甚低介电常数聚酰亚胺/多金属氧酸盐复合薄膜的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息技术特别是大规模集成电路的突飞猛进,电子产品正朝着轻量薄形化、高性能化和多功能化方向发展,其对介质材料的要求越来越高。迫切需要开发新一代低介电常数材料。聚酰亚胺(PI)作为一种高性能聚合物材料,从上世纪70年代起已被用作电路板金属层间介质。PI具有优良的耐热性,较高的力学性能、耐化学腐蚀性和粘结性等,被广泛应用于微电子领域。PI本征介电常数值介于2.9~3.4之间,已不能满足电子工业对新一代介电质材料的要求。目前主要通过在PI主链中引入氟元素以及在PI中掺杂介孔材料来降低PI的介电常数。
     本论文通过对三种不同结构含纳米孔洞的多金属氧酸盐(POMs)进行有机改性,并将改性物引入对苯二酐(PMDA)-二苯醚二胺(ODA)型PI及含氟共聚型PI中,制备了一系列PI/POMs复合薄膜。通过红外光谱、核磁共振谱、X-射线表面光电子能谱、X-射线衍射、透射电镜、扫描电镜、凝胶色谱、动态粘弹分析仪、差热扫描量热和热重分析等对其结构和性能进行了详细研究。
     1.以带氨基官能团的硅烷偶联剂3-氨丙基三乙氧基硅烷(KH550)对Keggin结构POMsK_8SiW_(11)O_(39)(SiW_(11))进行表面有机改性,制备了有机改性物SiW_(11)KH550。分别将SiW_(11)和SiW_(11)KH550通过前驱体溶液共混法引入PMDA-ODA型聚酰胺酸(PAA)中,两步法制备了一系列PI复合薄膜。粘度及红外测试表明,SiW_(11)KH550通过氨基官能团与PAA末端酐基官能团反应共聚入PI主链中。XRD及SEM测试结果显示,SiW_(11)在PI中形成2μm的结晶团聚物;SiW_(11)KH550则均匀分散在聚合物中,其大小约为20~50nm之间。在0wt%~10wt%的SiW_(11)KH550添加量范围内,随SiW_(11)KH550添加量的增加,复合薄膜的玻璃化温度、热分解温度有所提高,而介电常数则降低至2.10。相反,添加SiW_(11)使聚合物的物化性能变差。
     2. SiW_(11)KH550添加量受PAA末端酐基的限制。为进一步增大SiW_(11)的添加量,以带环氧基官能团的硅烷偶联剂3-缩水甘油醚氧丙基三甲氧基硅烷(KH560)对SiW_(11)进行有机改性,使SiW_(11)表面带有环氧官能团。红外谱图分析发现带环氧官能团的SiW_(11)不但能与PAA末端酐基反应,而且能与PAA主链上羟基官能团形成氢键作用,有利于SiW_(11)的分散。在0wt%~20wt%的SiW_(11)KH560添加量范围内,复合薄膜的介电常数随SiW_(11)KH560添加量的增大从3.29降低至2.81。
     3.相比于共聚法将SiW_(11)引入PI,共混法添加过程简单,影响因素单一。基于此,以带双键的硅烷偶联剂乙烯基三甲氧基硅烷(A171)对SiW_(11)进行有机改性,制得有机改性物SiW_(11)A171,以增大SiW_(11)与PI的相容性。XRD及SEM测试显示,SiW_(11)A171均匀分散于PI薄膜中,所特有的结晶峰也随之消失,与聚合物基体的相容性大为改善。在0wt%~20wt%的SiW_(11)A171添加量范围内,制备的复合薄膜的介电常数低至2.05。
     4.用KH550、A171改性了不同结构的POMs—K_7PW_(11)O_(39)(PW_(11) Keggin结构)和K_6P_2W_(17)O_(61)(P_2W_(17) Dawson结构),并将上述改性物引入PMDA-ODA型PI中制备了一系列PI复合薄膜。结果表明复合薄膜的介电常数受POMs组成、结构及POMs离子电负性等因素的影响。其中,PW系列的POMs降低复合薄膜介电常数的效果好于SiW系列的POMs;Dawson结构POMs好于Keggin结构POMs;电负性越大,POMs降低复合薄膜介电常数的效率越高。所制备的一系列复合薄膜中,介电常数最低值出现在添加量为20wt%时的氨基改性P_2W_(17)的复合薄膜,其介电常数为1.68。
     5.以PMDA、ODA、六氟二酐(6FDA)和2,2’-二(三氟甲基)联苯二胺(TFDB)为单体合成了含氟嵌段共聚型PI。通过溶解性能、成膜性能等研究发现,当含氟组分摩尔比占共聚物的50%时,所制备的共聚薄膜具有较好的综合性能。其介电常数为2.84。运用Maxwell方程、Lorenz介电理论以及Vogel介电理论对所制备的共聚物进行介电常数计算发现,后两种理论计算得出的介电常数与实测值具有很好的吻合关系,其最大误差小于10%。将P_2W_(17)KH550添加入含氟共聚PI中,当添加量为15wt%时,制备的复合薄膜介电常数为1.63,同时所制备的复合薄膜能溶解于极性惰性溶剂DMF、DMAc等。
With the rapid development of electronic communication technology, especially the development of Ultra Large Scale Integrated Circuit, electronic products become more and more portable and functional, the requirement for materials with low dielectric constant increased。It is very crucial to develop next generation dielectrics. Polyimides, as high profermance polymer materials, were used as electronic medium between metal layers from 1970s. Polyimides exhibited good thermal stability, mechnical property, chemical-resistants and felting property, were widely applicated in microelectronic. The dielectric constant for ordinary polyimides were in the range of 2.9~3.4, which can not meet the requirement for new dielectrics. Several methods are intoduced in order to decrease the dielectric constant of polyimides, such as incorporation of fluorinated substituent intoPIs; introduction of voids into PIs by foaming processes andembedment of nanoporous inorganic/organic hybrids like POSS into PIs. In this paper, three polyoxometalates(POMs) with different structures were firsr modification by silane coupling agents, and then those inorganic hybirds were incorporated in to polyimide(PMDA-ODA) and fluoride polyimide to fabrication series of polyimides/polyoxometalate composites thin films. FTIR, NMR, TEM, SEM, XRD, XPS, DMA, TGA and DSC were used to characterize the structures and properties of the composites.
     1. A mono-lancunary keggin-type decatungstosilicate (SiW_(11)) polyoxometalate modified byγ-aminopropyltriethoxysilane (KH550) was incorporated into polyimide (PI) through copolymerization. Nuclear magnetic resonance (NMR), Fourier transition infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD) were used to characterize the structure and composition of the polyoxometalate-organosilane hybrid (SiW_(11)KH550) and PI/SiW_(11)KH550 copolymers. The differential scanning calorimetry (DSC) studies indicate that the glass transition temperature (Tg) of PI/SiW_(11)KH550 copolymers increase from 337°C (for neat PI) to 364°C (for the copolymer sample with 10 wt% of SiW_(11)KH550). Dielectric measurement showed that the dielectric constant for copolymer thin films decreased with the increasing SiW_(11)KH550 content, and the dielectric constant is 2.10 for the copolymer sample with 10wt% of SiW_(11)KH550. On the contrary, incorporation SiW_(11) into polyimide matrix dicreased the porperties of PI mentioned before.
     2. A silane-modified mono-lacunary Keggin-type polyoxometalate SiW_(11)KH560, was obtained by reaction of (3-Glycidoxypropyl)trimethoxy silane(KH560) with K8SiW_(11)O_(39)(SiW_(11)). FTIR and XPS spectrums demonstrate that KH560 is grafted onto the polyoxometalate. Then the modified polyoxometalate was added into PMDA -ODA poly(amic acid) solution, and the poly(amic acid) solution were thermally imidized to form polyimide/polyoxometalate composites. FTIR results showed that SiW_(11)KH560 can copolymerize into PI matrix and It also hydrogen bongding to PI matrix. The EDS (W-mapping) studies on the composite films reveal that the polyoxometalate clusters are well dispersed in the polyimide matrix. The incoporation of SiW_(11)KH560 into polyimide reduced the dielectric constant of the latter from 3.29 to 2.81.
     3. A silane-modified mono-lacunary Keggin-type polyoxometalate SiW_(11)A171, was obtained by reaction of vinyltrimethoxysilane with K8(SiW_(11)O_(39)). Then the modified polyoxometalate was physically blended with the PMDA-ODA poly(amic acid) and the blends were thermally imidized to form polyimide/polyoxometalate composites. The x-ray diffraction (XRD) analysis indicates that the polyoxometalate clusters can not form crystalline structure in the composite, suggesting that the blending lead to improved compatibility between the polymer matrix and the modified polyoxometalate. The EDS (W-mapping) studies on the composite films reveal that the polyoxometalate clusters are well dispersed in the polyimide matrix. The physical incoporation of modified SiW_(11)A171 into polyimide remarkably reduced the dielectric constant of the latter from 3.29 to 2.05 when 20 wt % of SiW_(11)A171 was used.
     4. PW_(11) and P_2W_(17) with different structures were modification by KH550 and A171, and then incorporated into PMDA-ODA PI to fubrication polyimide composites respectively. Dielectric measurement shows that dielectric constant of composites is affact by the components and structure of polyoxometalates. Experientially, PW series polyoxometalates are more effectively than SiW series ones to decrease the dielectric constant of polyimide. Furthermore, Dowson type polyoxometalates are more effectively than keggin types, and the more electronegative the POMs are, the more effective it can to decrease the dielectric constant of composites.
     5. Fluoride polyimide copolymers were synthesis using PMDA, ODA, 6FDA, TFDB as monomers. Dissolving testing and films fabrication process monitoring results show that fluoride polyimide has excellent properties when the fluoride PI contained 50mol% fluorine monomers. Maxwell equation, Lorenz and Vogel theories were used to calculate the dielectric constant of those copolymers, the results show that Lorenz and Vogel theories are suitable for this copolymer system. After that, P_2W_(17)KH550 were incorporated into the copolymer, the dielectric constant of those composites are decreased to 1.63 when 15wt% of P_2W_(17)KH550 was used, meanwhile, those composites can be dissolved into DMF, DMAc and NMP.
引文
[1] P.Mezza, J.Phalippou, Sol–gel derived porous silica films[J], J Non-Cryst Solid,1999, 243(1):75-79;
    [2] G.E.Moore, Progress in digital integrated electronics, IEEE IEDM Tech.Dig 1975, 11-13;
    [3] Gad M, Yevick D, Jessop P, Compound ring resonator circuit for integrated optics applications[J], J Optic Soc Amer A-Optic Imag, 2009,26(9): 2023-2032;
    [4] WCB. Peatman, E.S. Daniel, Introduction to the Special Section on the IEEE Compound Semiconductor Integrated Circuit Symposium[J], IEEE J Solid-State circuits, 2009, 44(10): 2267-2268;
    [5] CH. Chen, J. Klamkin, S.C. Nicholes, Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects [J], Appl Optics, 2009, 48 (25):68-75;
    [6]魏保权,柴苍修,应用LTC-3722集成电路设计全桥移相同步整流电源[J],武汉电力职业技术学院学报,2006,04(4):48-52;
    [7]王永刚,集成电路的发展趋势和关键技术[J],电子元器件应用,2009,11(01)70-72;
    [8] LEE E M, LIU J, TOMA D I, Curing low dielectric constant dielectric film on substrate comprises forming low-k dielectric film on substrate, exposing film to infrared radiation, exposing film to UV radiation, and exposing film to another infrared radiation[P], US2009227119-A1;
    [9] M.BARNES, S.CHO, G.D.PAPASOULIOTIS, Deposition of dielectric film in gap on semiconductor substrate, involves exposing surface of substrate to metal-containing precursor gas and silicon-containing precursor gas, and exposing dielectric material to microwave radiation[P], US7589028-B1;
    [10] GAO F, LI J,WU C, Zinc-niobium-titanium microwave dielectric ceramic used for preparing multi-layer microwave frequency components has predetermined amounts of copper oxide, bismuth oxide and vanadium oxide[P], CN101445364-A;
    [11] CHUNG Y K, LEE I H,LEE J W, Manufacturing printed circuit board with thin film capacitor using laser lift-off, by forming dielectric film on transparent substrate and heat-treating dielectric film, and forming first conductive layer on heat-treated dielectric film[P], US2009223045-A1;
    [12] A .Grill, Porous pSiCOH Ultralow-k Dielectrics for Chip Interconnects Prepared by PECVD [J], Annu Rev Mater Res,2009 39:49-69;
    [13] Tan, TL, Gan, CL, Du, AY, Effect of Ta migration from sidewall barrier on leakage current in Cu/SiOCH low-k dielectrics[J], J Appl Phys,2009,106(4):43-51;
    [14]胡一帆,章瑛,付丹蓉,低介电常数甲基倍半硅氧烷多孔膜的制备及表征[P],华中科技大学学报(自然科学版),2008,36(2):104-107;
    [15]袁昊,解丽丽,田震,王利军,低介电常数纯硅数分子筛薄膜的制备与表征[P],材料工程, 2008, 10:110-113;
    [16]唐晓东,叶光斗,李守群,徐建军,低介电常数交联聚苯乙烯的合成与表征[P],塑料工业,2007,35(3): 26-28;
    [17]袁昊,李庆华,沙菲,超低介电常数介孔氧化硅薄膜的制备及其表征[P],无机化学学报, 2007,23(9):1587-1592;
    [18]王洋,牟建新,祝存生,姜振华,新型低介电常数聚芳醚酮的合成及性能研究[P],高等学校化学学报, 2005, 26(3): 586-588;
    [19] R.S. Smith, T.Y .Tsui, P.S. Ho, Effects of ultraviolet radiation on ultra-low-dielectric constant thin film fracture properties[P], J Mater Res 2009, 24 (9) : 2795-2801;
    [20] A.M. Coclite, A .Milella, F. Palumbo, A Chemical Study of Plasma-Deposited Organosilicon Thin Films as Low-k Dielectrics[P], Plas Proc Poly, 2009, 6(8): 512-520;
    [21]王婷婷,叶超,宁兆元,程珊华, SiCOH低介电常数薄膜的性质和键结构分析[P],物理学报, 2005, 54(2):892-895;
    [22] H .Li, T.Y.Tsui, J.J. Vlassak, Water diffusion and fracture behavior in nanoporous low-k dielectric film stacks[P], J Appl Phys, 2009, 106(3): 33-38;
    [23] J. Memisevic, V.Korampally, S.Gangopadhyay, Characterization of a novel ultra-low refractive index material for biosensor application[P], Sens Act B-Chem,2009,141(1): 227-232;
    [24] Hwang CS, Kim HB, Correlation Study on the Optical Properties of Low-dielectric SiOC(-H) Thin Films from a BTMSM/O2 Precursor Deposited by Using Plasma Enhanced Chemical Vapor Deposition[P], J Korean Phys Soc, 2009, 55( 2): 622-629;
    [25]武岳山,于利亚,介电常数的概念研究[J],现代电子技术, 2007, 2:177-185;
    [26]何曼君,陈维孝,董西侠,高分子物理[M],上海:复旦大学出版社, 2000, 371-387;
    [27] Daejoong Kim, E.Darve, Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels[P], Phys Rev, 2006,73(5);051203;
    [28]曹晨忠,李志良,分子极化效应与烷烃、醇的空腔表面积[P],有机化学, 1998,18,248-252;
    [29]周雅君,朱颀人,潘守甫,原子极化率计算中的核实极化效果[P],原子与分子物理学报,1990,7(1):1254-1258;
    [30]吕自学,王亚军,张建梅,离子极化与键型关系的研究[P],河西学院学报,2002,5:32-35;
    [31]黄尚毅,葛文,离子极化定量理论在无机化学中的应用[P],江西教育学院学报,2000,21(6):32-35;
    [32]陈小林,成永红,吴锴,一种非对称双原子分子的电子位移极化率计算模型[P],西南交通大学学报,2009 43(4):90-94;
    [33]周建军,江若琏,姬小利,界面极化效应对Al_xGa_(1-x)N/GaN异质结pin探测器光电响应的影响[P],半导体学报,2007,28(6):947-950;
    [34] B.J. Kim, M.H. Kim, S.Nahm, Effect of B2O3 on the microstructure and microwave dielectric properties of Ba(Mg1/3Ta2/3)O-3 ceramics[J], J Euro Cera Soc 2007, 27(3): 1065-1069;
    [35] S.P. Singh, A.K Singh, D. Pandey, Dielectric relaxation and phase transitions at cryogenic temperatures in 0.65[Pb(Ni1/3Nb2/3)O-3]-0.35PbTiO(3) ceramics[P], Phys Rev B, 2007 76(5):54-78;
    [36] Y.J. Kim, S.J.Hwang, H.S. Kim, Microwave dielectric properties of LTCC materials consisting of BaO-TiO2-SiO2-Al2O3 glass - BaNd2Ti5O14 ceramic composites[J], Eco-Mater Proc&Desig, 2005, 486 : 506-509;
    [37] J.S. Lee, J.H.Kwon, S.H. Lee, Advanced dielectric properties of Li2O doped 0.2[Pb(Mg1/3Nb2/3 )]-0.8[PbTiO3-PbZrO3] ceramics[J], Ferroelectrics, 2005, 326: 85-89;
    [38] M. Kuwahara, O.Suzuki, S.Takada, Thermal conductivity of low-k films of varying porosityand direct measurements on silicon substrate[J], MicroElec Eng, 2009,86(5):1009-1012;
    [39] RCJ.Wang, Chang-Liao, Electrical conduction and TDDB reliability characterization for low-k SiCO dielectric in Cu interconnects[J], Thin Solid Films, 2008,517(3)1230-1233;
    [40] L.F.Yao, C.X.Yue, F.Q.Lu, Hydrophobic silica aerogel films with low dielectric constant via ambient-pressure drying[J], Rare Meta Mater Eng, 2008, 37(23):163-166;
    [41] H.L.Sun, R.S.Cooke, W.D.Bates, Supercritical CO2 processing and annealing of polytetra fluoroethylene(PTFE) and modified PTFE for enhancement of crystallinity and creep resistance[J], Polymer, 2005,46(20)8872-8882;
    [42] E.Giani, K.Sparnacci, M. Laus, PTFE-polystyrene core-shell nanospheres and nano composites[J], Macromolecules, 2003, 36(12): 4360-4367;
    [43] L. N, Hermite, J.F. Peyrat, P.Hildgen, Synthesis of poly(aryl propargyl ether) (PAPE) stars and evaluation of their cytotoxic properties[J], Synth-Stut, 2008, 7:1049-1060,
    [44]于金姝,周德瑞,蔡伟民,电子封装新型材料聚芳基醚苯并咪唑的应用研究[J],高技术通讯, 2003,03: 23-26;
    [45] S.X.Wang, X.M.Wang, L.J. Li, Design, synthesis, and photochemical behavior of poly(benzyl ester) dendrimers with azobenzene groups throughout their architecture[J], J Organ Chem, 2004, 69(26): 9073-9084;
    [46]黄汉生,多用途的热塑性塑料——聚芳基醚酮[J],化工新型材料,1990,12:15-19;
    [47]张军,蹇锡高,朱秀玲, PPESK-PPS共混合金的研究[J],大连理工大学学报,1999,03:45-48;
    [48] J.Chen, DC.Yang, Nature of the ring-banded spherulites in blends of aromatic poly(ether ketone)s[J], Macromolecular Rap Commun, 2004, 25(15):1425-1428;
    [49] M.G.Zolotukhin, H.M.Colquhoun, L.G. Sestiaa, One-pot synthesis and characterization of soluble poly(aryl ether-ketone)s having pendant carboxyl groups[J], Mcromolecular, 2003,36(13):4766-4771;
    [50] D.Kessler, P.J. Roth, P. Theato, Reactive Surface Coatings Based on Polysilsesquioxanes: Controlled Functionalization for Specific Protein Immobilization[J], Langmuir, 2009, 25(17):10068-10076;
    [51] M.Dutkiewicz, H. Maciejewski, B.Marciniec, Functionalization of Polyhedral Oligomeric Silsesquioxane (POSS) via Nucleophilic Substitution[J], Syhth Stutt, 2009, 12:2019-2024;
    [52]O.Moriya,M.Kuga, S.Yamamoto, Preparation of polysilsesquioxane grafted thermoresponsive polymer by use of mercapto group[J], Polymer, 2006, 46(6):1837-1844;
    [53] A. Fina, D. Tabuani, F. Carniato, Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation[J], : Therochimica Acta, 2006, 440(1): 36-42;
    [54] T.Ogoshi, Y.Chujo, Organic-inorganic polymer hybrids prepared by the sol-gel method[J], Comp Inter, 2005, 11(8):539-566;
    [55] J.Pinkas, Chemistry of silicates and alumino silicates[J], Ceramics-Silikaty, 2005, 49(4): 287-298;
    [56] W.J.Hunks, G.A.Ozin, Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs)[J], Mater Chem, 2005, 15(35):3716-3724;
    [57] K.G. Sharp, Star alkoxysilane molecules, gels and appreciably tough glasses[J], Mater Chem, 2005,15(35):3812-3820;
    [58] T.M. Lee, CCM. Ma, C.W. Hsu, Effect of molecular structures and mobility on the thermal and dynamical mechanical properties of thermally cured epoxy-bridged polyorganosiloxanes[J], Polymer, 2005, 46(19):8286-8296;
    [59] Y. Aoki, T.Norisuye, Q.Tran-Cong-Miyata, Dynamic light scattering studies on network formation of bridged polysilsesquioxanes catalyzed by polyoxometalates[J], Mcromolecular, 2003, 36(26)9935-9942;
    [60] L.M. Bronstein, C.N.Linton, R.Karlinsey, Controlled synthesis of novel metalated poly(aminohexyl)-(aminopropyl)silsesquioxane colloids[J] langmuir, 2003,19(17):7071-7082;
    [61]M.Hasegawa, N. Koyanaka, Polyimides containing trans-1,4-cyclohexane unit. Polymerizability of their precursors and Low-CTE, low-K and high-T-g properties[J], High Perf Poly, 2003, 15(1)47-64;
    [62] T.Le Bouder, O. Maury, H.Le Bozec, Synthesis of a highly thermally stable octupolar polyimide for nonlinear optics[J], Chem Commun, 2001, 23:2430-2431;
    [63] D.M.Sullivan, M.L. Bruening, Ultrathin, ion-selective polyimide membranes prepared from layered polyelectrolytes[J], J Am Chem Sov, 2001, 123(47):11085-11086;
    [64] F.J.Rodriguez, D.Ceballos, M,Schuttler, Polyimide cuff electrodes for peripheral nerve stimulation[J], J Neur Meth, 2000, 98(2):105-118;
    [65] B.R.Acharya, J.H.Kim, S. Kumar, Material-independent determination of anchoring properties on rubbed polyimide surfaces[J], Phys Rev, 1999, 60(6): 6841-6846;
    [66] P.Lindberg, J. Roeraade, A new technique for stripping of polyimide coating from fused-silica capillaries[J], Electrophoresis, 1998, 19(14): 2445-2446;
    [67] H.Kawakami, Y. Mori, J.Takagi, Development of a novel polyimide hollow fiber for an intravascular oxygenator[J], Asaio Journal, 1997, 43(5): 490-494;
    [68] H. Kawakami, S.Nagaoka, S. Kubota, Gas transfer and in vitro and in vivo blood compatibility of a fluorinated polyimide membrane with an ultrathin skin layer[J], Asaio Journal, 1996, 42(5): 871-876;
    [69] M. Peer, S. Mehdi Kamali, M. Mahdeyarfar, Separation of Hydrogen from Carbon Monoxide Using a Hollow Fiber Polyimide Membrane: Experimental and Simulation[J], Chem Eng&Tech, 2007,30(10):1418-1425;
    [70] Jiansheng Chen, Junhong Jia, Huidi Zhou, Tribological behavior of short-fiber-reinforced polyimide composites under dry-sliding and water-lubricated conditions[J], J Appl Poly Sci, 2008,107(2):788-796;
    [71] S. Rajani, S. Jain, M. M. Verma, Physicochemical characterization of alloy of polyimide with varying degree of crosslinking through diisocyanates[J], Chem Eng&Tech, 1999,39(8): 1567-1575;
    [72] Wen-Li Qu, Tze-Man Ko, Rohit H. Vora, Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group[J], Chem Eng&Tech,2001, 41(10):1783-1793;
    [73] Y. Kim, W.H. Goh, T. Chang, C.-S. Ha, Optical and Dielectric Anisotropy in Polyimide Nanocomposite Films Prepared from Soluble Poly(amic diethyl ester) Precursors[J] Adv Eng Mater, 2004, 6(1):39-43;
    [74] Choonkeun Lee, Jinuk Kwon, Sunggook Park, Nanoindentation studies of polyimide thin films with various internal linkages in the diamine component[J], J Poly Sci Part B: Poly Phys, 2004, 42(5): 861-870;
    [75] Kaushik S. Patel, Kishor R. Desai, Polyimides based on poly(2-furanmethanol -formaldehyde)[J], Adv Poly Tech, 2004, 23(1): 76-80;
    [76] Paul M. Hergenrother, Perspectives in the Development of High-Temperature Polymers[J],Angew Chemi Inter Edit Eng, 1999, 29(11) 1262-1268;
    [77] Yan Yin, Jianhua Fang, Hidetoshi Kita, Novel Sulfoalkoxylated Polyimide Membrane for Polymer Electrolyte Fuel Cells[J], ChemInform, 2003, 34:34;
    [78] S. A. Ezzell, T. A. Furtsch, E. Khor, L. T. Taylor, Properties of polyimide films doped with copper complexes[J], J Poly Sci: Poly Chem Edit, 1983,21(3) 865-881;
    [79] C. Neuber, R. Giesa, H.-W. Schmidt, Polyimide Orientation Layers Prepared from Lyotropic Aromatic Poly(Amic Ethyl Ester)s[J], Adv Func Mater, 2003,13(5): 387-391;
    [80] Xiaomei Fang, Diana F. Rogers, Daniel A. Scola, A study of the thermal cure of a phenylethynyl-terminated imide model compound and a phenylethynyl-terminated imide oligomer (PETI-5)[J], J Poly Sci Part A: Poly Chem, 1998, 36(3): 461-470;
    [81] V. E. Yudin, J. U. Otaigbe, Tho X. Bui, Polyimide bonded magnets: Processing and properties[J], J Appl Poly Sci, 2003, 88(14): 3151-3158;
    [82] Xuehui Sun, Yu-kun Yang, Fengcai Lu, Synthesis and properties of polyimides containing 2,2’-bipyridine derivatives[J], Macrom Chem Phys, 1997, 198(3) 833-841;
    [83] Detlev Fritsch, Nicola Avella, Synthesis and properties of highly gas permeable poly(amide-imide)s[J], Macrom Chem Phys,1996, 197(2): 701-714;
    [84] Vernon L. Bell, Polyimide structure-property relationships. I. Polymers from fluorene-derived diamines[J], J Poly Sci: Poly Chem Edit, 1976, 14(1):225-235;
    [85] ] Vernon L. Bell, Polyimide structure-property relationships. II. Polymers from isomeric diamines[J], Poly Sci: Poly Chem Edit, 1976, 14(9): 2275-2291;
    [86] H. Ishida, M. T. Huang, Molecular level study of the crystallization of a thermoplastic polyimide by infrared spectroscopy[J], J Poly Sci Part B: Poly Phys, 1994, 32(13): 2271-2282;
    [87] S. B. Tian, Y. S. Pak, G. Xu, Polyimide-polysiloxane-segmented copolymers as high-temperature polymer electrolytes[J], J Poly Sci Part B: Poly Phys, 1994, 32(12): 2019-2023;
    [88] E. Gattiglia, T. P. Russell,Swelling behavior of an aromatic polyimide[J], J Poly Sci Part B: Poly Phys, 1989, 27(10): 2131-2144;
    [89] Pasquale A. Falcigno, Stanley Jasne, Maurice King, Fully imidized soluble polyimides based on a novel dianhydride: 2,2’-dichloro-4,4’5,5’-benzophenone tetracarboxylic dianhydride[J], J Poly Sci Part A: Poly Chem, 1992, 306(7): 1433-1441;
    [90] M. M. Grade, J. W. Verbicky Jr. Polyimide-polyformal block copolymers[J], J Poly Sci Part A: Poly Chem, 1989, 27(5): 1467-1486;
    [91]丁孟贤, PI-化学、结构与性能的关系及材料[M],科学出版社;
    [92] Berned K G H. Ultralow-k Dielectrics Made by Supercritical Foaming of Thin Polymer Films[J], Adv Mater, 2002, 14(151):1041-1046;
    [93] Myung B Y, Ahn C J, Yoon T H. Synthesis and Characterization of Polyimides from Novel 1-(3′,5′-Bis (Trifluoromethyl)Benzene) Pyromelliticdianhydride[J], Polymer,2004,45(10): 3185-3193;
    [94] Miyagawa T, Fukushima T. Photosensitive Fluorinated Polyimides with a Low Dielectric Constant Based on Reaction Development Patterning[J], J Polym Sci, Part A: Polym Chem, 2003,41(6):861-871;
    [95]Madhra M K, Salunke A K.Synthesis and Properties of Fluorinated Polyimides. 2. Derived from Novel 2,6-Bis(3 -Trifluoromethyl-p-Aminobiphenyl Ether) Pyridine and 2,5-Bis(3-Trifluoromethyl-p-Amino biphenyl Ether) Thiophene[J], Macromol Chem Phys,2002, 203(9):1238-1248;
    [96] Su Yi Chen, Chen Wanchun, Ou Kailin. Study of the Morphologies and Dielectric Constants of Nanoporous Materials Derived from Benzoxazine-Terminated Poly(ε-Caprolactone)/ Polybenzoxazine co-Polymers[J], Polymer, 2005,46(11):3758-3766;
    [97] Chen Y W, Wang W C, Yu W H. Ultra-Low-κMaterials Based on Nanoporous Fluorinated Polyimide with Well-Defined Pores via the RAFT-Moderated Graft Polymerization Process[J], J Mater Chem, 2004,14(9):1406-1412;
    [98] Charlier Y, Hedrick J L. High Temperature Polymer Nanofoams Based on Amorphous, High Tg Polyimides[J], Polymer, 1995, 36(5): 987-993;
    [99] Hedrick J L, Russell T P. Polyimide Nanofoams from Caprolactone-Based Copolymers[J]. Macromolecules,1996, 29(10):3642-3662;
    [100] Sang Hyub Han, Do Jin Sek. Preparation and Characterization of a Polyimide Nanofoam Through Grafting of Labile Poly(Propylene Glycol) Oligomer[J], Polym Adv Technol, 2004, 15(7):370-376;
    [101] Fu G D,Wang W C. Nanoporous Low- k Polyimide Films Prepared from Poly(Amic Acid)s with Grafted Poly(Methylmethacrylate)/Poly(Acrylamide) Side Chains[J], J Mater Chem, 2003, 13(9):2150-2156;
    [102] Chen Yiwang, Wang Wencai. Ultra-Low-k Materials Based on Nanoporous Fluorinated Polyimide with Well-Defined Pores via RAFT-Moderated Graft Polymerization Process[J], J Mater Chem, 2004, 14(9):1406-1412;
    [103]Zhao Gufan, Takayuki Ishizaka. Fabrication of Unique Porous Polyimide Nanoparticles Using a Reprecipitation Method[J], Chem Mater, 2007, 19(08):1901-1905;
    [104]Hedrick J, DiPietro R. Polyimide Crosslinked polyimide foams derived from poly(imide-propylene oxide) copolymers [J], Macro chem Phys,1997, 198(2):549-559;
    [105] Volksen W. Condensation Polyimides: Synthesis, Solution Behavior, and Imidization Characteristics[J], Adv Polym Sci, 1994, 13(2):111-164;
    [107] Nguyen C V, Carter K R. Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates[J], Chem Mater, 1999,11(11):3080-3085;
    [108] Carter K R, DiPietro R A. Polyimide Nanofoams Based on Ordered Polyimides Derived from Poly(Amic Alkyl Esters): PMDA/4-BDAF[J], Chem Mater,1997, 9(1):105-118;
    [109] Anu Stella Mathews, Kim Il. Fully Aliphatic Polyimides from Adamantane-Based Diamines for Enhanced Thermal Stability, Solubility, Transparency, and Low Dielectric Constant[J], Appl Polym Sci, 2006, 101(5):3316-3326;
    [110] Tseng Feng Po , Chang Feng Chin. Preparation and Epoxy Curing of p-Nonylphenol/Dicyclopentadiene Adducts[J], Appl Polym Sci,1999, 74(9):2196-2206;
    [111] Mori S,Fujimoto K. Unsaturated Polyester Resin Composition and Laminates Comprises Polyester Resin Obtained from Dicyclopentadiene, Unsaturated Polycarboxylic Acid and Polyhydric Alcohol and Hardness Adjusting Resin[P], US Appl Pat, US 5270104.1993
    [112] Heroguez V,Soum A. Functional Oligomerization of Dicyclopentadiene[J]. Polymer, 1992,33(15):3302-3304;
    [113] Yang Yeong Show,Lafontaine E. Curing Study of Dicyclopentadiene Resin and Effect of Elastomer on Its Polymer Network[J]. Polymer,1997, 38(5):1121-1130;
    [114] Nguyen C V, Carter K R. Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates[J], Chem Mater, 1999, 11(11):3080-3085;
    [115] Leu Chyi Ming,Yao Te Chang. Polyimide-Side-Chain Tethered Polyhedral OligomericSilsesquioxane Nanocomposites for Low-Dielectric Film Applications[J]. Chem Mater, 2003,15(19):3721-3727;
    [116] Leu Chyi Ming,Reddy G M. Synthesis and Dielectric Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites[J], Chem Mater, 2003, 15(11):2261-2265;
    [117] Merkel T C , Freeman B D. Ultrapermeable, Reverse-Selective Nanocomposite Membranes[J]. Science, 2002, 296(5567)519-521;
    [118] Lei Zheng,Waddon A. X-Ray Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane Copolymers[J], Macromolecules, 2002, 35(6):2375-2379;
    [119] Berned Krause,Sijbesma P. Bicontinuous Nanoporous Polymer by Carbon Dioxide Foaming[J]. Macromolules, 2001,34(25)8792-8801;
    [120] Chen Wenyi, Ko Shan Ho. Simultaneous Preparation of PI/POSS Semi-IPN Nanocomposites[J], Macromol Rapid Commun, 2006,27(6):452-457;
    [121] Lee Yuan Jh,Huang Jieh Ming. Low-Dielectric, Nanoporous Polyimide Films Prepared from PEO-POSS Nanoparticles[J]. Polymer,2005, 46(23):10056-10065;
    [122] Huang Jun Chao,Lim Poh Chong. Cubic Silsesquioxane-Polyimide Nano-Composites with Improved Thermomechanical and Dielectric Properties[J], Acta Mater, 2005,53(8):2395-2404;
    [123] He Zhangyi,Guo Lusheng. Novel Silica Tube/Polyimide Composite Films with Variable Low Dielectric Constant[J], Adv Mater,2005,17(8):1056-1059;
    [124] Leu Chyi Ming,Chang Yao Te. Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine[J]. Macromolecules, 2003, 36(24):9122-9127;
    [125] Choi J W , Tamawki R. Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes[J]. Chem Mater, 2003,15(17):3365-3375;
    [126] Huang Jun Chao,He Chao Bin. Polyimide/POSS Nanocomposites: Interfacial Interaction, Thermal Properties and Mechanical Properties[J], Polymer,2003, 44(16):4491-4499;
    [127] Chen Honggang,Xie Long. Ultra-Low-k Polyimide Hybrid Films via Copolymerization of Polyimide and Polyoxometalates[J]. J Mater Chem,2007,17(13):1258-1261;
    [128] YH Zhang, SG Lu, YQ Li, Novel Silica Tube/Polyimide Composite Films with Variable Low Dielectric Constant[J], Adv Mater, 2005, 17(8): 1056-1059;
    [129] D.Grosso, Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers: Detailed Characterization and Formation Mechanism[J], Chem Mater, 2001,13(5)1848-1856;
    [130] J.C. Maxwell. Garnett. Colours in Metal Glasses and in Metallic Films[J], Phil Trans Roy Soc 1904, 203: 385-420;
    [131]H.Vo, F.G.Shi, Towards Model-Based Engineering of Optoelectronic Packaging Materials: Dielectric constant Modeling[J], Microelectron, 2002,33(5):409-415;
    [132] M. G. Todd, F.G. Shi, Characterizing the Interphase Dielectric Constant of Polymer Composite Materials: Effect of Chemical Coupling Agents[J], J Appl Phys, 2003, 94, 4551;
    [133] S. Gross, V. D. Noto , U. Schubert, Dielectric investigation of inorganic–organic hybrid film based on zirconium oxocluster-crosslinked PMMA[J], J. Non-Cryst. Solids, 2003, 322(1),154-159;
    [134]郑培清,厦门大学博士学位论文,2004.
    [135]Jahr K.F.,Fuchs.,J Chem Ber,1963,96,2457-2459;
    [136]Yamase T.,Ishikawa E.,Photochemical self-assembly reaction of beta-[Mo8O26]4-to mixed valence cluster [MO37O112]26- in aqueous media[J],Langmuir,2000,16(23),9023-9030;
    [137]汤卡罗,倪海洪,金祥林,结构化学,1994,13(4),300-304.
    [138]Cheng L.,Niu L.,Gong J.,Dong S.J.,Chem Mater,1999,11,1465-1475;
    [139]Jiang M.,Wang E.B.,Kang Z.H., In Situ Controllable Synthesis of Polyoxometalate Nanoparticles in Polyelectrolyte Multilayers[J],J Mater Chem ,2003,13,647–649;
    [140]Qi W.,Li H.L.,Wu L.X.L, A Novel, Luminescent, Silica-Sol–Gel Hybrid Based on Surfactant-Encapsulated Polyoxometalates,Adv Mater,2007,19,1983-1987;
    [141] S.W.Chen, R.Villanneau,Y.l.Li, Eur J Inorg Chem,2008,2137-2142;
    [142] Y.H.Guo, C.W.Hu, Porous Hybrid Photocatalysts Based on Polyoxometalates[J], J.Cluster Sci., 2003, 14(4),505-526;
    [143] X.H.Zhang, S.Y.Xie, L.S.Zheng, Starlike nanostructures of polyoxometalates K3[PMo12O40]·nH2O synthesized and assembled by an inverse microemulsion method [J],J.Chem.Commun.,2002,13,2032-2033;
    [144] Kenneth R. Carter, Richard A. DiPietro, Martha I. Sanchez, Thomas P. Polyimide Nanofoams Based on Ordered Polyimides Derived from Poly(amic alkyl esters): PMDA/4-BDAF[J], Chem Mater 1997, 9: 105-118;
    [145] Carter KR, DiPietro RA, Sanchez MI, Swanson SA. Nanoporous Polyimides Derived from Highly Fluorinated Polyimide/Poly(propylene Oxide) Copolymers[J], Chem Mater, 2001, 13: 213-221;
    [146] Mikoshiba S, Hayase S. Preparation of low density poly(methylsilsesquioxane)s for LSI interlayer dielectrics with low dielectric constant. Fabrication of A°ngstrom size pores prepared by baking trifluoropropylsilyl copolymers[J], J Mater Chem,1999; 9: 591-598;
    [147] Lie. Y. L, Lie. C. S, Hwu, M.Y. Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films[J], Nanotechnology, 2007, 18: 225701-225705;
    [148] B. Krause,G.-H. Koops, N.F.A. van der Vegt, M. Wessling. Ultralow-k Dielectrics Made by Supercritical Foaming of Thin Polymer Films[J], Adv Mater 2002,14: 1041-1046;
    [149] Myung BY, Ahn CJ, Yoon TH. Synthesis and characterization of polyimides from novel 1-(3′,5′-bis(trifluoromethyl)benzene) pyromellitic dianhydride(6FPPMDA)[J], Polymer, 2004;45:3185- 3193;
    [150] Li HS, Liu JG, Rui JM, Fan L, Yang SY. Synthesis and characterization of novel fluorinated aromatic polyimides derived from 1,1-bis(4-amino-3,5-dimethylphenyl)-1- (3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and various aromatic dianhydrides[J], J Polym Sci Part A: Polym Chem 2006; 44: 2665-2674;
    [151] Miyagawa T, Fukushima T, Oyama T, Iijima T, Tomoi M. Photosensitive fluorinated polyimides with a low dielectric constant based on reaction development patterning[J], J Polym Sci Part A: Polym Chem 2003; 41:861-871;
    [152] Madhra MK, Salunke AK, Banerjee S, Prabha S. Synthesis and properties of fluorinated polyimides, 2Derived from novel 2,6-bis(3'-trifluoromethyl-p-aminobiphenyl ether)pyridine and 2,5-bis (3'-trifluoromethyl-p-aminobiphenyl ether) thiophene[J], Macromol Chem Phys, 2002; 203: 1238-1248;
    [153] Su YC, Chen WC, Ou KL, Chang FC. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine co-polymers[J], Polymer, 2005, 46:3758-3766;
    [154] Chen YW, Wang WC, Vora RH. Ultra-low-κmaterials based on nanoporous fluorinated polyimide with well-defined pores via the RAFT-moderated graft polymerization process[J], J Mater Chem, 2004; 14:1406-1412;
    [155] Chen YW, Wang WC, Neoh KG. Nanoporous Low-K Polyimide Films via Poly(amic acid)s with Grafted Poly(ethylene glycol) Side Chains from a Reversible Addition-Fragmentation Chain-Transfer-Mediated Process[J], Adv Funct Mater, 2004, 14:471-478;
    [156] Chen YW, Kang ET. New approach to nanocomposites of polyimides containing polyhedral oligomeric silsesquioxane for dielectric applications[J], Mater Lett 2004; 58: 3716-3719;
    [157] Leu CM, Chang YT, Wei KH. Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Applications[J], Chem Mater 2003; 15:3721-3727;
    [158] Fu GD, Zong BY, Kang ET, Neoh KG. Nanoporous Low-Dielectric Constant Polyimide Films via Poly(amic acid)s with RAFT-Graft Copolymerized Methyl Methacrylate Side Chains[J], Ind Eng Chem Res, 2004; 43:6723-6730;
    [159] Zhang YH, Lu SG, Li YQ. Novel Silica Tube/Polyimide Composite Films with Variable Low Dielectric Constant[J]. Adv Mater 2005; 17:1056-1059;
    [160] Chen WY, Ko SH, Hsieh TH. Simultaneous Preparation of PI/POSS Semi-IPN Nanocomposites[J], Macromol Rapid Commun; 2006; 27:452-457;
    [161] Pope, M. T. Heteropoly and Isopoly Oxometalates[M], New York: Springer, 1983. 31-32;
    [163] Pope, M. T, Muller, A. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994;
    [164] J.N. Yao, K. Hashimoto, A. Fujishima. Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light[J], Nature, 1992, 355(6361): 624-629;
    [165] P. Fernando, J.M. Maria, M. Mauro, Photochromism of 4'-Methoxyflavylium Perchlorate. A "Write-Lock-Read-Unlock-Erase" Molecular Switching System[J], J Am Chem Soc, 1997; 119: 5556-5561;
    [166] D.E.Katsoulis. A survey of applications of polyoxometalates[J], Chem Rev 1998; 98: 359-388;
    [167] C.Sanchez, G.J. de Soler-Illia. Designed Hybrid Organic-Inorganic Nanocomposites fromFunctional Nanobuilding Blocks[J], Chem Mater, 2001,13:3061-3083;
    [168] C.R.Mayer, V.Cabuil. Incorporation of Magnetic Nanoparticles in New Hybrid Networks Based on Heteropolyanions and Polyacrylamide[J], Angew Chem Int Ed 1999, 38: 3672-3675;
    [169] C.R.Mayer, V.Cabuil. Magnetic Nanoparticles Trapped in pH=7 Hydrogels as a Tool to Characterize the Properties of the Polymeric Network[J], Adv Mater 2000, 12:417-420;
    [170]C.R.Mayer, Thouvenot. Hybrid Hydrogels Obtained by the Copolymerization of Acrylamide with Aggregates of Methacryloyl Derivatives of Polyoxotungstates. A Comparison with Polyacrylamide Hydrogels with Trapped Aggregates[J], Macromolecules, 2000, 33:4433-4437;
    [171] C. Sanchez, B. Julian, P. Belleville and M. Papall. Applications of hybrid organic–inorganic nanocomposites[J], J Mater Chem, 2005;15: 3559-3592;
    [172] (a) S.A.Jansen. Shu-H Wang, A.D.Eddowes. Stability and acidity contributions of heteropolymetalates: a theoretical study of the Keggin and Dawson ions[J], Supramolecular Sci 1997;4: 51-58; (b) Gouzerh, P. Proust, A. Main-Group Element, Organic, and Organometallic Derivatives of Polyoxometalates[J], Chem Rev, 1998; 98: 77-112;
    [173] Jacqueline Canny, Andre Tize. Disubstituted tungstosilicates. 1. Synthesis, stability, and structure of the lacunary precursor polyanion of a tungstosilicate .gamma.-SiW10O368-[J], Inorg Chem, 1986; 25: 2114-2119;
    [174] U. Schubert. Polymers Reinforced by Covalently Bonded Inorganic Clusters[J], Chem Mater, 2001, 13: 3487-3494;
    [175] A.Teze, G.Herve. Formation et isomersation des undeca et dodeca tungstosilicates et germinates isomers[J], J Inorg Nucl Chem, 1977; 39:999-1002;
    [176] P. Judenstein, C.Deprun, L. Nadjo, Synthesis and multispectroscopic characterization of organically modified polyoxometalates[J], J Chem Soc DaltonTrans 1991; 8:1991-1997;
    [177] I.Bar-Nahum, H.Cohen, R. Neumann. Organometallic-Polyoxometalate Hybrid Compounds: Metallosalen Compounds Modified by Keggin Type Polyoxometalates[J], Inorg Chem 2003; 42:3677-3684;
    [178] ZHANG Xiao-Feng. LIN Shen. A novel inorganic-organic composite constructed from cobalt(II)-monosubstituted polyoxometalates and poly(amidoamine)-NH2 dendrimers[J], Chin J Chem, 2007, 25: 323-328;
    [179] H. Colfen, M. Antonietti. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment[J], Angew Chem Int Ed 2005; 44: 5576-5591;
    [180] A. Franceschetti, A. Williamson, A. Zunger. Addition Spectra of Quantum Dots: the Role of Dielectric Mismatch[J], J Phys Chem B, 2000; 104: 3398-3401;
    [181]A. Szymczyk, M. Sbai, P. Fievet. Transport Properties and Electrokinetic Characterization of an Amphoteric Nanofilter[J], Langmuir. 2006; 22: 3910-3919.
    [182] M.Takala, M.Karttunen, J.Pelto, Thermal, Mechanical and Dielectric Properties of Nano- structured Epoxy-polyhedral Oligomeric Silsesquioxane Composites[J],IEEE Trans Dielec Elec Insul, 2008, 15(5):1224-1235;
    [183] Liu YH, Zheng SX, Nie KM, Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane[J], Polymer, 2005, 46(25):12016-12025;
    [184] Lee YJ, Huang JM, Kuo SW, Lu JS, Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications[J], Polymer, 2004,46(1):173-181;
    [185] Martin S J, Godschalx J P. Development of a Low-Dielectric-Constant Polymer for the Fabrication of Integrated Circuit Interconnect[J], Adv Mater2000, 12(23):1769-1778;
    [186] Miller R D. In Search of Low-k Dielectrics[J], Science, 1999,286(5439):421-422;
    [187]Tan Lin, liu ShuiMei, Zeng Fang, Zhao Jianqing. Polyimide/Polyoxometalate Copolymer Thin Films: Synthesis, Thermal and Dielectric Properties[J]. Accpeted by Polym. Adv. Tech. Paper ID:PAT-08-378-R1.
    [188] Bar-Nahum I, Cohen H, Neumann R.Polymerizable inorganic–organic hybrid: Syntheses and structures of mono-lacunary Dawson polyoxometalate-based olefin-containing organosilyl derivatives[J]. Inorg Chem 2003; 42(11):3677-3684;
    [189] Li Xiaobing and Coleman M R. Functionalization of carbon nanofibers with diamine and polyimide oligmer[J], Carbon, 2008, 46(8):1115-1125;
    [190]Wahab MA, Mya KY, He CB, Synthesis, morphology, and properties of hydroxyl Terminated-POSS/polyimide low-k nanocomposite films[J], J Poly Sci Part A: Chem, 2008, 46(17):5887-5896;
    [191] J.Huang, Y. Xiao, K.Y.Mya, Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides[J], J Mater Chem, 2004, 14:2858-2863;
    [192]J. Huang, Y.Xiao,K.Y.Mya, Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties[J], Polymer,2003, 44:4491-4499;
    [193] Mya KY, He C, Huang J. Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides[J], J Mater Chem; 2004; 14: 2858-2863;
    [194] MA. Lopez-Manchado, M,Arroyo, Effect of the incorporation of pet fibers on the properties of thermoplastic elastomer based on PP/elastomer blends[J], Polymer, 2001, 42(15):6557-6563;
    [195]Xianyi Chen, K. Jankova, J.Kops, Surface modification of polystyrene by blending substituted styrene copolymers[J], J Polym Sci Part B: Polym Phys, 2001, 39(10): 1046-1054;
    [196] S.Rimdusit, W.Benjapan, S, Assabumrungrat, Surface segregation of siloxane containing component in polysiloxane-block-polyimide and s-BPDA/ODA polyimide blends[J], Polym EngSci, 2007, 47(4): 489-498;
    [197] B.Somboonsub, S. Thongyai, P.Praserthdam, Dielectric Properties and Solubility of Multilayer Hyperbranched Polyimide/Polyhedral Oligomeric Silsesquioxane Nanocomposites[J], J Appl Polym Sci, 2009, 114(5): 3292-3302;
    [198] JHG.Ng, MPY. Desmulliez, KA.Prior, Ultra-violet direct patterning of metal on polyimide[J], Micro&Nano Letter, 2008, 3(3):82-89;
    [199] Cho EB, Kim H, Kim D, Effect of Morphology and Pore Size of Sulfonated Mesoporous Benzene-silicas in the Preparation of Poly(vinyl alcohol)-Based Hybrid Nanocomposite Membranes for Direct Methanol Fuel Cell Application[J], J Phys Chem B, 2009, 113(29):9770-9778;
    [200] R. Saito, T.Tobe, Electrical properties of poly(2-vinyl pyridine)/silica nanocomposites prepared with perhydropolysilazane[J], Polym Adv Tech, 2005, 16(2)232-238;
    [201] K, Su, DR,Bujalski, K.Eguchi, Vinyl ether-modified poly(hydrogen silsesquioxanes) as dielectric materials[J], J Mater Chem,2005, 15(38):4115-4124;
    [202]Takeshi Hasegawa, Kaori Shimizu, Hideaki Seki, Polymerizable inorganic–organic hybrid: Syntheses and structuresof mono-lacunary Dawson polyoxometalate-based olefin-containing organosilyl derivatives[J], Inorg Chem Commun, 2007, 10:1140-1144;
    [203] GB. Appetecchi, D.Zane, B. Scrosati, PEO-based electrolyte membranes based on LiBC4O8 salt[J], J Electro Soc,2004, 151(9):1369-1374;
    [204] Wen, SP; Liu, L; Feng, YX, Preparation of Eu (TTA)(2)phen (MA)/SiR fluorescent materials under high mechanical blending temperature[J], J Rare Earths,2006, 24(6):712-718;
    [205] V.Aravindan, P. Vickraman, Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE)[J], J Phys D-Appl Phys, 2007,40:6754-6759;
    [206] Freeman, B. D.; Hill, A. J. In Structure and Properties of Glassy Polymers; Tant, M. R.; Hill, A. J., Eds.; American Chem society: Washington, D. C., 1998; pp 306–325;
    [207] A.Bondi, Van der Waals Volumes and Radii[J], J Phys Chem, 1964,68:441-453;
    [208]郭学军,卢景霄,陈永生,甚高频高速沉积微晶硅薄膜的研究[J],物理学报,2008,57 (9):6002-6006;
    [209]L.Tan, SM.Liu, F.Zeng, JQ.Zhao, Polyimide/Polyoxometalate Copolymer Thin Films: Synthesis, Thermal and Dielectric Properties[J], Polym Adv Tech, in press;
    [210] L.Tan, SM.Liu, F.Zeng, JQ.Zhao, A Low dielectric constant Polyimide/Polyoxometalate Composite[J], Polym Adv Tech, in press;
    [211] PC. Lekha, S.Subramanian, DP.Padiyan, Investigation of pseudocapacitance effect and frequency dependence of ac impedance in polyaniline-polyoxometalate hybrids[J], J Mater Sci, 2009, 44(22): 6040-6053;
    [212] ST.Zheng, H.Zhang, GY,Yang, Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions[J],Angew Cheme: Inter Edit, 2008, 47(21):3909-3913;
    [213] LM.Ai, W.Feng, J,Chen, Evaluation of microstructure and photochromic behavior of polyvinyl alcohol nanocomposite films containing polyoxometalates[J], Mater Chem Phys, 2008,109(1):131-136;
    [214] J.Chen, Y.Liu, DQ,Xiong, Preparation and photochromic behavior of crosslinked polymer thin films containing polyoxometalates[J], Thin Solid Films, 2008, 516(10):2864-2868;
    [215] J. Chen, LM. Ai, W, Feng, Preparation and photochromism of nanocomposite thin film based on polyoxometalate and polyethyleneglycol[J], Mater Lett, 2007, 61, 5247-5249;
    [216] T.He, JN. Yao, Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates[J], Prog Polym Sci, 2006,51(6):810-879;
    [217] CR.Mayer, C.Roch-Marchal, H,Lavanant, New organosilyl derivatives of the Dawson polyoxometalate [alpha(2)-P2W17O61(RSi)(2)O](6-): Synthesis and mass spectrometric investigation[J], Chem-A Euro J, 2004, 10(21):5517-5523;
    [218] A.Dolbecq, P.Mialane, L.Lisnard, Hybrid organic-anorganic 1D and 2D frameworks with epsilon-Keggin polyoxomolybdates as building blocks[J], Chem Euro J, 2003, 2914-2920;
    [219] NV. Izarova, MN.Sokolov, DG.Samsonenko, One-, two-, and three-dimensional coordination polymers built from large Mo-36-polyoxometalate anionic units and lanthanide cations[J], Euro J Inorg Chem, 2005, 24:4985-4996;
    [220] JP.Wang, J. Li, JY,Niu, An organic-inorganic polymer with Keggin-type polyoxoanions as building blocks: preparation, characterization and crystal structure of {H[Ba(DMF)(6) PMo12O40] center dot(dma)}(n)[J], J Coor Chem, 2005, 58(18): 1639-1651;
    [221] Yang, L; Naruke, H; Yamase, T, A novel organic/inorganic hybrid nanoporous material incorporating Keggin-type polyoxometalates[J], Inorg Chem Commun, 2003, 6(8):1020-1024;
    [222] Li, HL; Li, P; Yang, Y, Incorporation of polyoxometalates into polystyrene latex bysupramolecular encapsulation and miniemulsion polymerization[J], Macromole Rap Commun, 2008,29(5):431-436;
    [223] Kishore, PS; Viswanathan, B; Varadarajan, TK, Synthesis and characterization of metal nanoparticle embedded conducting polymer-polyoxometalate composites[J], Nano res Lett, 2008,3(1):14-20;
    [224] Chen, J; Ai, LM; Feng, W, Preparation and photochromism of nanocomposite thin film based on polyoxometalate and polyethyleneglycol[J], Mater Lett, 2007,61:5247-5249;
    [225] Ai, LM; Chen, J; Li, YX, Effect of polyoxometalates content on structure and photochromism of inorganic-polymer composite films[J], : Acta Chemi Sini 2007, 65:1841-1844;
    [226] Niu, JY; Wang, KH; Chen, HN, Assembly Chemistry between Lanthanide Cations and Monovacant Keggin Polyoxotungstates: Two Types of Lanthanide Substituted Phosphotungstates [{(alpha-PW11O39H)Ln(H2O)(3)}(2)](6-) and [{(alpha-PW11O39)Ln(H2O)(eta(2),mu-1,1)-CH3COO} (2)](10-)[J], Cryst Grow Desin, 2009,9(10):4362-4372;
    [227] D. K. Lyon, W. K. Miller, T. Novet, Highly Oxidation Resistant Inorganic-Porphyrin Analogue Polyoxometalate Oxidation Catalysts. 1. The Synthesis and Characterization of Aqueous-Soluble Potassium Salts ofα-P2W17O61(Mn+.H2O)(n-10) and Organic Solvent Soluble Tetra-n-butylammonium Salts ofα-P2W17O61(Mn+.Br)(n-11)[J], J Am Chem Soc, 1991, 113: 7209-7221;
    [228] T.Hasegawa, K.Shimizu, H. Seki, Polymerizable inorganic–organic hybrid: Syntheses and structures of mono-lacunary Dawson polyoxometalate-based olefin-containing organosilyl derivatives[J], Inorg Chem Commun,2007, 10:1140-1144;
    [229] Jiang, M; Zhai, XD; Liu, MH, Hybrid molecular films of gemini amphiphiles and Keggin-type polyoxometalates: effect of the spacer length on the electrochemical properties[J], J Mater Chem, 2007, 17(2): 193-200;
    [230] C.N. Kato, Y. Kasahara, K. Hayashi, A. Yamaguchi, T. Hasegawa,K. Nomiya, Eur. J. Inorg. Chem. 2006, 4834-4838;
    [231] Weakley, 7. J. R. Polyhedron 1987,6, 931-936;
    [232] D.K. Lyon, W.K. Miller, T. Novet, P.J. Domaille, E. Evitt, D.C.Johnson, R.G. Finke, J. Am. Chem. Soc. 1991,113: 7209-7215;
    [233] Kim, K.;Chujo, Y. Polymer hybrids with functionalized silsesquioxanes via two physical interactions in one system J Polym Sci Part A: Polym Chem 2003, 41, 1306-1315;
    [234] Xie S H, Zhu B K, Wei X Z, Polyimide/BaTiO3 composites with controllable dielectric properties[J], Composites, 2005,36(8):1152-1157;
    [235] C. Lee, J. Kwon, S. Park, Nanoindentation studies of polyimide thin films with various internal linkages in the diamine component[J], J Polym Sci Phys , 2004, 42(5): 861-870;
    [236] V. L. Bell, B. L. Stump, H. Gager, Polyimide structure-property relationships. II. Polymers from isomeric diamines[J], J Polym Sci: Polym Chem Edit, 1976,14(9):2275-2291;
    [237] Michael-J. Brekner, C. Feger, Curing studies of a polyimide precursor. II. Polyamic acid[J], J Polym Sci Part:A Polym Chem, 1987, 2479-2491;
    [238] A. Ghosh, S. Banerjee, Structure-property co-relationship of fluorinated poly(imide- siloxane)s [J], Polym Adv Tech, 2008, 19(11):1486-1494;
    [239] K.Wang, L.Fan, JG. Liu, MS.Zhan, SY. Yang, Preparation and properties of melt-processable polyimides based on fluorinated aromatic diamines and aromatic dianhydrides[J], J Appl Polym Sci, 2008,107(4):2126-2135;
    [240] K. Tanaka, H. Kita, K. Okamoto, Sorption of carbon dioxide in fluorinated poyimides[J], J Polym Sci Part B: Polym Phys, 1993, 31(9):1127-1133;
    [241] JK. Park, DH. Lee, BJ.Song, Synthesis and characterization of novel perfluorinated polyimides with 3D-controlled structures for photonic applications[J], J Polym Sci Part A: Polym Chem, 2006, 44(3):1326-1342;
    [242] SH. Hsiao, YH. Chang, Synthesis and properties of soluble trifluoromethyl-substituted polyimides containing laterally attached p-Terphenyls[J], J Polym Sci Part A: Polym Chem,,2004, 42(6):1255-1271;
    [243] DJ. Liaw, FC.Chang, Highly organosoluble and flexible polyimides with color lightness and transparency based on 2,2-bis[4-(2-trifluoromethyl-4-aminophenoxy)-3,5-dimethylphenyl] propane [J], J Polym Sci Part A: Polym Chem, 2004,42(22):6766-5774;
    [244] T.Miyagawa, T. Fukushima, T. Oyama, Photosensitive fluorinated polyimides with a low dielectric constant based on reaction development patterning, J Polym Sci Part A: Polym Chem, 2003,41(6):861-871
    [245] MK. Madhra, AK Salunke, Sa Banerjee, SiPrabha, Synthesis and properties of fluorinated polyimides, 2Derived from novel 2,6-bis(3’-trifluoromethyl-p-aminobiphenyl ether)pyridine and 2,5-bis(3’-trifluoromethyl-p-aminobiphenyl ether)thiophene[J], Marcomol Chem Phys, 2002, 203(9):1238-1248;
    [246] SCM.Kwan, C.Wu, F.Li, Laser light-scattering studies of soluble high performance fluorine-containing polyimides[J], Polym Eng& Sci, 1999, 39(3):586-593;
    [247] R Hariharan, M Sarojadevi, Synthesis and characterization of organo-soluble fluorinated polyimides[J], Polym Inter, 2007, 56(1):22-31;
    [248] CL. Chung, WF. Lee, CH. Lin,Highly soluble fluorinated polyimides based on an asymmetric bis(ether amine): 1,7-bis(4-amino-2-trifluoromethylphenoxy)naphthalene[J], J Polym Sci Part A: Polym Chem, 2009, 47(7):1756-1770;
    [249] T. Suzuki, Y. Yamada,Characterization of 6FDA-based hyperbranched and linear polyimide-silica hybrid membranes by gas permeation and 129Xe NMR measurements[J], JPolym Sci Part B: Polymr Phys,2006, 44(2):291-298;
    [250]A. Ghosh, S. Banerjee Structure-property co-relationship of fluorinated poly(imide- siloxane)s[J], Polym Adv Tech, 2008,19(11):1486-1494;
    [251] FW. Mercer, M. McKenzie, M. Bruma, B. Schulz,Synthesis and properties of fluorinated polyimides and fluorinated poly(imide amide)s containing pendent cyano groups[J], Polym Inter, 1994, 33(4):399-407;
    [252] C.P.Yang,Y.Su,YC.Chen, Light-colored fluorinated polyimides based on 2,5-bis(4-amino-2- trifluoromethyl phenoxy)biphenyl and various aromatic dianhydrides[J], J Appl Polym Sci, 2006,102(5):4101-4110;
    [253]CP.Yang,Y.Su,YC.Chen,Organosoluble and light-colored fluorinated polyimides from 4,4’-bis(4-amino-2- trifluoromethylphenoxy)biphenyl and aromatic dianhydrides[J], J Polym Sci Part:A Polym Chem, 2002, 40(4):524-534;
    [254] J. A. Moore, Donald R. Gamble, Intrinsically photosensitive polyimides: Approaches to fluorinated homologs[J], Polym Eng Sci, 1992,32(21):1642-1645;
    [255] W.-C. Wang, R. H. Vora, E.-T. Kang, Nanoporous Ultra-Low-k Films Prepared from Fluorinated Polyimide with Grafted Poly(acrylic acid) Side Chains[J], Adv Mater, 2004,16(1):54-57;
    [256] L.Bes, A.Rousseau, B.Boutevin, Synthesis and Properties of Novel Polyimides Containing Fluorinated Alkoxy Side Groups[J], Macromol Chem Phys, 2001,202(14):2954-2961;
    [257] S.Miyata, K.Yoshida, H.Shirokura, Solid and thermal properties of ABA-type triblock copolymers designed using difunctional fluorine-containing polyimide macroinitiators with methyl methacrylate[J], Polym Inter, 2009,58(10):1148-1159;
    [258] Y.Shao, YF. Li, X. Zhao, Synthesis and properties of fluorinated polyimides from a new unsymmetrical diamine: 1,4-(2’-Trifluoromethyl-4’,4’-diaminodiphenoxy)benzene[J], J Polym Sci Part:A Polym Chem, 2006,44(23): 6836-6846;
    [259] C. Bas, R.Mercier, J.S.Marcano, Copolyimides containing alicyclic and fluorinated groups: Solubility and gas separation properties[J], J Polym Sci Part:B: Polym Phys, 2005,43(17):2413-2426;
    [260] CP.Yang, YC.Chen, Organosoluble and light-colored fluorinated polyimides based on 1,1-bis[4-(4-amino-2-trifluoromethyl phenoxy)phenyl]-1-phenylethane and various aromatic dianhydrides[J], J Appl Polym Sci, 2005, 96(6):2399-2412;
    [261] CP. Yang, SH. Hsiao, CL. Chung, Organosoluble, low-dielectric-constant fluorinated polyimides based on 2,6-bis(4-amino-2-trifluoromethylphenoxy)naphthalene[J], Polym Inter, 2005, 54(4):716-724;
    [262] K.Goto, T.Akiike, Y. Inoue, Polymer design for thermally stable polyimides with low dielectric constant[J], Marcomol Symp, 2003,199(1):321-332;
    [263] M. Kanno, H. Kawakami, S. Nagaoka, S. Kubota, Biocompatibility of fluorinated polyimide[J], J Biome Mater Res, 2002,60(1):53-60;
    [264] B. C. Auman, T. L. Myers, D. P. Higley, Synthesis and characterization of polyimides based on new fluorinated 3,3’-diaminobiphenyls[J], J Polym Sci Part A: Polym Chem, 1997, 35(12):2441-2451;
    [265] A. Ghosh, S. Banerjee, Structure--property co-relationship of fluorinated poly(imide- siloxane)s[J], Polym Adv Tech, 2008,19: 1486–1494.
    [266] C.P. Yang, Y.Y. Su, Properties of organosoluble aromatic polyimides from3’-trifluoromethyl-3,4’-oxydianiline[J], Polymer, 2003,44: 6311-6322
    [267] Byong-Wa Chun, Fluorinated copolyimides prepared by one-shot and stepwise monomer addition method[J], J Appl Polym Sci, 1995,56(5):567-573;
    [268] K. A. Lokhandwala, S. M. Nadakatti, S. A. Stern, Solubility and transport of water vapor in some 6FDA-based polyimides[J], J Polym Sci Part B: Polym Phys, 33(6)866-975;
    [269] S. Xu, Y. Jin, M. Yang, F. Bai, S. Cao, Highly soluble diphenylfluorene-based cardo copolyimides containing perylene units[J], Polym Adv Tech, 2006, 17(7):556-561;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700