轧制差厚板成形性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能和环保是21世纪汽车工业必须面对的两个巨大挑战,而汽车轻量化技术则是应对挑战的一项重要举措。采用新型材料(如铝镁合金、塑料、陶瓷等)和采用基于新材料加工技术的板材(如激光拼焊板、轧制差厚板等)是实现汽车轻量化的两种有效途径。然而由于钢具有较高的性价比,短期内大规模的应用新型材料来代替钢并不现实,因此基于新材料加工技术的板料便越来越受到人们的重视。
     目前,激光拼焊板(TWB,Tailor Welded Blank)已经在汽车工业中得到了广泛的应用。轧制差厚板(TRB,Tailor Rolled Blank)是继激光拼焊板之后,又一种基于新材料加工技术的轻量化结构板材。柔性轧制技术是差厚板生产的核心技术,它与传统的纵轧工艺类似,但轧辊的间隙在轧制过程中可以实时调整,因而能够沿轧制方向轧制出预先定制的变截面形状。设计人员可以根据零件在成形工序中和服役过程中的实际受力情况,选择优化的板料纵向截面轮廓,极大地增加了设计灵活性。由轧制差厚板冲压成形的汽车覆盖件具有良好的刚性和强度,能够提高汽车的承载力、抗凹性和吸能性,并且能够显著地减轻车身重量。
     为了推动轧制差厚板在汽车车身上的应用,对其成形性能的研究势在必行。本文采用解析分析、数值仿真与实验验证相结合的方法,对轧制差厚板的成形性能进行了研究。
     应用双斜率退火工艺对轧制差厚板进行了退火处理,测试并比较了未退火和已退火差厚板的硬度。通过单向拉伸试验研究了轧制差厚板的基本力学性能,建立了差厚板单向拉伸力学解析模型,推导了差厚板薄厚两侧变形量的计算公式。以单向拉伸试验数据为基础,采用拉格朗日多项式插值法构造了未退火和已退火差厚板的应力应变场,解决了数值仿真过程中差厚板的材料参数问题。最后,将试验、解析、仿真的结果进行了对比,并且通过微观组织对拉伸试验结果进行了解释。试验、解析、仿真三者的高度吻合证明了差厚板单向拉伸力学解析模型和变形量计算公式的正确性。研究结果表明:对于未退火和已退火的差厚板拉伸试样,缩颈失效均是发生在差厚板薄侧,退火后的差厚板强度减小而塑性增强,获得了更大的延伸率。
     分析了差厚板盒形件的成形原理、应力分布状态以及变形特点,介绍了差厚板盒形件的成形缺陷,包括起皱、破裂、过渡区移动等,探讨了缺陷产生的机理,确定了缺陷发生的位置,给出了缺陷问题的解决办法,并且在差厚板单向拉伸解析模型的基础上建立了过渡区移动量的计算公式。最后,对轧制差厚板方盒形件进行了冲爪成形仿真与实验工作。分别讨论了退火工艺、压边力类型、压边力值、板料厚度差、过渡区长度、过渡区位置、板料尺寸等因素对轧制差厚板方盒形件减薄率以及过渡区移动的影响,仿真与实验结果能够较好地吻合。
     阐述了弯曲回弹机理,分析了弯曲回弹过程中的力学问题,推导了回弹量的计算公式,给出了影响回弹数值仿真精度的关键因素。在此基础上,分别对纵向弯曲(弯曲轴平行于轧制方向)和横向弯曲(弯曲轴垂直于轧制方向)的轧制差厚板U型件的回弹特性进行了研究。分析了差厚板U型件成形后的厚度分布、应力应变分布状态以及回弹趋势,讨论了模具间隙、摩擦系数、材料性能、板料尺寸、板料厚度、过渡区长度以及过渡区位置等因素对差厚板U型件回弹的影响,并单独讨论了上述因素对横向弯曲的差厚板U型件过渡区移动的影响。研究结果表明:仿真与实验结果有着较好的一致性。成形后轧制差厚板U型件各部分的厚度变化不大,未退火差厚板U型件薄侧的回弹量大于厚侧,退火处理能够极大地减小差厚板尤其是其薄侧的回弹量,使得整块板料的回弹比较均匀。另外,对于横向弯曲的差厚板,已退火差厚板厚度过渡区移动量要大于未退火情况。
     为了实现车身的轻量化,将轧制差厚板应用于某车型的A柱加强板。通过采用加强肋以及退火工艺,零件的回弹量以及过渡区移动量均能够控制在允许的范围内。将轧制差厚板引入车身覆盖件的制造,能在满足零件强度和刚性要求的前提下,达到节约材料、减轻重量的目的。
Energy saving and environmental protection are the two great challenges that the automotive industry has to face in the21st century. The vehicle lightweight technology is an important measure to cope with these challenges. The adoptions of new materials (such as aluminum alloy, magnesium alloy, plastics, ceramics etc.) and lightweight structural metal sheets based on new material processing technology (such as Tailor Welded Blank, Tailored Rolled Blanks etc.) are two effective ways to achieve automotive lightweight. However, because of the high performance-price ratio of steel, extensive application of new materials in place of steel is unrealistic, so the metal sheets based on new material processing technology have been paid more and more attention.
     So far, Tailor Welded Blank(TWB) has been widely applied in the automotive industry. Tailor Rolled Blank(TRB) is another kind of metal sheet for lightweight strcuture based on new material processing technology after TWB. Flexible rolling technology is the key technology for TRB manufacturing. It is similar to the traditional longitudinal rolling technology, but the roll gap can be adjusted through computer real-time control during rolling, and thus the blank is rolled with the preset variable section shape in the rolling direction. Designers may select the optimized longitudinal section profile of TRB according to the actual load cases in forming and serving processes, which can greatly improve the design flexiblility. Auto panels made of TRB, which have advantages of better rigidity and strength, can improve the load-carrying ability, the dent resistance and the energy absorption capacity, and significantly lighten the weight of autobody.
     In order to promote the application of TRB in the automotive body, the research on the formability of TRB is imperative. The formability of TRB is studied by a combination method of analytical analysis, numerical simulation and experimental verification.
     TRB is annealed by the two-slope annealing process. The hardness of unannealed and annealed TRBs is tested and compared. The basic mechanical properties of TRB are studied by the uniaxial tension test. The mechanical analytical model for uniaxial tension is set up, and the formulae of deformation at the thinner side and at the thicker side are derived. On the basis of uniaxial tension test data, the Lagrange polynomial interpolation is adopted to construct the stress and strain fields of unannealed and annealed TRBs, which can solve the problem of TRB material parameters for simulation. Finally comparison of results among experiment, analysis and simulation are carried out. and the experimental results are explained by the mierostructure. The agreement of experiment, analysis and simulation confirms the correctness of the analytical model and the deformation formulae. The results show that the necking happens at the thinner side for both unannealed and annealed TRB tension specimens, the annealed TRB has lower strength and higher plasticity, and thus acquires greater elongation.
     The forming principle, the stress distribution state and the deformation characteristics of TRB box are analyzed. The forming defects are presented, including wrinkle, crack, thickness transition zone(TTZ) movement etc. The mechanisms of theses defects are discussed, the spots of the defects are fixed, and the measures solving the defects are offered. The formula of TTZ displacement is built on the basis of uniaxial tension analytical model. At the end, simulation and experiment of stamping forming process of TRB square box are carried out. Effects of annealing process, binder force type, binder force value, blank thickness difference, TTZ length, TTZ position and blank size on thinning and TTZ movement are discussed, and the numerical data and the experimental data are in good agreement.
     The bending springback mechanism is described. The mechanic problems during the course of bending springback are analyzed, and the formula for computing the amount of springback is deduced. The key factors that affect the springback simulation accuracy are offered. On this basis, the springback characteristics of longitudinally bended (bending axis is parallel to the rolling direction) and transversely bended (bending axis is perpendicular to the rolling direction) TRB U-shaped parts are studied. The thickness distribution, the stress strain distribution state and the springback trend after forming are analyzed. Effects of die clearance, friction coefficient, material properties, blank size, blank thickness, TTZ length and TTZ position on the springback of TRB U-shaped part are discussed, and a separate discussion on effects of above factors on the TTZ movement of traversely bended TRB U-shaped parts is carried out. The results show that numerical and experimental results have good consistency. After forming, the thickness of the whole TRB varies little, and the springback at the thinner side is much larger than that at the thicker side for the unannealed TRB U-shaped parts. Annealing treatment can greatly reduce the springback of TRB especially the springback at the thinner side, and make the springback of the whole TRB uniform. In addition, for traversely bended U-shaped parts, the TTZ, movement of the annealed TRB is larger than that of the unannealed TRB.
     For the purpose of achieving the autobody lightweight. TRB is applied to the sti Honor of A-pillar in some car. Through the use of stiffening ribs and annealing process, the springback and the TTZ movement of the TRB part can be controlled in a permitted range. The introduction of TRB into the manufacturing of panels can achieve the goals of saving material and lowering weight on the premise of meeting strength and rigidity.
引文
[1]董帝,韩静涛,刘靖.超轻量汽车用TRB板及柔性轧制技术研究[C].2007年全国塑性加工理论与新技术学术研讨会.沈阳:中国金属学会,2007.
    [2]文彤.汽车轻结构趋势引发的新材料新工艺—汽车车身制造中的若干新技术[J].汽车与配件,2008,(9):28-32.
    [3]施志刚,王宏雁.变截面薄板技术在车身轻量化上的应用[J].上海汽车,2008,(8):36-39.
    [4]杜继涛,齐从谦.连续变截面辊轧板及其应用关键[J].汽车技术,2005,(9):33-35.
    [5]Dressler B, Kempinger K, Lief K, Truckenbrodt H, Lein R, Gullubas M, Krieger R, Steinberg K.More intelligent lightweighting:the revolutionary body concept of the new BMW 5-series[J].ATZ Automobiltechnische Zeitschrift,2003,105:38-40.
    [6]Kleiner M, Chatti S, Klaus A. Metal forming techniques for lightweight construct ion[J]. Journal of Materials Processing Technology,2006,177(1-3):2-7.
    [7]Kleiner M,Geiger M, Klaus A. Manufacturing of lightweight components by metal forming[J]. CIRP Annals-Manufacturing Technology,2003,52(2):521-542.
    [8]李桂华,熊飞,龙江启.车身材料轻量化及其新技术的应用[J].材料开发与应用,2009,(2):87-93.
    [9]骆锐,王艳,吴沁.汽车轻量化前沿制造技术的研究进展[J].制造技术与机床,2010,(10):142-145.
    [10]孙永飞,景作军.汽车轻量化技术及其应用[J].汽车与配件,2010,(23):32-35.
    [11]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工(热加工),2009,(11):11-16.
    [12]王智文.汽车轻量化技术发展现状初探[J].汽车工艺与材料,2009,(2):1-5.
    [13]朱宏敏.汽车轻量化关键技术的应用及发展[J].应用能源技术,2009,(2):10-12.
    [14]Shi M F, Pickett K M, Bhatt K K. Formabi 1 ity issues in the appl ication of tai lor welded blank sheets[J]. SAF. International,1993.
    [15]Kusuda H. Formability of tailored blanks[J]. Journal of Materials Processing Technology,1997,71(1):134-140.
    [16]Kinsey B,Liu Z, Cao J. A novel forming technology for tailor-welded blanks[J]. Journal of Materials Processing Technology,2000,99(1-3):145-153.
    [17]Saunders F I, Wagoner R H. Forming of tailor-welded blanks[J]. Metallurgical and Materials Transactions A,1996,27(9):2605-2616.
    [18]张士宏,程欣,郎利辉,徐福昌.拼焊板焊接工艺及其对拼焊板塑性变形影响的试验研究[J].材料科学与工艺,1999,7(增):143-147.
    [19]Meinders T. Deep drawing simulations of Tailored Blanks and experimental verification[J]. Journal of Materials Processing Technology,2000,103(1):65-73.
    [20]Pallett R J.The use of tailored blanks in the manufacture of construction components[J]. Journal of Materials Processing Technology,2001,117(1-2):249-254.
    [21]Pan F, Zhu P, Zhang Y. Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression[J]. Computers and Structures,2010,88(1-2):36-44.
    [22]Chatti S,Heller B, Kleiner M,Ridane N. Forming and further processing of tailor rolled blanks for lightweight structures[J]. Advanced Technology of Plasticity,2002,2:1387-1392.
    [23]Hauger A, Muhr T, Kopp R. Flexible rolling of tailor rolled blanks[J]. Stahl Und Eisen,2006:21-23.
    [24]Meyer A, Wietbrock B, Hirt G. Increasing of the drawing depth using tailor rolled blanks-Numerical and experimental analysis[J]. International Journal of Machine Tools and Manufacture,2008,48(5):522-531.
    [25]兰凤崇,唐杰,钟阳,陈吉清.差厚板汽车b柱轻量化设计[J].现代零部件,2011,(12):62-65.
    [26]Liu X H.Prospects for Variable Gauge Roll ing:Technology, Theory and Application[J]. Journal of Iron and Steel Research International,2011,18(1):1-7.
    [27]Kopp R,Wiedner C, Meyer A. Flexibly rolled sheet metal and its use in sheet metal forming[J]. Advanced Materials Research,2005,6-8:81-92.
    [28]Kopp R, Wiedner C, Meyer A. Flexible rolling for load-adapted blanks[J]. International Sheet Metal Review,2005,4:20-24.
    [29]刘相华,吴志强,支颖,杜平,孙涛,胡贤磊.筹厚板轧制技术及其在汽车制造中的应用[J].汽车工艺与材料,2011,(1):30-34.
    [30]包向军.变截面薄板弯曲成形回弹的实验研究和数值模拟[D].上海:上海交通大学,2003.
    [31]Hauger A.Flexibles Walzen als kontinuierlicher Fertigungsprozess ftlr Tailor Rolled Blanks[D]. Aachen:RWTH Aachen,2000.
    [32]Wiedner C. Finite Elemento Simulation des Streckziehens von Tailor Rolled Blanks[J]. unveroeffentlichte Diplomarbeit,2000.
    [33]Wiedner C. Formanderungsanalysen und Umformversuche an innovativen Blechhalb zeugen[J]. unveroeffentlichte Studienarbei t,1999.
    [34]Friedrich 0. Untersuchungen der Tiefziehsimulationen von flexibel gewalzten Prinzipbauteilen aus St14 dem Programmsystem LS-DYNA[J]. unveroeffentlichte Studienarbeit,1999.
    [35]Witulski N. Untersuchungen zum Streckziehen von flexibel gewalzten Blechen[J]. unveroeffontlichte Diplomarbeit,2000.
    [36]Ebert A. Umformung von Platinen mit lokal unterschiedlichen Dicken[D]. Aachen:RWTH Aachen,2001.
    [37]Greisert C, Ebert A, Wiedner C, Kopp R, Wesemann J. Forming behaviour of tai lor rol led blanks[C]. Second Global Symposium on Innovations in Materials Processing and Manufacturing:Sheet Materials. New Orleans,2001.
    [38]Kopp R, Bohlke P.A New Rolling Process for Strips with a Defined Cross Section[J].CIRP Annals-Manufacturing Technology,2003,52(1):197-200.
    [39]Urban M, Krahn M, Hirt G, Kopp R. Numerical research and optimisation of high pressure sheet metal forming of tailor rolled blanks[J]. Journal of Materials Processing Technology,2006,177(1-3):360-363.
    [40]Kleiner M, Homberg W, Krux R. High-pressure sheet metal forming of large scale structures from sheets with optimised thickness distribution[J]. Steel research international,2005,76(2-3):177-181.
    [41]Kleiner M, Kopp R, Homberg W, Krahn M, Krux R, Van Putten K. High-Pressure Sheet Metal Forming of Tailor Rolled Blanks[J]. Annals of the WGP, Production Engineeri ng,2004,11(2):109-114.
    [42]Krux R, Homberg W, Kleiner M. Properties of large-scale structure workpieces in high-pressure sheet metal forming of tailor rolled blanks[J]. Steel research international,2005,76(12):890-896.
    [43]Van Putten K, Urban M, Kopp R. Computer aided product optimization of high-pressure sheet metal formed tailor rolled blanks[J].Steel research international,2005,76(12):897-904.
    [44]Ryabkov N, Jackel F, Putten K, Hirt G. Production of blanks with thickness transi tions in longitudinal and lateral direction through 3D-Strip Profile Rolling[J]. International Journal of Material Forming,2008,1(S1):391-394.
    [45]Kim D, Kim J.Lee Y, Kwak H,Ryu Y, Han B. Study of residual stresses in tailor rolled blanked A15J322T4 sheets[J]. RARE METALS,2006,25(6, S2):111-117.
    [46]Yang R J, Fu Y, Li G. Application of Tailor Rolled Blank in Vehicle Front End for Frontal Impact[J]. SAE International,2007.
    [47]Chuang C H, Yang R J, Li G,Mallela K,Pothuraju P. Multidisciplinary design optimization on vehicle tailor rolled blank design[J].Structural and Multidisciplinary Optimization,2007,35(6):551-560.
    [48]Kim H W.Lim C Y. Annealing of flexible-rolled Al-5.5wt% Mg alloy sheets for auto body application[J]. Materials and Design,2010,31(S1):71-75.
    [49]杜平,胡贤磊,王君,刘相华.纵向变截面钢板的发展和应用[J].轧钢,2008,(1):47-50.
    [50]杜平,胡贤磊,王君,刘相华.变截面轧制过程的多点动态设定[J].钢铁研究学报,2009,(11):27-30.
    [51]杜平,胡贤磊,王君,刘相华,王国栋.纵向变截面轧制过程中的轧制参数[J].钢铁研究学报,2008,(12):26-30.
    [52]姜银方,方雷,李志飞,唐振洲.连续变截面板及其应用中存在的关键问题[J].制造技术与机床,2011,(1):144-148.
    [53]姜银方,靖娟,王永良,袁国定,王友华,李新城.变截面板方盒形件成形参数的正交试验分析[J].模具工业,2009,35(1):8-11.
    [54]姜银方,王勇良,袁国定,李新城,史德旗.连续变截面横梁回弹特性及控制[J].机械设计,2010,27(1):10-13.
    [55]严有琪,方雷,姜银方.基于分块压边圈的变截面板方盒件成形比较分析[J].科技创新导报,2010,(30):36-37.
    [56]杜继涛.TRB轧制建模及其在汽车覆盖件上应用的关键技术[D].上海:同济大学,2008.
    [57]杜继涛,甘屹,齐从谦,任灏宇.Trb及其轧制应用关键技术[J].汽车技术,2007,(7):45-48.
    [58]杜继涛,李艳华.Trb轧制辊缝控制集成建模及其应用关键[J].仪器仪表学报,2009,30(6增):176-179.
    [59]杜继涛,李艳华,费宏斌.基于模糊重心理论的trb工艺方案评价[C].2009中国控制与决策会议.桂林:IEEE工业电子分会,2009.
    [60]杜继涛,齐从谦,甘屹.Trb轧制集成建模及成型关键技术[J].汽车技术,2008,(9):56-59.
    [61]杜继涛,齐从谦.变截面薄板在车身制造中的应用研究[J].锻压技术,2005,(增刊):38-43.
    [62]杜继涛.连续变截面复合板集成建模及其成形关键[C].2010中国控制与决策会议.徐州:2010中国控制与决策会议,2010.
    [63]任灏宇,杜继涛.连续变截面板的轧制控制[J].机械制造与自动化,2008,(2):143-144.
    [64]袁国定,靖娟,王友华,姜银方.变压边力对连续变截面辊压板成形性能的研究[J].锻压技术,2009,34(2):50-53.
    [65]李艳华,杜继涛,费宏斌.利用abaqus与正交试验理论的trb成形参数优化[J].现代制造工程,2009,(11):136-138.
    [66]李艳华,杜继涛,费宏斌.影响trb单向拉伸的几何参数研究[J].现代制造工程,2010,(3):83-85.
    [67]Woo D M. The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process[J]. International journal of Mechanical Science,1964,6(4):303-317.
    [68]Iseki H, Jimma T, Murota T. Finite element method of analysis of hydrostatic bulging of a sheet metal(Part 1)[J].Bulletin of the JSME,1974,12(112):1240-1246.
    [69]Wif i A S. An incremental comlplete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch[J]. International journal of Mechanical Science,1976,18(1):23-31.
    [70]Wang N M, Wenner M L. Elastic-viscoplastic analysis of simple stretching forming processes[C]. Mechanics of Sheet Metal Forming. New York:Plenum Press,1978.
    [71]Kobayashi S,Kim J H. Deformation analysis of axisymmetric sheet metal forming processes by rigid-plastic finite element method[C]. Mechanics of Sheet Metal Forming. New York:Plenum Press,1978.
    [72]Mehta H S, Kobayashi S. Finite element analysis and experimental investigation of sheet metal stretching[J]. Journal of Applied Mechanics,1973,40:874-880.
    [73]Wang N M, Budiansky B. Analysis of sheet metal stamping by a finite element method[J]. Journal of applied Mechanics, ASME,1978,45(1):73-82.
    [74]Tang S C. Finite element prediction of the deformed shape of automobile trunk deck-lid during the binder-wrap stage[C]. Experimental Verification of Process Models. American Society for Metals,1983.
    [75]Tang S C. Verification and application of a binder wrap analysis[C]. Computer Modeling of Sheet Metal Forming Process:Theory, Verification and Application. Michigan:Ann Arbor,1985.
    [76]Toh C H,Kobayashi S. Deformation analysis and blank design in square cup drawing[J]. International Journal of Machine Tools Design Engineering,1985,25(1):15-32.
    [77]朱谨,王学文,阮雪榆.方盒形带凸缘件的板料形状优化设计[J].塑性工程学报,1994,(2):57-64.
    [78]Ahmetoglu M,Broek T, Kinzel G.Altan T.Control of blank holder force to eliminate wrinkling and fracture in deep-drawing rectangular parts[J]. CIRP Annals-Manufacturing Technology,1995,44(1):247-250.
    [79]Esche S K,Khamitkar S,Kinzel G L, Altan T.Process and die design for multi-step forming of round parts from sheet metal[J].Journal of Materials Processing Technology,1996,59(1-2):24-33.
    [80]Lee C H, Huh H. Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming procosses[J]. Journal of Materials Processing Technology,1998,80-81:76-82.
    [81]Obermeyer E,Majlessi S. A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts[J]. Journal of Materials Processing Technology,1998,75(1-3):222-234.
    [82]林忠钦,张卫刚,包友霞,陈关龙.轿车侧框冲J压成形过程的仿真与试验分析[J].上海交通大学学报,1998,(11):137-141.
    [83]Azapagic A. Life cycle assessment and its application to process select ion, design and optimisation[J]. Chemical engineering journal,1999,73(1):1-21.
    [84]李富柱,郭玉琴,李学艺.虚拟冲压仿真关键技术及其发展趋势[J].煤矿机械,2007,(12):7-9.
    [85]Hill R. The Mathematical Therory of Plasticity[M]. London:Oxford,1950.
    [86]Gardiner F J.The springback of metals[J].Trans. ASME,1957,79(1):1-9.
    [87]Queener C A. Elastic springback and residual stresses in sheet metal formed by bending[D]. Kentucky:University of Kentucky,1966.
    [88]Oh S I,Kobayashi S. Finite element analysis of plane strain sheet bending[J]. International journal of Mechanical Science,1980,22(9):583-594.
    [89]Ueda M, Ueno K,Kobayashi M. A study of springback in the stretch bending of channels[J]. Journal of Mechanical Working Technology,1981,5(3-4):163-179.
    [90]Yu T X,Johnson W. Influence of axial force on the elastic-plastic bending and springback of a beam[J]. Journal of Mechanical Working Technology,1982,6(1):5-21.
    [91]Chakhari M L, Jalinier J M. Springback of complex bent parts[C]. International Deep Drawing Research Group.1984.
    [92]Levy B S.Empirically derived equations for predicting springback in bending[J]. Journal of Applied Metalworking,1984,3(2):135-141.
    [93]Makinouchi A.Elastic-plastic stress analysis of bending and hemming of sheet metal[C]. Computer Modeling of Sheet Metal Forming Process:Theory, Verification and Application. Michigan:Ann Arbor,1985.
    [94]Chu C C.Elastic-plastic springback of sheet metals subjected to complex plane strain bending histories[J]. International Journal of Solids and Structures,1986,22(10):1071-1081.
    [95]Yuen W.Springback in the stretch-bending of sheet metal with non-uniform deformation[J]. Journal of Materials Processing Technology,1990,22(1):1-20.
    [96]Samuel M. Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals[J].Journal of Materials Processing Technology,2000,105(3):382-393.
    [97]Chou I N, Hung C. Finite element, analysis and optimization on springback reduction[J]. International Journal of Machine Tools and Manufacture,1999,39(3):517-536.
    [98]Pourboghrat F,Chu E. Springback in plane strain stretch/draw sheet forming[J]. International Journal of Mechanical Sciences,1995,37(3):327-341.
    [99]Esat V, Darendel i ler H, Gokler M I. Fini teelement analysis of springback in bending of aluminium sheets[J].Materials and Design,2002,23(2):223-229.
    [100]Papeleux L, Ponthot J P. Finite element simulation of springback in sheet metal forming[J]. Journal of Materials Processing Technology,2002,125-126:785-791.
    [101]Gomes C, Onipede O, Lovell M. Investigation of springback in high strength anisotropic steels[J]. Journal of Materials Processing Technology,2005,159(1):91-98.
    [102]Lee S W. A study on the bi-directional springback of sheet metal stamping[J]. Journal of Materials Processing Technology,2005,167(1):33-40.
    [103]Yanagimoto J, Oyamada K, Nakagawa T. Springback of High-Strength Steel after Hot and Warm Sheet Formings[J]. CIRP Annals-Manufacturing Technology,2005,54(1):213-216.
    [104]Lee S W, Kim Y T. A study on the springback in the sheet metal flange drawing[J]. Journal of Materials Processing Technology,2007,187-188:89-93.
    [105]Wagoner R H, Li M. Simulation of springback:Through-thickness integration[J]. International Journal of Plasticity,2007,23(3):345-360.
    [106]薛新,刘强,阮锋.基于数值模拟的弧形件板料弯曲回弹补偿研究[J].锻压装备与制造技术,2007,(6):59-62.
    [107]黄亚娟,丘宏扬.汽车冲压件的回弹控制研究[J].锻压装备与制造技术,2008,(2):61-64.
    [108]Rahmani B, Alinejad G,Bakhshi-Jooybari M,Gorji A.An investigation on springback/negative springback phenomena using finite element method and experimental approach[C]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture. London:Professional Engineering Publishing Ltd.,2009.
    [109]Finn M J.Galbraith P C, Wu L, Hallquist J O, Lum I., Lin T L. Use of a coupled explicit-implicit solver for calculating spring-back in automotive body panels[J]. Journal of Materials Processing Technology,1995,50(1):395-409.
    [110]Narasimhan N, Lovell M. Predicting springback in sheet metal forming:an explicit to implicit sequential solution procedure[J]. Finite Elements in Analysis and Design,1999,33(1):29-42.
    [111]Yang D Y, Jung D W, Song 1 S, Yoo D J,Lee J H. Comparative investigation into implicit, expl icit, and i terative implicit/expl icit schemes for the simulat ion of sheet-metal forming processes[J]. Journal of Materials Processing Technology,1995,50(1):39-53.
    [112]Hill R. A theory of the yielding and plastic flow of anisotropic metal s(Hill-1948)[C]. Proceed ings of the Royal Society of London, Series A:Mathematical and Physical. London:the Royal Society of London,1948.
    [113]Barlat F,Lian K. Plastic behavior and stretchability of sheet metals. Part Ⅰ:A yield function for orthotropic sheets under plane stress conditions[J]. International Journal of Plasticity,1989,5(1):51-66.
    [114]雷正保.汽车覆盖件冲压成形CAE技术[M].长沙:国防科技大学出版社,2003.
    [115]Jung D W, Yang K B. Comparative investigation into membrane, shell and continuum elements for the rigid-plastic finite element analysis of two-dimensional sheet metal forming problems[J].Journal of Materials Processing Technology,2000,104(3):185-190.
    [116]Yang D Y, Shim H B, Chung W J. Comparative investigation of sheet metal forming processes by the elastic-plastic finite element method with emphasis on the effect of bending[J]. Engineering Computations,1990,7(4):274-283.
    [117]Mori K, Wang C, Osakada K. Inclusion of elastic deformation in rigid-plastic finite element analysis[J]. International Journal of Mechanical Sciences,1996,38(6):621-631.
    [118]Lee D W, Yang D Y. Consideration of geometric nonlinearity in rigid-plastic finite element formulation of continuum elements for large deformation[J]. International Journal of Mechanical Sciences,1997,39(12):1423-1440.
    [119]Ahmad S, Irons B M, Zienkiewicz O. Analysis of thick and thin shell structures by curved finite elements[J]. International Journal for Numerical Methods in Engineering,1970,2(3):419-451.
    [120]Meek J L. A brief history of the beginning of the finite element method[J]. International Journal for Numerical Methods in Engineering,1996,39:3761-3774.
    [121]陈文良.板料成形CAE分析教程[M].北京:机械工业出版社,2005.
    [122]林忠钦.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2004.
    [123]Chappuis L B, Tang S C, Chen X M, Wu J H. A numerically stable computer model for sheet metal forming analysis by 21) membrane theory [J].SAE International,1993.
    [124]崔虎,关建东,康永林.Csp生产sphc板材的冷轧退火工艺研究[J].轧钢,2010,(3):20-23.
    [125]GB/T4340-2009.金属材料维氏硬度试验[S].2009.
    [126]薛松,周杰,何应强.差厚拼焊板成形性的单向拉伸试验[J].锻压技术,2011,36(2):30-33.
    [127]GR/T228-2002.金属材料室温拉伸试验[S].2002.
    [128]ASTM Standard E8-04,Standard Test Methods for Tension Testing of Metallic Materials[S].2001.
    [129]尹红国.罩式退火工艺对spcc冷轧薄钢板组织及性能的影响[D].长沙:湖南大学,2009.
    [13()]罗曼诺夫斯基(苏).冷压手册[M].1965.
    [131]日本塑性加工学会.压力加工手册[M].1984.
    [132]杨玉英.盒形件成形机理的探讨[J].锻压技术,1989,(6):13-17.
    [133]李硕本.冲压工艺学[M].北京:机械工业出版社,1982.
    [134]Choi Y, Heo Y,Kim H Y, Seo D. Investigations of weld-line movements for the deep drawing process of tailor welded blanks[J]. Journal of Materials Processing Technology,2000,108(1):1-7.
    [135]Heo Y,Choi Y, Kim H Y, Seo D. Characteristics of weld line movements for the deep drawing with drawbeads of tailor-welded blanks[J]. Journal of Materials Processing Technology,2001,111(1-3):164-169.
    [136]LS-DYNA Keyword Manual. Livermore software technologhy corporation[S]. Livermore,1999.
    [137]Lang L H, Kang D C, Zhang S H, Wang Z R,Yuan S J.Nielsen K B,Dancket J. Effects of specified blank size on body wrinkling during hydrodynamic deep drawing of tapered rectangular box[J].Acta Metallurgica Sinica(English Letters),2000,13(2):476-480.
    [138]张冬娟.板料冲压成形回弹理论及有限元数值模拟研究[D].上海:上海交通大学,2007.
    [139]徐伟力,马朝晖,李川海,冯维军.回弹显式解法的影响因素[J].锻压技术,2004,(6):12-15.
    [140]张立力,齐恬,戴映荣.数值模拟参数和工艺参数对板材成形回弹影响的研究[J].锻压技术,2002,(6):18-21.
    [141]Valente F, Li X P, Messina A. Springback Prediction for Stamping Tools Compensation by Numerical Simulation[J]. Centro Ricerche Fiat,1997.
    [142]Liu H, Xing Z,Sun Z, Bao J. Adaptive multiple scale meshless simulation on springback analysis in sheet metal forming[J]. Engineering Analysis with Boundary Elements,2011,35(3):436-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700