the 1040 line, the east line until 1112, ore body length of 1800 meters, average width (in Tongshan the horizontal projection of the fault plane) for 220 meters, with an average grade of 0.52%, ore body weight 2.8t/m3, guess mine No.Ⅱbody of the extension in the footwall of 500 meters deep, suggesting that additional Cu metal content was 288 million tons. Predict the amount of Cu metal (potential mineral resources) of more than 300 million t. Copper Mountain Copper Mine will be the total amount of Cu metal is more than 400 million tons, will be bigger than Duobaoshan copper deposit.
引文
1.李锦轶.中国大陆构造格架与形成过程.振兴东北老工业区东北亚矿产资源响应学术研讨会.2006.7
    2.叶天竺,张智勇,肖庆辉,等.全国矿产资源潜力评价:地质构造研究工作技术要求.中华人民共和国国土资源部. 2007.6
    3.翟裕生,彭润民,向运川,等.区域成矿学研究方法.中国大地出版社. 2004年
    4.李春昱,郭令智,朱夏,等.板块构造基本问题.地震出版社.1986.3
    5.张兴洲,张元厚.蓝片岩与绿片岩共存:龙江岩系构造演化的新证据.1991,长春地质学院学报, 21(3)
    6.张鸿翔,徐志方,黄智龙,等.地幔流体基本特征及成因[J].地质地球化学,2000,28(2):1-7
    7.杜乐天.硅桥问题-简论当代热液成矿理论的概念更新[J].矿床地质,1992(1):13-19
    8.翟裕生,张湖,宋鸿林,等.大型构造与超大型矿床.北京,地质出版社,1997
    9.翟裕生,邓军,李晓波.区域成矿学.北京:地质出版社,1999
    10.杜琦,赵玉明,卢秉刚,马德有。1988。多宝山斑岩铜矿床,北京:地质出版社.
    11.王喜臣,2007,黑龙江多宝山超大型斑岩铜矿的成矿作用和后期改造[J].地质科学,42(1):124-133.
    12.黑龙江省地质矿产局第二地质调查所,黑龙江省嫩江县铜山铜矿详查报告,1993
    13.韩成满,王长水,李宗民等.2007.多宝山铜矿资源潜力.北京:地质出版社.
    14.王功文,郭远生,杜杨松等.基于GIS的云南普朗斑岩铜矿床三维成矿预测[J].矿床地质,2007,26(6),P651-658.
    15.程裕淇,陈毓川,等.再论矿床的成矿系列问题.中国地质科学院院报,1984,6
    16.陈毓川,裴荣富,宋天锐.中国矿床的成矿系列初论.北京:地质出版社,1998
    17.陈毓川,等.中国成矿体系与区域成矿评价.北京:地质出版社,2007
    18.黑龙江省地质矿产局.黑龙江省区域地质志.北京:地质出版社,1993
    19.谭成印,唐臣,李忠文,等.黑龙江省矿产资源潜力评价总体设计书.2008
    20.黑龙江省地质矿产局.黑龙江省岩石地层.武汉:中国地质大学出版社,1997
    21.朱群,赵春荆.佳木斯地块基底构造.沈阳地质矿产研究所集刊,第5-6号,1-113
    22.王莹.黑龙江中.上游流域中.新元古界及下寒武统的划分对比.黑龙江地质,1992,3(1):16-26
    23.吕志成,郝立波,段国正,等.大兴安岭早二叠是两类火山岩岩石地球化学特征及其构造意义.地球化学,2002,31(4):338-346
    24.马家骏,方大赫.黑龙江省中生代火山岩初步研究.黑龙江地质,1991,2(2):1-16
    25.秦秀峰,郭原生,刘旭光,等.大兴安岭北部兴凯期花岗岩地球化学特征及构造意义.甘肃地质学报,2004,13(2):32-38
    26.王功文,杜杨松,谭成印等.基于三维模型的云南普朗铜矿矿产资源预测与评价,第九届全国矿床会议论文集,北京:地质出版社,2008,P730-731.
    27.崔革,王金益,张景仙,崔根.黑龙江多宝山花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义.世界地质,2008,27(4):387-394
    28.黑龙江省地质矿产局第三地质勘查所,地质矿产部矿床地质研究所.黑龙江多宝山及其邻区寻找大型斑岩铜矿的研究.“八五”国家科技攻关计划专题成果报告,编号85-901-01-01,1995
    29.赵一鸣,毕承思,邹晓秋,等.黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄[J].地球学报,1997,18(1):61-67
    30.王海平,张宗贵.多宝山矿田的地面波谱研究及其在铜矿预测中的应用.矿床地质,1997,16(3),p214-224.
    31.赵元艺、马志红,仲崇学.黑龙江铜山铜矿床地球化学及其找矿模型.地质与勘探,1995,31(3),p48-54.
    32. MICROMINE储量估算部分高级培训教材,2007.
    33.孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特旗碰撞拼合带东延的关系.科学通报,2000,45(20):2217-2222
    34.李之彤,朱群.吉黑东部花岗岩类的稳定同位素组成.岩石矿物学杂志,2001,20(3):353-359
    35.邵军,赵山,马启波,等.黑龙江小兴安岭-张广才岭成矿带铅锌多金属成矿规律研究.沈阳地质矿产研究所,2006
    36.赵春荆,彭玉鲸,党增新,等.吉黑东部构造格架及地壳演化.沈阳:辽宁大学出版社,1996
    37.王莹.论黑龙江杂岩.黑龙江地质,1992,3(3):1-8
    38.张兴洲,杨宝俊,吴福元,等.中国兴蒙-吉黑地区岩石圈结构基本特征.中国地质,2006,33(4):816-822
    39.陈美勇,刘俊来,胡建江,邹运鑫,张宏远.大兴安岭北段三道湾子碲化物型金矿床的发现及意义[J].地质通报,2008,27(4)584-587.
    40.郭继海,汪长生,石耀辉.黑龙江东安金矿地质及地球化学特征.地质与勘探,2004,40(4):37-41
    41.薛明轩,刘明,双宝.黑龙江大安河金矿控矿条件及成矿机理分析.世界地质,2001,20(1):34-39
    42.王振忠.黑龙江东宁金厂金矿床地质特征及找矿前景分析.吉林地质,2008,27(2):22-27
    43.李真真,李胜荣,张华锋.黑龙江省东宁县金厂金矿围岩蚀变和成矿年代学特征.矿床地质,2009,28(1):83-92
    44.Wirth R and Rocholl A. Nanocrystalline dinmond from the Earth’smantle underneath Hawaii. Earth and Planetaiy Science Letters. 2003,211:357-369
    45.Wilson J T.A possible origin of the Haw aiian Islands[J].Can J Phys,1963,41:863-870
    46.Morgan W J.Convection plumes in the lower mantle[J].Nature,1971,230:42-43
    47.Morgan W J.Hotspot tracks and the opening of the Atlantic and Indian oceans[A].Emiliani C.The Sea,Vol.7[M].New York:Wiley Interscience,1981,443-487
    48.Griffiths R W,Campbell I H.stiaring and structure inmantle starting plumes[J].Earth Planet Sci Lett,1990,99:66-78
    49.White R S,Mckenzie D P.Magmatism at rift zones:thegeneration of volcanic continental marginsand flood basalts[J].J Geophys Res,1989,94:7685-7729
    50.Campbell I H, Griffiths R W. The chanjing nature of mantle hotspots through time:implications for the geochemical evolution of the mantle[J].J Geol,1992,92:497-523
    51.Davies G F,Richards M A.Mantle convection[J]. J Geol,1992,100:151-206
    52.Larson R L.Geological consequences of superplumes[J]. Geology,1991,19:963-966
    53.Prevot M,Perrin M.Intensity of the Earth’s magnetic field since Precambrian from Thellier-type palaeointensity data and inferences on the thermal history of the core[J]. Geo phys J Inter,1992,108:613-620
    54.Chopin C.Coesite and pure pyrope in high grade pelitie blueschists of the Western Alps:A first record and some consequences.Contrib Mineral.Pedrol.,1984,86:107-118
    55.Liou J G,Hacker B R and Zhang R Y.Into the forbidden zone.Science,2000,287:1215-1216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700