几类混合函数型数据建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着测量工具的进步、收据收集和存储能力的提升,在许多应用领域(如化学计量学,生物计量学,医学,经济计量学等),我们能够在越来越精细的分辨率下收集、处理数据.例如,为了了解一天的温度变化曲线,我们可以每分钟记录一个数据,从而得到近似一天的温度变化曲线.对于这种数据,传统的统计模型面临极大的挑战,如过拟合和维数祸根问题.为克服这种困难,统计学者们提出了函数型数据分析方法,也即,将对每个个体的观测看成一条曲线,从而对曲线数据进行统计分析.回归分析一直是统计分析中一个重要的分析方法,它被许多科研工作者广泛的研究.最近,一些统计学者将传统的回归模型推广到函数型数据情况下,如Ramsay和Sliverman([81],[83])在其著作中研究了各种函数线性回归模型,Ferraty和Vieu [52]考虑了非参数函数型模型.此外,为了提高函数型回归模型的解释和预测能力,有些统计学者引入了额外的随机变量,我们称之为混合函数型数据回归模型.
     本论文主要研究混合函数型数据回归建模问题,并考虑用多项式样条估计和惩罚样条估计两种非参数估计方法来对模型进行估计.
     在第二章,我们引入了半函数线性模型.在该模型下,我们研究了多项式样条估计.在一定的正则条件下我们得到了估计的全局收敛速度和一致收敛速度.通过模拟实验我们研究了估计的有限样本性质,同时与半函数部分线性模型[3]和部分函数线性模型[96]进行了比较,说明我们的模型的可行性.
     第三章,我们研究了部分函数线性模型[96]的多项式样条估计.在一定的正则条件下,我们同样得到了参数估计的渐近正态性和函数系数估计的全局收敛速度.通过模拟实验,我们研究了估计的有限样本性质,并跟文献[96]中的方法进行了比较,说明了我们的方法的优良性.
     第四章,由于我们发现部分函数线性模型[96]的多项式样条估计不够稳健,从而提出了一个更加稳健的估计-惩罚样条估计.同样地,在一定的正则条件下,我们得到了参数部分估计的渐近正态性和函数系数估计的全局收敛速度.通过模拟实验,我们研究了惩罚样条估计的有限样本性质,同时通过比较,说明了惩罚样条估计在三种估计方法中是最好的.
     第五章,我们引入了一个新的混合函数型数据模型-变系数部分函数线性模型.我们研究了该模型的多项式样条估计.在给定的正则条件下,我们研究了估计的全局收敛速度和一致收敛速度.通过模拟实验,研究了多项式样条估计的有限样本性质.
With the advances of measuring instruments and the improvement of data collect-ing and storage capacity, in many fields of applied sciences (such as chemometrics, biometrics, medicine, econometrics, etc.), we can collect and deal with the observa-tion data at finer and finer resolution. For example, For example, in order to under-stand the daily temperature curve, we can write down the temperature in every minute. And then, we can get an approximate daily the temperature curve. For this kind of data, the traditional statistical models to face great challenges, such as over-fitting and dimension curse problem. To overcome this difficulty, statistics have put forward functional data analysis methods. That is, each individual observation will be seen as a curve. Then, we can do statistical analysis based on the curve data. Regression analysis is aways an important analytical methods in the statistical analysis. It has been widely studied by lots of scientists. Recently, some statisticians extended the traditional regression model to the functional data case. For instance, Ramsay and Sliverman,([81],[83]) Studied the various functional linear regression models in their monograph. Ferraty and Vieu [52] considered the nonparametric functional regression model. In addition, in order to improve the power of interpretation and prediction of regression model, some statisticians introduced some additional random variables in the functional regression model, which is called the mixed-functional data regression model.
     In this thesis, we study the problem of mixed functional data modeling and con-sider two kinds of nonparametric methods:polynomial spline method and penalized spline method.
     In chapter2, we introduced the semi-functional linear model. In this model, we studied the polynomial spline estimation. Under some regularity conditions, we got the global and uniform convergence rates. By simulation study, we considered the finite-sample properties of the proposed estimator. We also compared our model with semi-functional partial linear regression [3] and partial functional linear model [96], which showed the feasibility of our model.
     In chapter3, we considered the polynomial spline estimation of partial functional linear model [96]. Under some regularity conditions, we also got the asymptotic nor-mality on the parameter estimators and the global convergence rate of functional co-efficient. The finite-sample properties of the proposed estimators have been examined by a simulation. Compared with the estimation method of [96], the results showed our method is superior to [96].
     In chapter4, we put forward a more robust estimation method for partial func-tional linear model-penalized spline estimation. Similarly, under some regularity con-ditions, we also got the asymptotic normality on the parameter estimators and the global convergence rate of functional coefficient. We studied the finite-sample prop-erties of penalized spline estimation by a simulation. Meanwhile, we compared the three methods of estimation, the results showed the penalized spline estimation is the best of all.
     In chapter5, we introduced a new mixed functional data modeling-varying coef-ficient partially functional linear model. We studied the polynomial spline estimators of this model. Under the given conditions, we obtained the global and uniform con-vergence rates. By simulation experiment, we considered the finite-sample properties of the proposed estimator.
引文
[1]Akaike, H. A new look at the statistical model identification [J]. EEEE Trans. Automat. Control,1974, (19):716-723.
    [2]Aneiros-Perez, G., Gonzalez-Manteiga, W.& Vieu, P. Estimation and testing in a partial linear regression model under long-memory dependence [J]. Bernoulli,2004, (10):49-78.
    [3]Aneiros-Perez, G.& Vieu, P. Semi-functional partial linear regression [J]. Statistics & Prob-ability Letters,2006, (76):1102-1110.
    [4]Aneiros-Perez, G.& Vieu, P. Nonparametric time series prediction:A semi-functional par-tial linear modeling [J]. Journal of Multivariate Analysis,2008, (99):834-857.
    [5]Aneiros-Perez, G.& Vilar-Fernandez, J.M. Local polynomial estimation in partial linear regression models under dependence [J]. Computational Statistics & Data Analysis,2008, (52):2757-2777.
    [6]Aneiros-Perez, G.& Vilar-Fernandez, J.M. Prewhitening-based estimation in partial linear regression models:a comparative study [J]. REVSTAT-Statistical Journal,2009, (7):37-54.
    [7]Baillo, A.& Grane, A. Local linear regression for functional prediction and scalar response [J]. Journal of Multivariate Analysis,2009, (100):102-111.
    [8]Benhenni, K., Ferraty, F., Rachdi, M.& Vieu, P. Local smoothing regression with functional data [J]. Computational Statistics,2007, (22):353-369.
    [9]Bianco, A., Boente, G. Robust estimators in semiparametric partly linear regression models [J]. J. Statist. Plann. Inference,2004, (112):229-252.
    [10]Burba, E, Ferraty, F.& Vieu, P. k-Nearest neighbour method in functional nonparametric regression [J]. Journal of Nonparametric Statistics,2009, (21):453-469.
    [11]Buhlmann, P.& Geer, S. Statistics for High-Dimensional Data:Methods, Theoty and Appli-cations [M]. Berlin:Springer,2011.
    [12]Cardot, H., Ferraty, F.& Sarda, P. Functional linear model [J]. Statistics & Probability Letters,1999,(45):11-22.
    [13]Cardot, H., Ferraty, F.& Sarda, P. Spline Estimators for The Functional Linear Model [J]. Statistica Sinica,2003, (13):571-591.
    [14]Cardot, H., Ferraty, F., Mas, A.& Sarda, P. Testing hypotheses in functional linear model [J]. Scandinavian Journal of Statistics,2003, (30):241-255.
    [15]Cardot, H., Crambes, C.& Sarda, P. Quantile regression when the covariates are functions [J]. Journal of Nonparametric Statistics,2005, (17):841-856.
    [16]Cardot, H., Crambes, C, Kneip, A.& Sarda, P. Smoothing spline estimators in functional linear regression with errors-in-variables [J]. Computational Statistics and Data Analysis, 2007, (51):4832-4848.
    [17]Cardot, H., Mas, A.& Sarda, P. CLT in functional linear regression models [J]. Probability Theory and Related Fields,2007, (138):325-361.
    [18]Cardot, H. Conditional functional principal components analysis [J]. Scandinavian Journal of Statistics,2007, (34):317-335.
    [19]Cardot, H.& Sarda, P. Varying-Coefficient functional linear regression models [J]. Commu-nications in Statistics:Theory and Methods,2008, (37):3186-3203.
    [20]Cardot, H.& Johannes, J. Thresholding projection estimators in functional linear models [J]. Journal of Multivariate Analysis,2010, (101):395-408.
    [21]Cai, T.T.& Hall, P. Prediction in functional linear regression [J]. The Annals of Statistics, 2006, (34):2159-2179.
    [22]Cai, Z., Fan, J.& Li, R. Efficient estimation and inferences for varying-coefficient models [J]. Journal of American Statistical Association,2000, (95):888-902.
    [23]Cai, Z., Fan, J.& Yao, Q. Functional-coefficient regression model for nonlinear time series [J]. Journal of American Statistical Association,2000, (95):941-956.
    [24]Cao, Y., Lin, H., Wu, T.Z.& Yu, Y. Penalized spline estimation for functional coefficient regression models [J]. Computational Statistics and Data Analysis,2010, (54):891-905.
    [25]Chang, X.W.& Qu, L. Wavelet estimation of partially linear models [J]. Computational Statistics & Data Analysis,2004, (47):31-48.
    [26]Chatterjee, S.& Hadi, A.S. Regression Analysis by Example [M]. John Wiley & Sons,2006.
    [27]Chen, H. Polynomial splines and nonparametric regression [J]. Journal of Nonparametric Statistics,1991, (1):143-156.
    [28]Chen, R.& Tsay, R.S. Functional-coefficient autoregressive models [J]. Journal of American Statistical Association,1993, (88):298-308.
    [29]Claeskens, G., Krivobokova, T & Opsomer, J. Asymptotic properties of penalized spline estimators [J]. Biometrika,2009, (96):529-544.
    [30]Crambes, C, Kneip, A.& Sarda, P. Smoothing splines estimators for functional linear re-gression [J]. The Annals of Statistics,2009, (37):35-72.
    [31]Cuevas, A., Febrero, M.& Fraiman, R. Linear functional regression:the case of fixed design and functional response [J]. The Canadian Journal of Statistics,2002, (30):285-300.
    [32]de Door, C. A Practical Guide to Splines [M]. New York:Springer,2001.
    [33]DeVore, R. A.& Lorentz, G. G. Constructive approximation [M]. Berlin:Springer-Verlag, 1993.
    [34]Delaigle, A.& Hall, P. Weighted least squares methods for prediction in the functional data linear model [J]. Electronic Journal of Statistics,2009, (3):865-885.
    [35]Delaigle, A.& Hall, P. Methodology and theory for partial least squares applied to functional data [EB/01]. http://www.ms.unimelb.edu.au/aurored/AOS1108-010R1A0.pdf, 2011-11-15.
    [36]Delaigle, A.& Hall, P. Achieving near-perfect classification for functional data [J]. J. Roy. Stat. Soc. Ser. B.,2012, (74):267-286.
    [37]Delsol, L. CLT and Lq errors in nonparametric functional regression [J]. Comptes Rendus Mathematique,2007, (345):411-414.
    [38]Delsol, L. Advances on asymptotic normality in non-parametric functional time series anal-ysis [J]. Statistics,2009, (43):13-33.
    [39]Dierckx, P. Curve and Surface Fitting with Splines [M]. Oxford:Clarendon Press,1995.
    [40]Dohoho, D.L. Nonlinear solution of linear inverse problems by wavelet-vaguelette decom-position [J]. Appl. Comput. Harm. Anal,1995, (2):101-126.
    [41]Eilers, P.& Marx, B.D. Flexible smoothing with B-splines and penalties (with Discussion) [J]. Statist. Sci,1996, (11):89-121.
    [42]Engle, R., Granger, C, Rice, J & Weiss, A. Semiparametric estimates of the relation between weather and electricity sales [J]. Journal of the American Statistical Association,1986, (81): 310-320.
    [43]Eubank, R. L. Spline Smoothing and Nonparametric Regression [M]. New York:Marcel Dekker lnc,1988.
    [44]Fan, J. Design-adaptive nonparametric regression [J]. Journal of American Statistical Asso-ciation,1992,(87):998-1004.
    [45]Fan, J. Local linear regression smoothers and their minimax efficiency [J]. The Annals of Statistics,1993, (21):196-216.
    [46]Fan, J.& Gijbels, I. Local Polynomial Modelling and Its Application [M]. London:Chapman & Hall,1996.
    [47]Fan, J.& Zhang, W. Statistical estimation in varying coefficient models [J]. The Annals of Statistics,1999,(27):1491-1518.
    [48]Fan, Y. Q.& Li, Q. Root-n-consistent estimation of partially linear time series models [J]. Journal of Nonparametric Statistics,1999, (11):251-269.
    [49]Faraway, J. J. Regression analysis for a functional response [J]. Technometrics,1997, (39): 254-261.
    [50]Ferraty, F.& Vieu, P. The Functional Nonparametric Model and Application to Spectromet-ric Data [J]. Computational Statistics,2002, (17):545-564.
    [51]Ferraty, F.& Vieu, P. Nonparametric models for functional data, with application in regres-sion, time-series prediction and curve discrimination [J]. Nonparametric Statistics,2004, (16):111-125.
    [52]Ferraty, F.& Vieu, P. Nonparametric functional data analysis [M]. New York:Springer, 2006.
    [53]Ferraty, F.. Mas, A.& Vieu, P. Nonparametric regression on functional data:inference and practical aspects [J]. Australian & New Zealand Journal of Statistics,2007, (49):267-286.
    [54]Gao, J.T. Asymptotic theory for partly linear models [J]. Communications in Statistics:The-ory and Methods,1995, (24):1985-2009.
    [55]Hall, P & Horowitz, J. Methodology and convergence rates for functional linear regression [J]. The Annals of Statistics,2007, (35):70-91.
    [56]Hardle, W., Liang, H.& Gao, J.T. Partially Linear Models [M]. Physica Verlag,2000.
    [57]Hart, J.D.& Wehrly, T.E. Consistency of cross-validation when the data are curves [J]. Stochastic Process. Appl,1993, (45):351-361.
    [58]Hastie, T.J.& Tibshirani, R.J. Varying-coefficient models [J]. Journal of the Royal Statistical Society, Series B,1993, (55):757-796.
    [59]Heckman, N. Spline smoothing in a partly linear model [J]. J. Roy. Statist. Soc. Ser. B,1986, (48):244-248.
    [60]Hoover, D.R., Rice, J.A., Wu, C.O.& Yang, L.P. Nonparametric smoothing estimates of time-varing coefficient models with longitudinal data [J]. Biometrika,1998, (85):809-822.
    [61]Huang, J.Z. Projection estimation in multiple regression with application to functional ANOVA models [J]. The Annals of Statistics,1998, (26):242-272.
    [62]Huang, J.Z. Functional ANOVA models for generalized regression [J]. Journal of Multivari-ate Analysis,1998, (67):49-71.
    [63]Huang, J., Wu, C.O.& Zhou, L. Varying-Coefficient Models and Basis Function Approxi-mation for the Analysis of Repeated Measurements [J]. Biometrika,2002, (89):111-128.
    [64]Huang, J.& Shen, H. Functional Coefficient Regression Models for Non-linear Time Series: A Polynomial Spline Approach [J]. Scandinavian Journal of Statistics,2004, (31):515-534.
    [65]Huang, J., Wu, C.O.& Zhou, L. Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data [J]. Statistica Sinica,2004, (14):763-788.
    [66]Hurvich, CM.& Tsai, C.L. Regression and time series model selection in small samples [J]. Biometrika,1989, (76):297-307.
    [67]Liao, J. A functional linear model for comparing two pharmacokinetics profiles [J]. Journal of Statistical Planning and Inference,2003, (116):521-535.
    [68]Li, Y.& Hsing, T. On rates of convergence in functional linear regression [J]. Journal of Multivariate Analysis,2007, (98):1782-1804.
    [69]Linton, O. Second order approximation in the partially linear regression model [J]. Econo-metrica,1995,(63):1079-1112.
    [70]Lu, Y., Zhang, R.& Zhu, L. Penalized Spline Estimation for Varying Coefficient Models [J]. Communications in Statistics-Theory and Methods,2008, (37):2249-2261.
    [71]Malfait, N.& Ramsay, J.O. The historical functional linear model [J]. The Canadian Journal of Statistics,2003, (31):115-128.
    [72]Masry, E. Nonparanetric regression estimation for dependent functional data:asymptotic normality [J]. Stochastic Process and their Applications,2005, (115):155-177.
    [73]Nadaraya, E.A. On estimating regression [J]. Theory of Probability ans Its Applications, 1964,(9):141-142
    [74]Newey, W. Convergence rates and asymptotic normality for series estimators [J]. Journal of Econometrics,1997,(79):147-168.
    [75]O'Sullivan, F. A statistcal perspective on ill-posed inverse problems (with disdussion) [J]. Statistical Science,1986, (1):505-527.
    [76]O'Sullivan, F. Fast computation of fully automated log-density and log-hazard estimators [J]. Journal of Scientific and Statistical Computation,1988, (9):363-379.
    [77]Preda, C.& Saporta, G. PLS regression on a stochastic process [J]. Comput. Statist. Data Alal.,2005, (48):149-158.
    [78]Preda, C.& Saporta, G. Clusterwise PLS regression on a stochastic process [J]. Comput. Statist. Data Alal.,2005, (49):99-108.
    [79]Preda, C, Saporta, G.& Leveder, C. PLS classification of functional data [J]. Comput. Statist.,2007, (22):223-235.
    [80]Ramsay, J.O.& Dalzell, C.J. Some tools for functional data analysis (with discussion) [J]. Journal of the Royal Statistical Society. Series B (Methodological),1991, (53):539-572.
    [81]Ramsay, J.& Silverman, B. Functional data analysis [M]. New York:Springer,1997.
    [82]Ramsay, J.& Silverman, B. Applied Functional Data Analysis:Methods and Case Studies [M]. New York:Springer,2002.
    [83]Ramsay, J.& Silverman, B. Functional data analysis (second ed) [M]. New York:Springer, 2005.
    [84]Rao, C.R.& Toutenburg, H. Linear Model:Least Squares and Alternatives [M]. New York: Springer-Verlag,1995.
    [85]Reiss, P.T.& Ogden, R.T. Functional principal component regression and functional partial least squares [J]. J. Amer. Statist. Assoc,2007, (102):984-996.
    [86]Rice, J. Convergence rates for partially splined models [J]. Statistics & Probability Letters, 1986, (4):203-208.
    [87]Rice, J. A.& Silverman, B. W. Estimating the mean and covariance structure nonparamet-rically when the data are curves [J]. J. Roy. Statist. Soc. Ser. B,1991, (53):233-243.
    [88]Robinson, P. Root-n-consistent semiparametric regression [J]. Econometrica,1988, (56): 931-954.
    [89]Ruppert, D.& Carroll, R. Spatially-adaptive penalties for spline fitting [J]. Australian & New Zealand Journal of Statistics,2000, (42):205-223.
    [90]Ruppert, D. Seletting the number of knots for penalized splines [J]. J. Comp. Graph. Statist, 2002, (11):735-757.
    [91]Ruppert, D., Wand, M.P.,& Carroll, R.J. Semiparametric Regression [M]. Cambridge Uni-versity,2003.
    [92]Schumaker, L.L. Spline Functions:Basic Theory [M]. New York:Wiley,1981.
    [93]Schwarz, G. Estimating the dimension of a model [J]. Annals of Statistics,1978, (6):461-464.
    [94]Searle, S.R. Linear Models [M]. New York:John Wily,1971.
    [95]Shi, P.& Li, G. On the rate of convergence of "minimum L1-norm" estimates in a partly linear model [J]. Comm. Statist. Theory Methods,1994, (23):175-196.
    [96]Shin, H. Partial functional linear regression [J]. Journal of Statistical Planning and Infer-ence,2009, (139):3405-3418.
    [97]Speckman, P. Kernel smoothing in partial linear models [J]. J. Roy. Statist. Soc. Ser B, 1988, (50):413-436.
    [98]Stone, C. J. Optimal global rates of convergence for nonparametric regression [J]. The Annals of Statistics,1982,(10):1040-1053.
    [99]Stone, C.J. Additive regression and other nonparametric models [J]. The Annal of Statistics, 1985,(13):689-705.
    [100]Wang, S.G.& Chow, S. C. Advanced Linear Model [M]. New York:Marcel Dekker Inc, 1994.
    [101]Watson, G.S. Smooth regression analysis [J]. Sankhya, Series A,1964, (26):359-372.
    [102]Wong, H., Zhang, R., Ip, W.& Li, G. Functional-coefficient partially linear regression model [J]. Journal of Multivariate Analysis,2008, (99):278-305.
    [103]武新乾.几类非参数时间序列模型的估计问题研究[D].西安:西北工业大学,2007.
    [104]Xue, L.& Yang, L. Additive coefficient modeling via polynomial spline [J]. Statistica Sinica, 2006, (16):1423-1446.
    [105]Yao, F, Muller, H. G.& Wang, J.L. Functional data analysis for sparse longitudinal data [J]. Journal of the American Statistical Association,2005, (100):577-590.
    [106]Yao, F, Muller, H. G.& Wang, J.L. Functional linear regression analysis for longitudinal data [J]. The Annals of Statistics,2005, (33):2873-2903.
    [107]Yu, Y, & Ruppert, D. Penalized spline estimation for partially linear single-index models [J]. Journal of the American Statistical Association,2002, (97):1042-1054.
    [108]Zhang, D., Lin, X.& Sowers, M.F. Two-stage functional mixed models for evaluating the effect of longitudinal covariate profiles on a scalar outcome [J]. Biometrics,2007, (63): 351-362.
    [109]Zhou, S., Shen, X.& Wolfe, D. A. Local asymptotics for regression splines and confidence regions [J]. The Annals of Statistics,1998, (26):1760-1782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700