大平掌4号难选多金属硫化矿选矿试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以云南大平掌复杂难选铜铅锌多金属硫化矿为研究对象,采用现代检测手段-MLA进行了工艺矿物学研究;结合生产实际,针对选厂铜锌分离困难、精矿中铜锌互含较高、铜品位低的生产状况,在研究浮选流程和药剂制度的基础上,进一步深入研究了铜锌分离的条件、提高品位及回收率的措施。最终获得了理想的选矿指标,能为选厂的生产实践提供参考和依据。
     矿石的工艺矿物学研究表明:原矿含Cu0.818%、Pb0.639%、Zn3.20%、S 17.76%。矿石成分较为复杂,共有30多种矿物。矿石中的金属矿物主要为黄铁矿、黄铜矿、闪锌矿,方铅矿、黝铜矿、磁黄铁矿;脉石矿物主要为绿泥石、石英、云母,少量碳酸盐、氧化物和氢氧化物。矿石属于高铅高硫的多金属硫化矿,矿石中可供回收利用的元素为铜、铅、锌、银、硫,有少量的金值得关注,其他元素无回收价值。
     本论文在对该矿石主要矿物的组成、嵌布和包裹关系深入研究以后,进行了选矿试验研究。试验采用优先浮选工艺方案,并用常规的、无毒的选矿药剂对该矿石进行选别,可以减少环境污染。
     试验研究表明,该矿样中的一部分铜矿物及锌矿物嵌布粒度较细,需要在较细的磨矿细度下才能使其单体解离,因此必须对该矿石进行细磨,以加强目的矿物之间的充分解离。因此,细磨是提高浮选指标的关键。
     在原矿Cu品位为0.818%、Pb品位为0.639%、Zn品位为3.20%的情况下,采用磨矿细度为-400目95%、乙硫氮作为铜矿物的捕收剂、硫酸锌和亚硫酸钠配合使用作为锌矿物的抑制剂、石灰作为黄铁矿的抑制剂、硫酸铜作为锌矿物的活化剂、丁基黄药作为锌矿物的捕收剂、2“油为起泡剂,选别铜及锌时分别经过两次粗选、三次精选的优先浮选工艺,最终获得了铜品位为18.835%、回收率为76.14%,锌品位为52.675%、回收率为88.42%的浮选指标。
This paper conducted the mineralogical studies on the complex and refractory copper-lead-zinc sulfide ore of Da ping zhang, Yunnan, with the aid of modern testing instrument MLA. According to the actual operational practice, it's very difficult to separate copper and zinc minerals, resulting in a poor quality of the concentrate, i.e., copper concentrate containing zinc and zinc concentrate containing copper to great extents. Based on the study of the flotation process and the reagent scheme in the system, further study on the separating copper and zinc were carried out to improve the grade and recovery. Finally, better processing performance were obtained. It can provide reference for current production operations.
     Ore mineralogical studies have shown:the ore contains Cu 0.818%, Pb 0.639%, Zn 3.20%, and S 17.76%. Mineral composition is very complex as it contains more than 30 kinds of minerals. Main metallic minerals are pyrite, chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, and galena; main gangue minerals include chlorite, quartz, mica and a small amount of carbonate, oxides and hydroxides in the ore. It can be defined as a multi-metallic sulfide ore with high lead and sulfur contents. Elements that can be utilized in the ore may be Cu, Pb, Zn, Ag, S, and a little Au. Other elements cannot be utilized.
     Tests are conducted after the research of the mineral composition, dissemination and inclusion relationships of the minerals, and preferential flotation scheme was put forward by using conventional and non-toxic reagents, which is expected to reduce the environmental pollution.
     Research showed that the disseminated particle size of copper and zinc minerals are relatively fine. In order to achieve a better liberation degree for the target minerals, fine grinding shall be conducted. Therefore, the fine grinding is the key operational factor to improve the flotation performance.
     The ore contains Cu 0.818%, Pb 0.639%, and Zn 3.20%, preferential flotation was conducted by two roughing stages, and three cleaning stages, copper and zinc concentrates can be obtained, assaying 18.835% Cu at the recovery of 76.14% and assaying 52.675% Zn at the recovery of 88.42%. Above processing performance was obtained under following conditions:95% -400 mesh for grinding, diethyl dithiocarbamate as copper's collector, zinc sulfate and sodium sulfite as zinc mineral's depressants, lime as pyrite mineral's depressants, copper sulfate as zinc mineral's activator, butyl-xanthate as zinc mineral's collector, and pine oil as frother.
引文
[1]娄德波等.我国铜矿资源战略研究[C].第八届国际矿床会议,805.
    [2]Fomasiero D,Fullston D,and so on. International Journal of mineral Processing,2001,61 (2):109.
    [3]Lin H.K,Say W. C. Journal of Applied Electrochemistry,1999,29 (8):987.
    [4]Mimitrijevic M,Antonijevic M. M.Minerals Engineering,1999,12 (2):165.
    [5]Boulton A,Fornasiero D. Ralston J. International Journal of Mineral Processing,2001,61 (1):13.
    [6]Weisener C,Gerson A.Minerals Engineering,2000,13 (11):1329.
    [7]Santhiya D. Minerals Engineering,2000,13 (7):747.
    [8]Sirkeci A.A. Minerals Engineering,2000,13 (9):1037.
    [9]胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987.
    [10]钱鑫,张文彬等.铜的选矿[M].北京:冶金工业出版社,1982.
    [11]叶雪均.柿竹园多金属矿资源综合利用选矿流程研究[J].矿产综合利用,2000,(1):1-4.
    [12]艾光华,周源.细粒嵌布铜铅锌矿石的浮选新工艺试验研究[J].金属矿山,2004(10):36-38.
    [13]王荣生,师建中等.某银铜铅锌多金属矿选矿工艺试验研究[J].矿冶,2004(9):38-41.
    [14]张渊,刘韬等.天宝山铜铅锌多金属矿提高铜回收率的试验研究[J].矿产综合利用,2008(4):13-15.
    [15]罗仙平,陈华强等.会理铜铅锌多金属硫化矿浮选新工艺研究[J].金属矿山,2008(8):45-51.
    [16]王荣生,浦永林等.小茅山银铜铅锌矿石的选矿工业应用研究[J].有色金属(选矿部分),2009(6):23-25.
    [17]宛鹤,谢建宏,王森等.安徽某复杂多金属铜铅锌矿石综合回收试验研究[J].金属矿山,2008(3):90-93.
    [18]常宝乾,张世银等.复杂难选铜铅锌银多金属硫化矿选矿工艺研究[J].有色金属(选矿部分),2010(1):15-19.
    [19]陈代雄,田松鹤.复杂铜铅锌硫化矿浮选新工艺试验研究[J].有色金属(选矿部分),2003(2):1-5.
    [20]郑亚杰,孙体昌等.内蒙古某高砷低铜矿石选矿工艺研究[J].有色金属(选矿部分),2009,(1):9-11.
    [21]覃文庆.硫化矿物颗粒的电化学行为与电位调控浮选技术[M].北京:高等教育出版社,2001.
    [22]Hanson J.S,Fuerstenau D.W.The electrochemical and flotation behavior of chalcocite and mixed oxide/sulfide ores,IJMP,1991,33:33-34.
    [23]Yoon R.H,Woods.R.Eh-pH diagrams for stable and metastable phases in the copper-sulfur-water system,IJMP,1986,20:109-121.
    [24]罗仙平,王淀佐等.某铜铅锌多金属硫化矿电位调控浮选试验研究[J].金属矿山,2006,(6):30-34.
    [25]Heimals S,Richardson P.E.Electro-chemistry in Mineral and Metal processing electrochemistry Science 1988,170-182.
    [26]顾帼华.硫化矿磨矿一浮选体系中的氧化一还原反应与原生电位浮选:[博士学位论文].长沙:中南工业大学,1998.
    [27]朱玉霜,朱建光.浮选药剂作用原理[M].长沙:中南大学出版社,1996.
    [28]宋国顺,宁致强等.某铜铅锌多金属矿石选矿药剂的选择与工艺研究[J].有色矿冶,2003(12):21-23.
    [29]杨建文.综合回收复杂铅锌矿伴生铜资源浮选新工艺试验研究[J].湖南有色金属,2008(4):15-20,49.
    [30]万玲,华金仓等.阿舍勒铜矿选矿技术进步[J].有色金属(选矿部分),2006(5):12-16.
    [31]王荣生,师建忠等.某银铜铅锌多金属矿选矿工艺试验研究[J].矿冶,2004(3):38-41.
    [32]李观奇.混合浮选新工艺回收复杂铜铅锌矿硫化矿试验研究[J].湖南有色金属,2009(4):8-12,64.
    [33]K·M·阿松奇克.汉吉兹矿床的多金属矿石选矿工艺的制定[J].国外金属矿选矿,2008(6):39-41.
    [34]B·A·依格纳特金娜等.用改性的二硫代磷酸盐浮选铜、铁、锌和金的硫化矿物[J].国外金属矿选矿,2006(6):15-17.
    [35]I·I·马克西莫夫等.在萨费亚诺夫斯克矿床铜一锌矿石浮选工艺制定时应用有效的药剂[J].国外金属矿选矿,2006(2):25-28.
    [36]K-M·阿松奇克等.在盖伊斯克铜锌矿浮选时提高铜精矿质量[J].国外金属矿选矿,2007(9):42-43.
    [37]王云,张丽军.复杂铜铅锌多金属硫化矿选矿试验研究[J].有色金属(选矿部分),2007(6):1-6.
    [38]陈泉水.某铜铅锌多金属矿的选矿工艺试验研究[J].现代矿业,2009(2):71-73.
    [39]Bulatovic, S. M, Wyslouzil, D. M. Process development for complex copper-lead-zincores. IMPC, CIM Preprints,1982:17-23.
    [40]李江涛.亚硫酸钠在铜铅分离浮选中的的应用[J].中国矿业,2007(10):74-76.
    [41]王中生,郭月琴 等.CMC在铜铅分离浮选中的应用[J].矿产保护与利用,2002(2):30-32.
    [42]李长根.瑞典加尔彭贝尔格铜铅锌选矿厂[J].国外金属矿选矿,2004(8):44-45,27.
    [43]S.Bulatovic,D.M.Wysouzil,et al.Development and introduction ofa new copper/lead Separation method in the Raura plant(PERU).Mineral Engineering,2001, 11:1483-1491.
    [44]刘冬明,万文等.无毒抑制剂铜铅分离浮选的研究[J].冶金矿山设计与建设,2001,33(3):6-9.
    [45]袁明华,赵继春.铜铅混合精矿铜铅浮选分离试验研究[J].有色金属(选矿部分),2008,(5):5-7.
    [46]米丽平,孙春宝.用组合抑制剂实现铜铅高效分离的试验研究[J].金属矿山,2009(8):53-56.
    [47]李观奇.混合浮选新工艺回收复杂铜铅锌矿硫化矿试验研究[J].湖南有色金属,2009(4):10-12.
    [48]艾光华等.组合抑制剂在铜铅分离浮选中的试验研究[J].中国矿山工程,2005(10):11-12,16.
    [49]贾仰武.云南某铜铅锌硫化矿铜铅分离浮选试验研究[J].矿冶工程,2009(08):47-49.
    [50]王中生,郭月琴.CMC在铜铅分离浮选中的应用[J].矿产保护与利用,2002,(1):30-32.
    [51]K.L.Clifford,et al. Galena-sphalerite-chalcopyrite Flotation at st.Joe Minerals Corporation,1979,180-182.
    [52]艾光华,朱易春等.组合抑制剂在铜铅分离浮选中的试验研究[J].中国矿山工程,2005,34(5):11-13.
    [53]陈慧杰.石英脉型复杂多金属矿选矿试验研究:[硕士学位论文].武汉:武汉理工大学,2009.
    [54]龚明光.泡沫浮选.北京:冶金工业出版社,2007:128.
    [55]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1987,306-316.
    [56]王资.浮游选矿技术[M].北京,冶金工业出版社,P77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700